
Int J Adv Manuf Technol (2002) 20:464–473
Ownership and Copyright
 2002 Springer-Verlag London Limited

A Memetic Algorithm for the n/2/Flowshop/�F � �Cmax

Scheduling Problem

W.-C. Yeh
Department of Industrial Engineering, e-Integration & Collaboration Laboratory, Feng Chia University, Taichung, Taiwan

Machine scheduling has been a popular area of research
during the past four decades. Its object is to determine the
sequence for processing jobs on a given set of machines. The
need for scheduling arises from the limited resources available
to the decision-maker. In this study, a special situation involv-
ing a computationally difficult n/2/Flowshop/�F + �Cmax flow-
shop scheduling problem is discussed. We develop a memetic
algorithm (MA, a hybrid genetic algorithm) by combining a
genetic algorithm and the greedy heuristic using the pairwise
exchange method and the insert method, to solve the
n/2/Flowshop/�F + �Cmax flowshop scheduling problem. Pre-
liminary computational experiments demonstrate the efficiency
and performance of the proposed memetic algorithm. Our
results compare favourably with the best-known branch-and-
bound algorithm, the traditional genetic algorithm and the
best-known heuristic algorithm.

Keywords: Branch-and-bound algorithm; Flowshop scheduling
problem; Genetic algorithm; Heuristic algorithm; Local search
method; Memetic algorithm

1. Introduction

Makespan and total flow-time are two commonly used perform-
ance measures in flowshop scheduling literature [1–11]. Flow-
time is defined as the time spent by each job in the system
and makespan is the time at which the last job completes its
processing on the last machine. Minimising makespan is
important in situations where a simultaneously received batch
of jobs is required to be completed as soon as possible, for
example, a multi-item order submitted by a single customer
that must be delivered in the minimal possible time. The
makespan criterion also increases the use of resources. There
are other real-life situations in which each completed job is
required as soon as it is processed. In such situations, we are
interested in minimising the mean or sum of flowtimes of

Correspondence and offprint requests to: Dr W.-C. Yeh, Department
of Industrial Engineering, Feng Chia University, PO Box 67-100,
Taichung, Taiwan 407. E-mail: yeh@ieee.org

all jobs rather than minimising makespan. This objective is
particularly important in real-life situations in which reducing
inventory or maintaining cost is of primary concern.

Nagar et al. [4, 12] were the first to address the two-machine
flowshop problem using the weighted sum of makespan and
flow-time criteria. They presented a branch-and-bound algor-
ithm that works well for special cases. Yeh [13] developed
additional branch-and-bound algorithms for the same problem.
This scheduling problem can be represented as n/m =
2/Flowshop/�F + �Cmax, where 0 � �, � � 1 and � + � =
1. The four variables are: the number of jobs n, number of
machines m, the shop configuration, and the two criteria to be
optimised, namely, flow-time F and makespan Cmax. “Flow-
shop” is a shop configuration in which machines are arranged
serially with a unidirectional work flow. Yeh [14] improved
the branch-and-bound algorithm developed by Yeh [13] even
further.

The objective of this work is to minimise a weighted linear
combination of job flow-time and schedule makespan. When
� = 0, this problem is a two-machine problem, in which the
objective is to minimise the makespan. It is well known that
such situation can be solved using Johnson’s algorithm [8, 9].
However, if 0 � � � 1, n/m = 2/Flowshop/�F + �Cmax is
NP-Hard [10, 11]. For further details on the complexity of
general scheduling problems see Lawler et al. [11].

The problem considered in this study finds applications in
both industrial and planning areas where each job must undergo
two basic processes in the same sequence. For example, in a
flat glass production problem, a cutting stock machine takes
glass and cuts it according to patterns to produce shapes that
are processed at a second operation. The second machine may
perform any activity such as packaging, assembling, and fin-
ishing [12–15].

Genetic algorithms (GAs) are stochastic search methods for
optimisation problems based on the mechanism of natural
selection and genetics, which is based on the survival-of-the-
fittest tenet of Darwinian evolution. Recently, GAs have been
applied to harder combinatorial optimisation problems because
they have better characteristics, e.g. there is less effect on
calculation when the system becomes more complex or larger.
However, the weakness of a GA for local searches is well
acknowledged [16–22].



A Memetic Algorithm for a Scheduling Problem 465

Moscato and Norman [20] introduced the term “memetic
algorithm” (MA) to describe genetic algorithms in which a
local search plays a significant part. In MAs, a local optimiser
is applied to each offspring before it is inserted into the
population in order to make it climb the local optimum [21,
23]. With the hybrid method [16–23], GAs are used to perform
global exploration within a population, while local optimisers
are used to perform local exploitation around chromosomes.
Since the properties of GAs and conventional local optimisers
are complementary, MAs are often better than either method
operating alone [16–23].

The purpose of this paper is to present an efficient memetic
algorithm (MA) by combining the GA, hybrid local search
method (HLSM), and greedy heuristic method (GHM) to solve
the scheduling problem proposed by Nagar et al. [12]. To
indicate the performance and efficiency of the proposed MA,
a traditional GA (TGA) was also developed, and compared to
the proposed MA. Our results compare favourably with the
existing best-known branch-and-bound algorithm (BB) [14]
and the best-known heuristic algorithm (the two-phase hybrid
heuristic algorithm, 2XI) [14], and TGA.

This paper is organised as follows. The terminology and
problem formulation are described in Section 2. In Section 3,
a simple TGA for the n/2/Flowshop/�F + �Cmax scheduling
problem is given. In Section 4, an efficient MA is proposed.
The 2XI is listed in Section 5. Computational experiments in
a series of randomly generated problems are provided in Sec-
tion 6. Concluding remarks are given in Section 7.

