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Improved Dynamic Cutting Force Model in Peripheral Milling
Part I: Theoretical Model and Simulation

X.-W. Liu, K. Cheng, D. Webb and X.-C. Luo
School of Engineering, Leeds Metropolitan University, Leeds, UK

The accurate prediction of cutting forces is important in con-
trolling the tool deflection and the machining accuracy. In this
paper, the authors present an improved theoretical dynamic
cutting-force model for peripheral milling with helical end-
mills. The theoretical model is based on the oblique cutting
principle and includes the size effect of undeformed chip
thickness and the influence of the effective rake angle. A set
of closed-form analytical expressions is presented. Using the
cutting forces measured by Yucesan [1] in tests on a titanium
alloy, the cutting-force coefficients are estimated and the cut-
ting-force model verified by simulation. The simulation results
indicate that the improved dynamic cutting-force model does
predict the cutting forces in peripheral milling accurately.
Simulation results for a number of particular examples are
presented.
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1. Introduction

Peripheral milling operations are widely used in the automobile,
aerospace, textile machinery and other manufacturing industries,
where 2D contour parts, i.e. engine components, cams, etc.,
are milled using complex end-mills. In recent years, due to
the need to improve dimensional accuracy of the parts, there
has been a push toward reducing the machining errors com-
monly generated in the milling process. These errors derive
from the machine tools, the cutters, the NC programming and
the machining process. The errors of the machining process
generated in peripheral milling originate from a number of
sources, such as tool deflection, workpiece deflection, tool
wear, friction, tool run-out, and chatter vibration. Of these,
tool deflection due to cutting force is a major problem for
precision machining [2].
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An accurate dynamic cutting-force model is vital for the
precise prediction of tool and workpiece deflection in peripheral
milling. Several models based on theoretical assumptions and
experimental observations have been developed to predict the
cutting forces and were reviewed by Smith and Tlusty [3].
Elbestawi [4] and Ismail [5] presented cutting-force models
which are formulated from the tangential and radial cutting
forces of orthogonal cutting given by [6]

Ft = Ksbt (1)

Fr = cFt (2)

where Ks is the unknown cutting-force coefficient, b is the
width of cut, t is the undeformed chip thickness, and c is the
cutting-force ratio. Their formulation was confirmed by cutting
tests of aluminium. Kolarits [7] and Montgomery [8] also
presented cutting-force models which originated from the fun-
damental theory. Bayoumi [9] and Yucesan [1], however, have
developed models from the differential normal and friction
forces acting on the rake face given by

-Fn = Kn(�, �)A(�)n(�)-Av (3)

-Ff = Kn(�, �)Kf(�, �)A(�)Tc(�)-Av (4)

where Kn(�, �) is the unknown pressure coefficient, Kf(�, �) is
the unknown friction coefficient at the cutting surface–chip
interface, � is the position angle of a point on the cutting
edge, � is the rotation angle of the cutter, -Av is the differential
area of the undeformed chip cross-section, and A(�) is a
transformation matrix that rotates the cutter. Altintas [10] and
Budak [11] deduced their cutting-force models from the differ-
ential tangential, radial and axial cutting forces given by

-Fti(�, z) = [Kte + Ktcti(�, z)]-z (5)

-Fri(�, z) = [Kre + Krcti(�, z)]-z (6)

-Fai(�, z) = [Kae + Kacti(�, z)]-z (7)

where ti(�, z) is the undeformed chip thickness, and the six
unknown K** parameters are referred to as the milling-force
coefficients. Ramaraj [12] introduced a cutting-force model of
peripheral milling with tapered end-mills, which is based on
the differential shear force given by
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-FS =
�t-l

sin�ncos�
(8)

where � is the shear strength.
Of these models, those presented by Elbestawi [4] and Ismail

[5] originate from orthogonal and oblique cutting theories,
which are the theoretical foundations for cutting-force models
of peripheral milling. However, their models do not consider
the size effect of the undeformed chip thickness and the
influence of the effective rake angle, which have significant
effects on cutting forces. In this paper, we present an improved
dynamic cutting-force model, based on the orthogonal and
oblique cutting theories, which includes the size effect of
undeformed chip thickness and the influence of the effective
rake angle.