2. The Notation and Assumption

In the remainder of this study, the following notation is used:

Ji, J[i] = job i and the job which occupies the position i in
the sequence of jobs, respectively; i = 1, 2, $, n

ti,j, t[i],j = processing time of the Ji and J[i] on the machine j,
respectively; i = 1, 2, $, n, j = 1, 2

n = job number

�, � = weights associated with flow-time and makespan (0
� �, � � 1 and � + � = 1), respectively

S = any arbitrary sequence of n jobs

Si = a subschedule of the first i jobs in S, 0 � i � n and
S0 = �

C(S),
F(S) = completion time and flow-time of S, respectively

Ik(S) = idle-time induced from the kth job in S, where 1 �
k � n

Cij = jth chromosome of the ith generation

Fit(Cij) = fitness value of the chromosome Cij

pop = population size

gen = maximum number of generations allowed

cgen = generation number at which MA began to converge

Avg. = average running times (of all different test data sets
in the group problem)Time

Avg. = average of the final schedule objective function values
of MA (of all different test data sets in the group
problem)

Value

Avg. = average error between the corresponding results and
optimumError

Avg. = average error between the corresponding results
and final schedule objective function values of MADifference

The problem considered here is to schedule n jobs on two
machines and determine the optimal weighted combination of
flow-time and schedule makespan, so that the objective function
[12–14]

Z(s)= �F(S)+�C(S)

=��n

i=1

(n�i+1){t[i],2+Ii(S)} (1)

+��n

i=1

{t[i],2+I(S)}

is minimised. The following assumptions are used to character-
ise a flowshop [12–14]:

1. All jobs are independent and available for processing simul-
taneously at time zero.

2. Set-up times are known and are included in the pro-
cessing times.

3. Machines are continuously available but cannot process two
or more jobs simultaneously.

4. Job pre-emption and job splitting are not permitted.
5. There is an infinite buffer between the machines.

3. A Traditional Genetic Algorithm

To show the difference between the traditional GA and the
proposed MA, this section outlines a simple TGA for solving
the n/2/Flowshop/�F + �Cmax problem.

3.1 Initialisation

The initial population can be created in either a random way
or a well-adapted method. Liepins and Hilliard [22] suggested
that the use of a well-adapted population provides few advan-
tages despite fast convergence. Therefore, all of the initial
population is generated randomly. A fixed population size is
used in this study.

3.2 Chromosome Representation

As the initialisation process of a GA, a solution is encoded as
a finite-length string of elements called chromosomes. Here,
the permutation encoding is used because the order of items
can be most naturally modelled in this way. In permutation
encoding, every chromosome is a feasible schedule and is
described by a vector: Cij = [Jij1, $, Jijn], where Jijk � Jijl for
all k � l, and Jijk is the kth job in Cij. The length of



466 W.-C. Yeh

the chromosome is equal to the total number of jobs to
be scheduled.

3.3 Fitness Function

Chromosomes are selected to form new solutions (offspring)
according to their fitness function value – the more suitable
they are, the more chances they have to reproduce. In this
study, the fitness function value for each chromosome is equal
to the schedule objective function, i.e. Fit(Cij) = Z(Cij).

3.4 Selection

The selection process discussed here is a mixed method of
elite and rank selection. The elite method selects a few best,
say nsel which is 80% of the chromosomes of the parents in
this study, for the next generation to prevent losing the best
found solution and to rapidly increase the performance of the
GA. The rank method is based on all of the chromosomes
having a chance to be selected. It is used here to select the
other pop � nsel chromosomes.

3.5 Crossover

Crossover and mutation are the most important parts of a GA.
The crossover plays an important role in exchanging infor-
mation among chromosomes. It leads to an effective combi-
nation of partial solutions in other chromosomes and speeds
up the search procedure early in the generation. The single-
point crossover is developed here to produce two offspring for
each pair of parents. In this method, one cut point is randomly
chosen first. The two offspring are produced in the following
way: for every job before (after) this point, copy from the first
parent, and then copy the other distinct jobs of the second
parent. The crossover is applied with a probability of 0.8 per
chromosome in this study.

3.6 Mutation

To prevent all solutions in population from falling into a local
optimum; mutation takes place after a crossover is performed.
The swapping mutation is applied here by choosing randomly
two jobs within the selected chromosome, and exchanging their
positions. The mutation is applied with the relatively high
probability of 0.2 per chromosome.

4. A Memetic Algorithm

To overcome the weakness of the GA for local searches, an
efficient MA is proposed here by combining the GA, HLSM
and GHM to solve the scheduling problem proposed by Nagar
et al. The GA part in the proposed MA is similar to the TGA
proposed in Section 3. Hence, only the differences, in HLSM
and GHM are discussed in this section.

4.1 A Well-Adapted Initial Population

To speed up the convergence of the MA process, all of the
initial population is generated randomly first, except that the
first chromosome is created by a simple greedy method,
described in Section 4.2. All of the chromosomes are then
improved using an HLSM that is discussed in Section 4.3.

4.2 A Simple Greedy Heuristic Method

The first chromosome is constructed using a GHM in the
initial process. The GHM is adapted from the upper-bound
procedure of Yeh [13,14]. It is very simple and can be used
to find the upper-bound of even large-scale problems. Its
underlying principle is to pull back the schedule objective
function at each stage of schedule generation. In this greedy
procedure, the remaining unscheduled jobs are sequenced with
consideration of both the average processing time on machine
1 and the idle-time induced after sequencing.