The fundamentals related to peripheral milling are presented
in Section 2, including the oblique cutting model and the
geometric model of peripheral cutting with helical end-mills.
A new theoretical dynamic cutting-force model of peripheral
milling is presented in Section 3, and an estimation of the
cutting-force coefficients from previously measured forces in
peripheral milling of a titanium alloy is given in Section 4. In
Section 5, predicted cutting forces for the peripheral milling of
the titanium alloy, from a series of simulations, are presented.

2. Fundamental Principles

There are two basic models which are normally used to
describe chip formation in metal cutting [6].

1. Orthogonal cutting. This is characterised by a cutting edge
which is normal and a chip flow which is parallel to the
direction of tool motion.

2. Oblique cutting. This is characterised by a cutting face
which is inclined by an angle � with respect to the direction
of tool motion and by an angle �c between the direction
of chip flow and the direction of tool motion.

2.1 Oblique Cutting Model

In the cutting-force models of peripheral milling, one of the
common assumptions, and one of the key points, is that the
helical flutes of an end-mill are treated as a combination of a
series of oblique cutting-edge segments. An oblique cutting
geometric model is illustrated in Fig. 1, and the fundamental
principles of oblique cutting are summarised as follows [6].

Fig. 1. Oblique cutting model.

The relationship between the velocity rake angle and the
normal rake angle takes the form

tan�v =
tan�n

cos�
(9)

The effective rake angle, which has an influence on cutting
forces, is determined by

sin�e = sin� sin�c + cos�c cos� sin�n (10)

where the chip flow angle �c may be directly obtained using
the following expression:

cos�c =
bc

b
cos� (11)

When the normal rake angle �n is equal to or greater than
8°, the chip flow angle �c may be approximately equal to the
inclination angle � for a variety of tool and work materials,
and speeds. This relationship is referred to as Stabler’s rule of
chip flow [6]. Although Stabler’s rule is valid to a first
approximation, it has been found that the chip flow angle �c

increases relative to the inclination angle � when:

1. The normal rake angle �n decreases.
2. A more efficient cutting fluid is used.
3. The frictional characteristics of the metal-cut are improved.

Equation (10), simplified by use of Stabler’s rule, gives:

sin�e = sin2� + cos2� sin�n (12)

For orthogonal cutting, i.e. � = 0, the cutting-force compo-
nents in the power direction and in the undeformed chip
thickness direction, become:

FP = ubt (13)

FQ = cFP (14)

where the ratio c is commonly about 0.5 [6], u is the total
energy per unit volume and is influenced by workpiece
material, effective rake angle (u decreases about 1% per degree
increase in �e) and undeformed chip thickness. The total energy
per unit volume u varies with undeformed chip thickness
approximately as:

u � 1/t0.2 (15)

This inverse relationship is referred to as the size effect.
Equation (13) is also suitable for oblique cutting, and we

can rewrite it as:

FP = uAv (16)

where Av = bt = ltcos� is the cross-sectional area of the unde-
formed chip perpendicular to cutting speed.

2.2 Geometric Model of Helical End-Mill

The end-mill can be divided into a number of slices along its
z-direction, as shown in Fig. 2(a). Within each slice, the cutting
action for an individual tooth can be modelled as for single-
point oblique cutting, and the tangential and normal cutting
forces at any point on the rake face can be obtained from the
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Fig. 2. Geometric model: (a) helical flute edge geometry; (b) curvilinear coordinate system of a tooth element; (c) differential cutting force.

oblique cutting model. It is important to note here that the
tangential and normal directions together with chip thickness
vary during the formation of a single chip in milling. Accord-
ingly, a dynamic model must account for these variations in
magnitude and direction of cutting forces.

To relate the helical flute geometry of the end-mill to the
tangential cutting force, a curvilinear coordinate system (t, r,
a) is established, as shown in Fig. 2(b), in which

�
t = [sin(�i) � cos(�i) 0

r = cos(�i) sin(�i) 0

a = [0 0 1]

(17)

where

�i = � + � + (i � 1)
2�

m
(1 	 i 	 m, 0 	 � 	 
) (18)

is the position angle of a point on the cutting edge in the tool
coordinate system,

� = ��time (19)

is the instantaneous rotation angle of the flute tip from the x-
axis, � is the helix lag angle, m is the flute number of the
cutter, � is the angular velocity of the spindle, and


 =
ba tan�

R
(20)

is the axial immersion angle of a tooth within the axial depth
of cut ba.

3. Cutting-Force Model

The cutting forces acting on the helical flute’s rake face are
dependent on the undeformed chip thickness. If -l is a portion
of the developed cutting edge of elemental length, then -z
may be considered as the width of an elemental oblique tool
with inclination angle �,

-z = -lcos� (21)

and the differential area of the undeformed chip cross-section

-Av(�i) = ti(�i)-z = ti(�i)-lcos� → -l =
R-�

sin�
(22)

where ti(�i) is the undeformed chip thickness.
From Eq. (16) we get the differential tangential cutting

force, as shown in Fig. 2(c), of the peripheral milling:

(23) -Fti(�i) = Ks-Av(�i) = Ksti(�i)Rcot�-�

where Ks is the tangential cutting-force coefficient, which has
the same meaning as the total energy per unit volume u.
Considering the size effect of undeformed chip thickness and
the influence of effective rake angle [6], gives

Ks = u0 �1 �
�e � �e0

100 � � t0
ti(�i)

�0.2

(24)

where u0 is the initial total cutting energy per unit volume,
�e (in degrees) is the effective rake face, �e0 (in degrees) is
the initial effective rake angle, and t0 is the initial undeformed
chip thickness.

From the orthogonal cutting theory, the differential perpen-
dicular cutting force of the peripheral cutting is given by

-Fri(�i) = c-Fti(�i) (25)

where the ratio c is commonly about 0.3 [5,13,14].
According to the kinematics of milling, the undeformed chip

thickness removed by a point on the ith helical flute can be
calculated as follows [6]:

1. For down-milling, as shown in Fig. 3(a):

ti(�i) = �ftsin(�i) if 0 	 �i 	 �

0 else
(26)

2. For up-milling, as shown in Fig. 3(b):

ti(�i) = �ftsin(��i) if � � 	 �i 	 0

0 else
(27)

where � is the cutter radial immersion angle within the radial
depth of cut, and

� = arccos �1 �
d
R� (28)

To develop the total force applied on the whole cutter, the
differential forces are resolved into the feed (y) and normal
(x) directions. As the differential cutting-force components are
just opposite to the corresponding directions of the curvilinear
coordinate system (t, r, a), Eqs (23) and (25) become
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Fig. 3. Peripheral milling method: (a) down-milling; (b) up-milling.

�-Ftix = �Ksti(�i)Rcot� sin�id�

-Ftiy = Ksti(�i)Rcot� cos�id�
(29)

�-Frix = �cKsti(�i)Rcot� cos�id�

-Friy = �cKsti(�i)Rcot� sin�id�
(30)

Summing these two equations gives the differential forces in
x and y as:

�-Fix = �Ksti(�i)Rcot� (sin�i + c cos�i)d�

-Fiy = Ksti(�i)Rcot� (cos�i � c sin�i)d�
(31)

Letting

u = u0 �1 �
�e � �e0

100 � �t0

ft
�0.2

(32)

Then the tangential cutting-force coefficient given by Eq.
(24) becomes

1. For down-milling:

Ks = u(sin�i)�0.2 (0 	 �i 	 �) (33)

2. For up-milling:

Ks = u[sin(� �i)]�0.2 (� � 	 �i 	 0) (34)

By applying Eqs (33) and (34), Eq. (31) becomes

1. For down-milling:

�-Fix = � uti(�i)Rcot� (sin0.8�i + csin�0.2�i cos�i)d�

-Fiy = uti(�i)Rcot� (sin�0.2�i cos�i � c sin0.8�i)d�
(35)

2. For up-milling:

�
-Fix = � uti(�i)Rcot� [sin�isin�0.2 (� �i)

+ c sin�0.2 (� �i) cos�i]d�

-Fiy = uti(�i)Rcot� [sin�0.2 (� �i) cos�i

� c sin�i sin�0.2 (� �i)]d�

(36)