4.3 A Hybrid Local Search Method (HLSM)

One of the major drawbacks of a GA is that it converges too
slowly. HLSM is implemented to prevent this drawback and
to guide the search towards unexplored regions in the solution
space. The proposed HLSM combines two well-known local
improvement methods: the pairwise exchange procedure (XP)
and insert procedure (IP). If a new chromosome is produced
by the crossover or in the initial population, then it is improved
using XP, otherwise it is improved using IP.

In XP, the positions of every pair of jobs are exchanged.
In IP, each job is removed from its current position and
inserted into the other position. Both XP and IP in the proposed
MA must be performed until the fitness function value is
unchanged for three consecutive times. To reduce the number
of duplications of new chromosomes after implementing
HLSM, the starting position must be exchanged in XP or
inserted in IP, according to a random number. Hence, two
different chromosomes with the same encoding, must have
different encoding after HLSM.

4.4 Overall Procedure

The flowchart for the general procedure of the proposed MA
is shown in Fig. 1. The blocks with a dashed-line border
are implemented and function as in the TGA discussed in
Section 3.

Fig. 1. The flowchart of the memetic algorithm.



A Memetic Algorithm for a Scheduling Problem 467

5. The Best-Known Heuristic Algorithm

To demonstrate the role of GHM, XP, and IP in the proposed
MA, the best-known heuristic algorithm (called 2XI here)
proposed in [13,14] is presented to compute an approximate
solution for the problem. In the first phase of 2XI, the greedy
algorithm proposed in Section 4.2 is employed first to produce
a feasible schedule. In the second phase, a hybrid method
combining XP and IP, (the two local improvement methods
are discussed in Section 4.3), is employed to improve the
initial schedule obtained in the first phase.

In the second phase of 2XI, IP is just a subroutine of XP.
It is employed only while there is no improvement after
exchanging a pair of jobs during the process of XP. After that,
XP is restarted. The above procedure is repeated until the
objective function value cannot be improved or is unchanged
for three consecutive times.

6. Computational Results

The closer the result is to the optimum, the higher the quality
of the algorithm. To compare the efficiency (running time) and
quality of the proposed MA against TGA, the best-known
existing BB, and the best-known existing heuristic algorithm
(2XI), all of the above algorithms were implemented in C++,
and run on a Pentium III 1033 personal computer. The running
time was measured in seconds.

There were four experiments (see Table 1). Each test prob-
lem group contained 10 different data sets. The processing
time on the 1st and 2nd machine for each job in every data
set was randomly generated in a uniform discrete distribution
U(10, 99). The number of job for each data set were all equal.
Very little time was required to solve the problem when the
total processing time was greater on the second machine than
on the first [12–14]. Hence, to create a more practical experi-
ment, the processing times on machines 1 and 2 were
exchanged and rerun again after each data set. Except for n
� 50, experiment 3 was run with 4 sets of weights, namely
� = 0.25, 0.50, $, 1.0, i.e. there were 80 test problems in
each group problem. In the other experiments and for n	 50
in experiment 3, each data set was run with 10 sets of weights,
namely � = 0.1, 0.2, $, 1.0, i.e., there are 200 test problems
in each problem group.

Table 1. The four experiments.

Experiment Remarks

1 Compare MA to TGA for n = 10 under different pop
and gen, and � = 0.1, 0.2, $, 1;

2 Compare MA to BB and 2XI for n = 5, 6, $, 15,
pop = n, 2n, $, 5n and � = 0.1, 0.2, $, 1;

3 Compare MA to 2XI for n = 10, 15, $, 50 with pop
= 2n and � = 0.1, 0.2, $, 1, and n = 55, 60, $, 100
with pop = n and � = 0.25, 0.5, $, 1;

4 Compare MA to BB for the 2nd machine is dominant,
n = 10, 15, $, 90, pop = 2n, and � = 0.1, 0.2, $, 1;

In the results tables, the notations n, pop, gen, cgen, Avg.
Time, Avg. Optimum, Avg. Value, Avg. Error and Avg. Differ-
ence represent the job number, population size, generation size,
the average generation that began to converge, the average of
the running times (for all different test data sets in the problem
group), the average optimum, the average of final schedule
objective function value (of all different test data sets in the
group problem), the average error between the corresponding
results and optimum, and the average error between the corre-
sponding results and values. To allow observation of the
behaviour and convergence stability of MA and TGA, each
new generation was executed again from the initial population
process in experiments 1 and 2.

In experiment 1, the stop criterion for TGA and MA were
the generation numbers. The stop criterion for the remaining
experiments in MA was a little different from experiment 1.
In order to take advantage of a better solution quality, a
flexible termination criterion was used. In each test problem,
the algorithm terminated after a number of generations, carried
out with an equal fitness function value for all populations in
the same generation.

6.1 MA vs. TGA

In experiment 1, the proposed MA was first tested on 10 group
problems (200 test problems), each for 10 jobs to compare
with the proposed TGA in Section 3. In this experiment, the
MA was run with generations 1, 2, to 20, and the population
sizes were 10, 20, to 50, respectively. The TGA was run with
generations 500 and 550 to 1000, and the population sizes
were 50, 100, 200 and 300, respectively.