By applying Eq. (26), and noting that -�i = -�, Eq. (35)
becomes

�-Fix = � uftRcot� (sin1.8�i + c sin0.8�i cos�i)d�i

-Fiy = uftRcot� (sin0.8�i cos�i � c sin1.8�i)d�i

(37)

�
�i = � � �time + (i � 1)

2�

m
0 	 �i 	 � �

By applying Eq. (27), and noting that sin(��i) = � sin�i,
Eq. (36) becomes

�-Fix = uftRcot� [sin1.8(� �i) � c sin0.8(��i) cos�i]d�i

-Fiy = uftRcot� [sin0.8(� �i) cos�i + c sin1.8(� �i)]d�i

(38)

�
�i = � � �time + (i � 1)

2�

m
� � 	 �i 	 0 �

Let �i = � �i, as cos(� �i) = cos�i and -�i = � -�i, Eq. (38)
becomes

�-Fix = �uftRcot� [sin1.8(�i) � c sin0.8(�i) cos�i]d�i

-Fiy = � uftRcot� [sin0.8(�i) cos�i + c sin1.8(�i)]d�i

(39)

��i = � � + �time � (i � 1)
2�

m

0 	 �i 	 �
�

where (1 	 i 	 m, 0 	 � 	 
).
The total cutting force applied on the whole cutting edge is

given by

�
Fix = ��e

�s

-Fix-�i

Fiy = ��e

�s

-Fiy-�i

or �
Fix = ��e

�s

-Fix-�i

Fiy = ��e

�s

-Fiy-�i

(40)

where �s (�s) and �e (�e) are the lag angular locations of the
start- and endpoints of contact of the cutting edge, and are
defined in the following kinematics analysis.

Integrating between the extreme values of the parametric
angle �s (�s) and �e (�e) gives the total cutting force applied
on the ith tooth.

1. For down-milling:

�
Fix � � uftRcot� (0.5�i � 0.25 sin 2�i + 0.5556 c sin1.8�i)|�e

�s

Fiy � uftRcot� (0.5556 sin1.8�i � 0.5 c�i + 0.25 c sin 2�i)|�e

�s

(41)
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Because 0 	 � 	 
, �i = � � �time + (i � 1) 2�/m and 0 	
�i 	 � gives the extreme values of the parametric angle �i as

�s = max �0, � �time + (i � 1)
2�

m � (42)

�e = min ��, 
 � �time + (i � 1)
2�

m � (43)

2. For up-milling:

�
Fix � � uftRcot�(0.5�i � 0.25 sin2�i � 0.5556 c sin1.8�i)|�e

�s

Fiy � � uftRcot� (0.5556 sin1.8�i + 0.5 c�i � 0.25 c sin2�i)|�e

�s

(44)

Also, �i = � � + �time � (i � 1) 2�/m and 0 	 �i 	 � gives
the extreme values of the parametric angle �i as

�s = max�0, � 
 + �time � (i � 1)
2�

m � (45)

�e = min��, �time � (i � 1)
2�

m � (46)

Summing up the cutting forces acting on all the m helical
flutes gives the total force applied on the whole cutter:

�
Fx = 	m

i=1

Fix

Fy = 	m
i=1

Fiy

(47)

4. Estimation of Cutting-Force
Coefficients

Equations (41) and (44) are closed-form analytical expressions
with the following two coefficients to be estimated by experi-
ment:

1. u0, the initial total cutting energy per unit volume, under
the initial cutting condition �e0 = 0° and t0 = 0.25 mm [6]

2. c, the cutting-force ratio.

u0 is dependent on workpiece material, cutter material, cutting-
edge radius, friction characteristics between the workpiece and
the cutter (no cutting fluid, continuous chip and no built-up
edge are assumed). The ratio c is about 0.3 [13,14] to 0.5
[10], and depends mainly on the cutter geometry.

In order to obtain values for the coefficients, some previously
measured cutting forces are considered. Yucesan and Altintas
[1] have presented a detailed description of their experimentally
measured cutting forces in the peripheral milling of a titanium
alloy. These experimental results were used to verify a different
cutting-force model, and it is appropriate to use them to verify
our improved cutting-force model.

For consistency, we choose the same cutter, workpiece
material and cutting conditions (for our simulation) as in the
cutting tests conducted by Yucesan and Altintas. These are:

1. Cutter: a single-fluted carbide end-mill with a helix angle
� = 30°, a rake angle �r = 12° and a diameter of 19.06 mm.

2. Material properties of the carbide cutter: 90% WC, 10%
Co, hardness 92 Rockwell.

3. Material properties of the titanium alloy: 6% Al, 4% V,
Young’s modulus = 110 GPa, Poisson’s ratio = 0.34,
tensile strength = 900 Mpa.

4. Cutting parameters: axial depth of cut ba = 7.62 mm, radial
depth of cut d = 19.06 mm (slotting), 
 = 26.45°, � = �,
spindle rotation speed n = 500 rpm (cutting speed
V = 498.99 mm s�1), with a feedrate ranging from 0.0127
mm per tooth to 0.2030 mm per tooth. The cutting forces
measured by Yucesan [1] are shown in Fig. 4.

We also assume the conditions presented by Shaw [6], i.e.
that the initial total cutting energy per unit volume u0 = 3.51
� 109 J m�3, the initial effective rake angle �e0 = 0°, the
initial undeformed chip thickness t0 = 0.25mm, and the cutting-
force ratio c = 0.5. With these assumed values the instantaneous
predicted forces were found to have the same shape as shown
in Fig. 4, but with different amplitudes. Adjusting the initial
total cutting energy per unit volume and the cutting-force ratio
to u0 = 2.0 � 109 J m�3, c = 0.45, the instantaneous predicted
forces shown in Fig. 5 are obtained. Comparing these results
to the measured cutting forces illustrated in Fig. 4, it is found
that there is very good agreement.

From Fig. 5 it can be seen that, when the feedrate is larger
than 0.0254 mm per tooth, the predicted cutting forces are
very good approximations to the measured cutting forces and
the improved dynamic cutting-force model can be used to
predict the cutting forces accurately. However, when the feed-
rate is smaller than 0.0254 mm per tooth, the predicted cutting
forces are smaller than the measured values. This result reveals
that when the feedrate is far smaller than the radius of the
cutting edge, the ploughing force is dominant [15] and the
cutting-force model must be modified.

Fig. 4. Measured cutting forces at various feedrates (Yucesan [1]).
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Fig. 5. Predicted cutting forces for a full immersion up-milling test
(m = 1, �r = 12°, ba = 7.62 mm, d = 19.06 mm, 
 = 26.45°, u0 = 2
� 109 J m�3).

Fig. 6. Predicted cutting forces for a half immersion up-milling test
(m = 4, ft = 0.203 mm per tooth, �r = 12 °, ba = 5.08 mm, d =
9.525 mm).

Fig. 7. Predicted cutting forces for a half immersion up-milling test
(m = 3).

Fig. 8. Influence of rake angle on the cutting forces (m = 4, ft = 0.203
mm per tooth, ba = 5.08 mm, d = 9.525 mm). (rake angle in °.)

5. Cutting-Force Simulation

A series of cutting simulations on the titanium alloy were
carried out for three- and four-fluted carbide end-mills (with a
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common helix angle of � = 30° and a diameter of 19.06 mm)
at a constant spindle rotation speed of 500 rpm. (The cutting
speed is constant at V = 498.99 mm s�1.)

Figure 6 shows instantaneous predicted cutting forces for a
flute number m = 4, a feedrate ft = 0.203 mm per tooth, an axial
depth of cut ba = 5.08 mm (
 = 17.63°), and an radial depth of
cut d = 9.525 mm (� = 89.97°). The variation in Fx shows that,
when the cut-in process of each tooth starts (as the second tooth
cuts out), Fx reaches a maximum value of about 1500 N; and
when the cut-in process ends, the maximum negative value of
Fx is about �140 N. This force variation will greatly influence
the surface form accuracy of the finished part.

Figure 7 shows predicted values of cutting force for the same
condition but for a flute number m = 3. The variation in Fx

shows that during the cut-in process of each tooth, Fx has small
negative values, changes from 0 to �101 N. The force variation
will have much smaller influence on the surface form accuracy
of the finished part. This result implies the possibility of reducing
the surface form error due to tool deflection through carefully
selecting the flute number of the cutter.