Table 2 shows only the running time and average error for
the MA before the MA converged to an optimum, i.e. from gen
= 1 to cgen. Therefore, there are only at most 18 generations in
Table 2. Table 3 shows the TGA results and Table 4 shows
the corresponding results for the TGA and the MA in Tables
2 and 3 for each �, respectively. All of the average errors in
Tables 2 to 4 were compared to the optimum obtained from
the best-known BB. From Table 3, the TGA not only converged
very slowly, even with 1000 generations and a population of
300, but also converged to a solution with a larger average
error. In contrast, the MA converged steadily and very fast to
the optimum with smaller sized generations, population and
running time (see Table 2). In Table 3, the MA ran with pop
= 10 and gen = 18 were even better than the TGA run with
pop = 300 and gen = 1000 at the convergence speed and
solution quality to each �. Therefore, the MA is more efficient
than the TGA.

6.2 The Comparison Among the MA, BB and 2XI

The focus of the next experiment shifted to a comparison
among MA, and the best-known BB and the best-known
heuristic algorithm (2XI) for small problems (see Tables 5
and 6).

Because of the characteristics of NP-hard problems and the
limitations of personal computers, the BB could solve only
medium-sized problems. Therefore, only 5 to 15 jobs were



468 W.-C. Yeh

Table 2. Results of MA in experiment 1 (the average optimum is 2033.818).

gen pop = 10, pop = 20, pop = 30, pop = 40, pop = 50,
cgen = 18 cgen = 9 cgen = 5 cgen = 3 cgen = 2

Avg. Time Avg. Error Avg. Time Avg. Error Avg. Time Avg. Error Avg. Time Avg. Error Avg. Time Avg. Error

1 0.000 0.399 0.000 0.064 0.001 0.046 0.000 0.011 0.001 0.015
2 0.000 0.191 0.001 0.065 0.002 0.015 0.002 0.002 0.003 0.000
3 0.001 0.219 0.003 0.007 0.005 0.000 0.004 0.000
4 0.002 0.107 0.004 0.000 0.008 0.002
5 0.004 0.054 0.006 0.000 0.010 0.000
6 0.005 0.091 0.007 0.004
7 0.007 0.063 0.010 0.000
8 0.009 0.022 0.013 0.020
9 0.010 0.009 0.016 0.000

10 0.013 0.057
11 0.015 0.072
12 0.017 0.018
13 0.019 0.044
14 0.022 0.028
15 0.025 0.041
16 0.028 0.013
17 0.031 0.008
18 0.035 0.000

Table 3. Results of TGA in experiment 1 (the average optimum is 2033.818).

gen pop = 50 pop = 100 pop = 200 pop = 300
Avg. Time Avg. Error Avg. Time Avg. Error Avg. Time Avg. Error Avg. Time Avg. Error

500 0.056 2.232 0.152 0.645 0.482 0.293 0.988 0.137
550 0.063 2.080 0.170 0.618 0.532 0.202 1.085 0.137
600 0.067 2.048 0.184 0.618 0.580 0.202 1.185 0.137
650 0.072 2.048 0.199 0.618 0.627 0.202 1.282 0.137
700 0.082 2.048 0.215 0.618 0.676 0.145 1.384 0.137
750 0.090 1.945 0.230 0.618 0.725 0.145 1.482 0.137
800 0.095 1.945 0.246 0.616 0.772 0.145 1.580 0.137
850 0.097 1.943 0.260 0.606 0.820 0.145 1.679 0.137
900 0.099 1.908 0.276 0.606 0.868 0.145 1.776 0.137
950 0.104 1.839 0.292 0.606 0.919 0.145 1.877 0.137

1000 0.111 1.834 0.307 0.600 0.965 0.110 1.976 0.137

considered in this experiment, i.e. each method was tested on
11 group problems (2200 test problems), separately. Moreover,
the MA ran for five different population sizes from one times
the job number to five times the job number to see how the
different population sizes affected the speed of convergence.

The results presented in Table 5, indicate that MA and 2XI
are both better than BB in running time and the average
running times for both were less than 0.3 s. However, the
final schedule objective function value for each problem (see
Table 5) and for each � (see Table 6), obtained with the MA
were much better than 2XI in quality. From a comparison
among the different population sizes, the MA converged
quickly in fewer generation (cgen) when the population size
was increased. Thus, the MA is much better than 2XI in both
running time and quality even with pop = 2n only. The greater
the population, the slower the speed of convergence and the
better the MA solution quality.

6.3 The Comparison Between MA and 2XI

Experiment 3 compared the MA to 2XI for a larger problem.
The number of jobs for the MA and 2XI were all from 10,
with an increment of 5 until the average running time was
over 120 s. The MA population for each test group problem
was 2n and � = 0.1, 0.2, $, 1 for n � 50 (see Tables 7, 9,
and 10). To reduce the running time of the MA and 2XI, pop
= n and � = 0.25, 0.5, $, 1 for MA (see Tables 8, 11, and 12).

The results presented in Tables 7–12, show that the MA is
better than 2XI in both quality and efficiency, especially for
larger numbers of jobs and different �. In particular, the quality
of the schedule obtained with 2XI decreased, and the running
time increased, when the number of jobs increased. However,
the MA took only 2 min for n = 100. Therefore, the MA can
still be used to find a better solution than 2XI within a
reasonable running time when the number of jobs is larger.



A Memetic Algorithm for a Scheduling Problem 469

Table 4. Results in experiment 1 for each �.

� BB TGA MA

pop = 50 pop = 100 pop = 200 pop = 300 pop = 10 pop = 20 pop = 30 pop = 40 pop = 50
cgen = 18 cgen = 9 cgen = 5 cgen = 3 cgen = 2

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Optimum Time Error Time Error Time Error Time Error Time Error Time Error Time Error Time Error Time Error

0.1 872.910 0.010 0.628 0.028 0.265 0.088 0.015 0.179 0.000 0.001 0.020 0.002 0.006 0.002 0.004 0.002 0.007 0.000 0.000
0.2 1132.160 0.010 1.286 0.028 0.365 0.087 0.000 0.180 0.000 0.002 0.064 0.001 0.042 0.003 0.000 0.002 0.000 0.004 0.000
0.3 1390.620 0.010 1.136 0.027 0.270 0.088 0.447 0.179 0.000 0.002 0.026 0.002 0.000 0.002 0.000 0.001 0.000 0.000 0.000
0.4 1648.260 0.010 0.560 0.029 0.590 0.088 0.000 0.180 0.000 0.002 0.046 0.002 0.001 0.001 0.038 0.001 0.000 0.004 0.000
0.5 1905.725 0.010 1.052 0.027 0.475 0.088 0.009 0.180 0.000 0.001 0.119 0.002 0.006 0.002 0.000 0.001 0.000 0.000 0.000
0.6 2163.170 0.010 2.300 0.029 1.210 0.088 0.000 0.180 0.000 0.002 0.055 0.001 0.009 0.002 0.000 0.001 0.000 0.003 0.000
0.7 2420.590 0.010 4.284 0.028 0.000 0.089 0.528 0.180 0.560 0.003 0.240 0.002 0.024 0.001 0.000 0.003 0.035 0.001 0.000
0.8 2677.940 0.010 1.148 0.028 0.715 0.087 0.230 0.180 0.000 0.002 0.053 0.002 0.020 0.003 0.024 0.002 0.000 0.000 0.000
0.9 2934.955 0.010 3.391 0.028 1.015 0.088 0.074 0.181 0.810 0.002 0.084 0.002 0.014 0.003 0.000 0.002 0.000 0.001 0.000
1 3191.850 0.010 4.100 0.028 1.250 0.087 0.400 0.179 0.000 0.002 0.089 0.002 0.056 0.002 0.060 0.001 0.000 0.003 0.075

Avg 2033.818 0.010 1.989 0.028 0.615 0.088 0.170 0.180 0.137 0.002 0.080 0.002 0.018 0.002 0.013 0.001 0.004 0.002 0.008

Table 5. Results in experiment 2 for job number from 5 to 15.

n BB 2XI MA

Avg. Avg. pop = n pop = 2n pop = 3n pop = 4n pop = 5n
Time Optimum Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Time Error cgen Time Error cgen Time Error cgen Time Error cgen Time Error cgen Time Error

5 0.000 616.87 0.000 0.000 1.6 0.000 0.177 1.9 0.000 0.000 1.8 0.000 0.000 2.1 0.000 0.000 1.9 0.000 0.000
6 0.000 909.69 0.000 0.026 1.6 0.000 1.583 1.7 0.000 0.008 1.7 0.000 1.011 1.8 0.000 0.000 1.9 0.000 0.000
7 0.000 1192.05 0.000 0.045 1.6 0.000 0.024 1.7 0.000 0.000 1.6 0.000 0.178 1.7 0.001 0.036 1.7 0.001 0.000
8 0.000 1344.61 0.001 0.045 2.5 0.000 1.836 2.7 0.001 1.430 3.2 0.001 0.000 3.2 0.001 0.000 3.0 0.002 0.000
9 0.001 1712.94 0.001 0.128 2.9 0.001 0.008 2.7 0.001 0.602 3.1 0.001 0.000 2.9 0.002 0.210 3.0 0.002 0.000

10 0.004 2033.82 0.002 0.231 4.1 0.001 0.040 4.3 0.001 0.000 4.2 0.003 0.000 4.3 0.003 0.000 4.2 0.003 0.017
11 0.017 2398.82 0.004 0.151 3.1 0.001 0.537 3.3 0.002 0.005 3.3 0.002 0.228 3.4 0.003 0.000 3.6 0.003 0.000
12 0.041 2636.26 0.006 0.218 4.2 0.001 0.123 4.3 0.004 0.036 4.1 0.006 0.154 4.3 0.008 0.260 4.3 0.010 0.000
13 0.316 3074.13 0.007 0.678 5.0 0.003 0.788 5.1 0.005 0.414 5.5 0.009 0.000 5.6 0.012 0.002 5.4 0.016 0.002
14 0.664 3633.75 0.014 1.243 5.0 0.004 0.245 4.9 0.008 0.167 5.4 0.012 0.000 5.2 0.012 0.000 5.1 0.018 0.000
15 7.118 4184.14 0.019 2.247 5.9 0.006 0.408 5.7 0.010 0.185 5.9 0.016 0.000 5.5 0.019 0.000 5.4 0.025 0.000

Avg. 0.742 2157.92 0.005 0.456 3.4 0.001 0.524 3.5 0.003 0.259 3.6 0.005 0.143 3.6 0.006 0.046 3.6 0.007 0.002

Table 6. Results in experiment 2 for job number from 5 to 15 for each �.

� BB 2XI MA
Avg. Avg. pop = n pop = 2n pop = 3n pop = 4n pop = 5n
Time Value Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Time Error cgen Time Error cgen Time Error cgen Time Error cgen Time Error cgen Time Error

0.1 0.831 896.1 0.004 0.166 3.58 0.001 0.203 3.95 0.003 0.140 4.06 0.006 0.018 4.28 0.008 0.008 4.06 0.008 0.000
0.2 0.770 1178.1 0.004 0.230 3.75 0.002 0.353 3.76 0.003 0.092 3.67 0.003 0.042 3.90 0.006 0.002 3.84 0.008 0.001
0.3 0.771 1459.1 0.007 0.345 3.39 0.001 0.555 3.53 0.002 0.016 3.79 0.004 0.082 3.66 0.004 0.051 3.62 0.007 0.000
0.4 0.753 1739.5 0.003 0.498 3.40 0.001 0.348 3.32 0.002 0.155 3.73 0.005 0.055 3.57 0.005 0.085 3.62 0.006 0.000
0.5 0.743 2019.7 0.006 0.495 3.21 0.001 0.780 3.40 0.003 0.127 3.57 0.004 0.095 3.56 0.005 0.000 3.45 0.008 0.000
0.6 0.734 2299.3 0.004 0.499 3.49 0.002 0.343 3.31 0.003 0.088 3.48 0.004 0.181 3.65 0.005 0.104 3.42 0.008 0.000
0.7 0.710 2578.7 0.005 0.596 3.29 0.001 0.370 3.55 0.003 0.986 3.75 0.005 0.012 3.34 0.006 0.015 3.55 0.005 0.015
0.8 0.714 2857.7 0.004 0.497 3.29 0.002 0.731 3.44 0.003 0.341 3.46 0.004 0.425 3.41 0.006 0.077 3.52 0.007 0.000
0.9 0.697 3136.3 0.005 0.548 3.21 0.002 0.947 3.14 0.003 0.286 3.50 0.004 0.000 3.36 0.005 0.000 3.45 0.007 0.000
1 0.695 3414.7 0.005 0.682 3.25 0.001 0.614 3.36 0.003 0.355 3.23 0.006 0.518 3.45 0.004 0.118 3.42 0.009 0.000

Avg. 0.742 2157.9 0.005 0.456 3.39 0.001 0.524 3.48 0.003 0.259 3.62 0.005 0.143 3.62 0.006 0.046 3.59 0.007 0.002



470 W.-C. Yeh

Table 7. Results in experiment 3 for n = 10, 15, $, 50.

n MA(pop = 2n) 2XI
Avg. Avg. Avg. Avg. Avg.
cgen Time Value Time Difference

10 4.17 0.001 2033.82 0.002 0.231
15 5.81 0.018 4184.14 0.019 0.011
20 9.47 0.079 6297.75 0.095 0.010
25 11.21 0.240 9479.71 0.298 0.043
30 17.00 0.754 13457.34 0.783 0.038
35 18.87 1.518 17382.87 1.900 0.046
40 22.73 3.156 22548.63 3.765 0.085
45 29.33 6.645 27007.32 6.722 0.099
50 33.17 11.604 33118.94 11.743 0.118

Table 8. Results in experiment 3 for n = 55, 60, $, 100.

n MA(pop = 2n) 2XI
Avg. Avg. Avg. Avg. Avg.
cgen Time Value Time Difference

55 33.14 5.576 47177.81 21.896 12.849
60 34.30 8.245 52618.05 28.916 13.882
65 39.36 13.139 64494.59 33.814 15.541
70 42.49 19.326 73412.88 43.464 21.878
75 46.05 28.226 84917.88 63.206 24.089
80 48.69 38.192 94439.38 87.649 28.908
85 50.53 51.347 108182.96 127.556 38.896
90 53.05 68.641 119325.69
95 56.53 90.950 134349.06

100 61.15 120.808 143946.40

6.4 The Comparison Between the MA and BB
when Machine 2 is Dominant

The second machine is said to be dominant when the processing
time is greater on the second machine than on the first. The
BB solved very large problems in this special case [12]. The
last experiment compared MA to BB for this special case
problem. There were 17 group problems in which the number
of jobs was 10, 15 to 90, i.e. there are 3400 test problems.
The population of MA for each test group problem was 2n.
The final schedule objective function value for 3400 test prob-
lems obtained in MA were all equal to the optimum. The
results presented in Tables 13 and 14 indicated that BB is
more efficient for this special case than the MA for each n
and �. However, the MA outperformed BB when processing
times were randomly generated from experiments 1, 2, and 3.

7. Conclusion

Genetic algorithms have aroused intense interest in the past few
years because of their flexibility, versatility, and effectiveness in
solving problems in which traditional optimisation methods are
insufficient. GAs need no simplifying assumptions of linearity,
continuity, etc., and thus can solve highly complex real-world
problems. Nevertheless, there are many situations in which
simple GAs do not perform particularly well, and so various

methods of hybridisation, e.g. the MA, in which a local search
plays a significant part, have been proposed. Because of the
complementary properties of GAs and conventional heuristics,
an MA often outperforms either method operating alone.

In this study, an MA is proposed to solve a special compu-
tationally difficult flowshop scheduling case by combining the
GA with some local optimisers, such as the greedy algorithm
and tabu search, to enhance the performance of the GAs.

The proposed MA is compared with a simple traditional
genetic algorithm (TGA), and an efficient heuristic method
(2XI), which also combines nearly the same local optimisers
employed in the MA, and the pure branch-and-bound (BB)
procedure, which was discussed in our previous paper, to verify
that our MA method produces a good quality solution within
a reasonable running time. A number of numerical tests in a
series of randomly generated problems are used and indicate
that the performance and efficiency of the proposed MA outper-
forms pure genetic algorithms, and pure branch-and-bound
algorithms and an efficient heuristic. Because of the special
structure of the processing time, BB is better than the MA
when the second machine is dominant. However, our results
compare favourably with the best-known existing branch-and-
bound algorithm, and with the traditional genetic algorithm
and with the best-known efficient heuristic algorithm for gen-
eral case.

Acknowledgement

I wish to thank both the editor and referees for their construc-
tive comments and recommendations, which have significantly
improved the presentation of this paper. This research was
supported in part by the National Science Council of Taiwan,
under grant NSC 87-2213-E-025-001.

References

1. W. E. Smith, “Various optimizers for single stage production”,
Naval Research Logistics Quarterly, 3, pp. 59–66, 1956.

2. S. K. Gupta and J. Kyparisis, “Single machine scheduling
research”, Omega, 15, pp. 207–227, 1987.

3. T. D. Fry, R. D. Armstrong and H. A. Lewis, “Framework for
single machine multiple objective sequencing research, Omega,
17, pp. 595–607, 1979.

4. A. Nagar, J. Haddock and S. S. Heragu, “Multiple and bicriteria
scheduling: a literature review”, European Journal of Operational
Research, 81, pp. 88–104, 1995.

5. R. A. Dudek, S. S. Panwalker and M. L. Smith, “The lessons of
flowshop scheduling research”, Operations Research, 40, pp. 7–
13, 1992.

6. W. J. Selen and D. Hott, “A mixed integer goal programming
formulation of the standard flowshop scheduling problem”, Journal
of the Operational Research Society, 37, pp. 1121–1128, 1986.

7. J. M. Wilson, “Alternative formulations of a flowshop scheduling
problem”, Journal of the Operational Research Society, 40, pp.
395–399, 1989.

8. T. Gonzalez and T. Sen, “Flowshop and Jobshop Schedules:
Complexity and Approximations”, Operations Research, 26, pp.
36–52, 1978.

9. M. R. Garey, D. S. Johnson and R. R. Sethi, “The complexity of
flowshop and jobshop scheduling”, Operations Research, 1, pp.
117–129, 1976.

10. S. French, Sequencing and Scheduling: An Introduction to the
Mathematics of the Job-Shop. Ellis Horwood, Chichester, 1982.



A Memetic Algorithm for a Scheduling Problem 471

T
ab

le
9

R
es

ul
ts

in
ex

pe
ri

m
en

t
3

of
M

A
fo

r
�

=
0.

1,
0.

2,
$

,1
an

d
n

=
10

,
15

,
$

,
50

.

�
Z

n
10

15
20

25
30

35
40

45
50

A
vg

.A
vg

.
A

vg
.

A
vg

.A
vg

.A
vg

.
A

vg
.

A
vg

.A
vg

.
A

vg
.

A
vg

.A
vg

.
A

vg
.

A
vg

.A
vg

.
A

vg
.

A
vg

.A
vg

.
A

vg
.A

vg
.A

vg
.

A
vg

.A
vg

.A
vg

.
A

vg
.A

vg
.

A
vg

.
cg

en
T

im
e

V
al

ue
cg

en
T

im
eV

al
ue

cg
en

T
im

eV
al

ue
cg

en
T

im
eV

al
ue

cg
en

T
im

eV
al

ue
cg

en
T

im
eV

al
ue

cg
en

T
im

eV
al

ue
cg

en
T

im
eV

al
ue

cg
en

T
im

e
V

al
ue

0.
1

4.
45

0.
00

0
87

2.
91

6.
50

0.
02

2
15

32
.1

9
10

.7
0

0.
08

8
21

00
.1

2
11

.3
0

2.
55

5
29

12
.9

1
16

.9
0

0.
76

4
38

84
.7

6
18

.4
0

1.
50

3
48

01
.4

3
24

.2
0

3.
37

1
59

84
.4

6
28

.7
5

6.
64

6
69

63
.4

2
36

.2
0

12
.8

10
83

07
.6

8
0.

2
4.

45
0.

00
3

11
32

.1
6

5.
50

0.
01

9
21

22
.3

5
10

.7
5

0.
09

1
30

34
.4

2
11

.7
5

1.
27

7
43

74
.5

2
16

.3
0

0.
73

1
60

13
.5

3
18

.2
5

1.
45

1
75

98
.4

5
23

.5
5

3.
29

7
96

66
.7

7
29

.4
5

6.
71

4
11

41
8.

66
34

.7
0

12
.0

60
13

82
1.

62
0.

3
3.

65
0.

00
0

13
90

.6
2

5.
45

0.
01

9
27

11
.9

0
9.

30
0.

07
4

39
67

.4
9

10
.9

0
0.

76
9

58
34

.9
9

17
.0

0
0.

76
1

81
40

.7
3

19
.7

0
1.

58
2

10
39

4.
30

21
.6

5
3.

01
9

13
34

8.
83

32
.6

0
7.

32
1

15
87

2.
01

32
.4

5
11

.2
80

19
33

6.
08

0.
4

4.
30

0.
00

3
16

48
.2

6
5.

90
0.

01
1

33
01

.2
6

9.
55

0.
07

4
49

00
.0

2
10

.6
0

0.
56

3
72

94
.1

1
16

.7
5

0.
74

5
10

26
8.

57
18

.8
0

1.
50

3
13

19
0.

30
21

.5
0

2.
98

6
17

02
9.

04
28

.1
0

6.
37

9
20

32
6.

17
34

.8
0

12
.2

50
24

84
9.

96
0.

5
4.

30
0.

00
3

19
05

.7
3

5.
80

0.
01

6
38

90
.4

5
8.

05
0.

07
1

58
32

.7
0

11
.5

5
0.

50
5

87
52

.4
0

16
.3

5
0.

72
8

12
39

5.
50

17
.3

0
1.

40
1

15
98

5.
93

22
.9

0
3.

20
3

20
70

9.
73

26
.3

5
6.

01
9

24
78

1.
25

30
.2

0
10

.7
20

30
36

3.
30

0.
6

3.
95

0.
00

3
21

63
.1

7
6.

20
0.

01
9

44
79

.3
0

10
.7

5
0.

09
1

67
65

.0
9

10
.9

0
0.

39
8

10
21

0.
62

17
.1

0
0.

76
1

14
52

2.
20

18
.6

0
1.

50
0

18
78

1.
00

23
.4

5
3.

26
6

24
38

9.
47

30
.0

5
6.

83
5

29
23

4.
07

36
.2

5
12

.5
38

35
87

5.
81

0.
7

3.
35

0.
00

0
24

20
.5

9
5.

40
0.

02
2

50
68

.1
5

8.
70

0.
07

4
76

97
.3

1
10

.4
0

0.
31

4
11

66
8.

95
18

.2
5

0.
79

7
16

64
8.

19
19

.3
0

1.
53

6
21

57
7.

26
25

.2
0

3.
39

3
28

07
0.

72
28

.8
0

6.
51

1
33

68
6.

83
30

.1
5

10
.5

66
41

38
9.

16
0.

8
3.

90
0.

00
0

26
77

.9
4

5.
95

0.
00

8
56

56
.9

0
8.

20
0.

07
4

86
29

.0
8

11
.3

0
0.

28
8

13
12

5.
94

17
.4

5
0.

77
7

18
77

3.
13

18
.9

0
1.

52
5

24
37

1.
66

20
.2

5
2.

88
5

31
75

0.
24

30
.8

0
6.

95
6

38
14

2.
49

29
.7

5
10

.3
93

46
90

3.
10

0.
9

4.
35

0.
00

3
29

34
.9

6
5.

85
0.

02
2

62
45

.4
4

8.
00

0.
06

6
95

60
.2

1
11

.8
5

0.
28

1
14

58
3.

04
17

.1
0

0.
74

7
20

90
0.

37
20

.8
0

1.
67

3
27

16
7.

44
21

.4
5

3.
00

8
35

42
9.

97
30

.1
5

6.
76

1
42

59
6.

18
33

.1
5

11
.5

19
52

41
5.

62
1.

0
5.

00
0.

00
0

31
91

.8
5

5.
50

0.
01

6
68

33
.5

0
10

.6
5

0.
08

5
10

49
1.

10
11

.5
5

0.
24

2
16

03
9.

65
16

.7
5

0.
73

1
23

02
6.

45
18

.6
5

1.
51

1
29

96
0.

95
23

.1
0

3.
12

9
39

10
7.

10
28

.2
5

6.
30

8
47

05
2.

15
34

.0
0

11
.8

98
57

92
7.

11

A
vg

.
4.

17
0.

00
1

20
33

.8
2

5.
81

0.
01

8
41

84
.1

4
9.

47
0.

07
9

62
97

.7
5

11
.2

1
0.

71
9

94
79

.7
1

17
.0

0
0.

75
4

13
45

7.
34

18
.8

7
1.

51
8

17
38

2.
87

22
.7

3
3.

15
6

22
54

8.
63

29
.3

3
6.

64
5

27
00

7.
32

33
.1

7
11

.6
04

33
11

8.
94



472 W.-C. Yeh

Table 10. Results in experiment 3 of 2XI for � = 0.1,0.2, $,1 and n = 10, 15, $, 50.

�Zn 10 15 20 25 30 35 40 45 50
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ-

ence ence ence ence ence ence ence ence ence

0.1 0.000 0.055 0.022 0.215 0.102 0.435 3.379 2.245 0.819 2.755 2.115 1.465 4.077 2.830 7.505 2.755 12.965 4.580
0.2 0.003 0.080 0.014 0.760 0.099 0.520 1.429 4.310 0.805 2.970 2.005 3.810 3.915 3.750 7.121 7.690 12.206 10.950
0.3 0.003 0.165 0.027 1.650 0.082 1.710 0.952 5.350 0.830 4.825 1.783 6.085 4.047 7.480 6.703 11.790 11.416 14.080
0.4 0.003 0.160 0.008 2.140 0.093 2.200 0.749 6.820 0.810 6.320 1.813 6.710 3.788 14.600 6.764 16.390 12.397 17.560
0.5 0.003 0.200 0.027 2.100 0.099 2.200 0.615 7.625 0.761 7.900 1.819 7.800 3.648 16.400 6.448 20.900 10.849 20.100
0.6 0.003 0.290 0.019 2.520 0.096 2.340 0.472 8.920 0.734 7.050 1.964 9.880 3.533 21.460 6.676 22.550 12.689 25.680
0.7 0.003 0.280 0.016 3.500 0.088 2.560 0.424 10.530 0.766 9.845 1.940 11.050 3.396 21.670 6.451 25.690 10.693 30.830
0.8 0.000 0.320 0.019 2.720 0.102 2.060 0.385 12.320 0.755 12.350 1.871 13.870 3.654 24.940 6.459 28.410 10.518 33.417
0.9 0.003 0.360 0.014 3.060 0.096 2.435 0.314 12.925 0.769 11.270 1.835 14.880 3.780 27.960 6.445 30.816 11.658 37.674
1.0 0.000 0.400 0.025 3.800 0.088 2.700 0.291 15.000 0.780 11.100 1.854 16.100 3.810 29.250 6.648 30.849 12.042 41.441

Avg. 0.002 0.23 0.019 2.247 0.095 1.916 0.901 8.605 0.783 7.638 1.900 9.165 3.765 17.034 6.722 19.784 11.74323.631

Table 11. Results in experiment 3 of MA for � = 0.25,0.5, $,1 and n = 55, 60, $, 100.

�Zn 55 60 65 70 75
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
cgen Time Value cgen Time Value cgen Time