Figure 8 shows the predicted cutting forces when the rake
angle �r changes. The only difference is the amplitude of the
cutting forces.

Figure 9 shows the predicted cutting forces when the feed-
rate ft changes. It is worth noticing that, when ft = 0.102 mm

Fig. 9. Influence of feedrate on the cutting forces (m = 4, �r = 20°,
ba = 5.08 mm, d = 9.525 mm). (feedrate in mm per tooth.)

per tooth, the maximum value of Fx is greater than the half
maximum value as ft = 0.203 mm per tooth, due to the size
effect of undeformed chip thickness.

Figure 10 shows the influence of the radial depth of cut on
the cutting forces. A very interesting fact is that during the
cut-in process of each tooth, when the radial depth of cut
changes, Fx changes significantly. When d = 6.8 mm, the force
variation will have a much smaller influence on the surface
form accuracy of the finished part. This result implies the
possibility of reducing the surface form error due to tool
deflection through carefully selecting the radial depth of cut.

It is worth mentioning that Fuh [16] developed a second-
order model utilising response surface methodology (RSM) to
model the dimensional accuracy for peripheral milling, and
reported that the peripheral milling accuracy is generally
reduced with increased value of radial depth of cut. The model
did not consider the influence of the cutting-force distribution
on the dimensional accuracy. The simulation results shown in
Fig. 10 indicate that the dimensional accuracy depends not
only on the value of the radial depth of cut but also on the
influence on the cutting-force distribution of the radial depth
of cut.

Fig. 10. Influence of radial depth of cut on the cutting forces (m = 4,
�r = 20°, ba = 5.08 mm, ft = 0.102 mm per tooth). (d in mm.)
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6. Conclusions

The research presented here reinforces the size effect of unde-
formed chip thickness and the influence of the effective rake
angle in peripheral milling. The improved theoretical dynamic
cutting-force model presented simple closed form analytical
expression. Verification results indicate that the model is suit-
able for general peripheral milling, when the feedrate is larger
than the radius of the cutting edge. For fine milling, when the
feedrate is smaller than the radius of the cutting edge, the
measured cutting force will be greater than the cutting force
predicted by the model. This result reveals that the ploughing
force is dominant in this condition and the general cutting
force model is no longer effective. Case studies reveal that the
model may be very effective in reducing the surface form
error due to tool deflection if the flute number, the axial depth
of cut and the radial depth of cut are selected carefully.
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Nomenclature

� radial immersion angle
�e effective rake angle
�e0 initial effective rake angle
�n normal rake angle
�r radial rake angle, equivalent to �v in oblique cutting
�v velocity rake angle
� helix angle of end-mill, inclination angle of oblique cutting
� tool rotation angle
� helix lag angle
�s, �e helix lag angular locations of the starting and ending

points of contact
�i position angle of a point on the cutting edge of the ith

helical flute

 axial immersion angle of a tooth within ba

� spindle rotation angle speed
�c chip flow angle
Av, -Av cross-sectional area of undeformed chip perpendicular

cutting speed
FP, FQ cutting-force components in power direction and unde-

formed chip thickness direction
-Fti, -Fri differential cutting-force components of the ith helical

flute in tangential and radial directions
-Fix, -Fiy differential cutting-force components of the ith helical

flute in x and y directions
Fix, Fiy total cutting-force components of the ith helical flute in

x and y directions
Fx, Fy total cutting-force components in x and y directions
Ks tangential cutting-force coefficient
R tool radius
V cutting speed
Vc chip speed
ba axial depth of cut (peripheral milling)
b width of cut (oblique cutting)
bc width of chip (oblique cutting)
c cutting-force ratio
d radial depth of cut (peripheral milling)
ft feed per tooth per revolution
m number of cutter flutes
n spindle rotation speed (rpm)
time time
t undeformed chip thickness
ti(�i) undeformed chip thickness of the ith tooth in angle

position �i

t0 initial undeformed chip thickness
tc chip thickness
u total cutting energy per unit volume
u0 initial total cutting energy per unit volume
t, r, a unit vectors defining the curvilinear coordinate system

along the cutting edge


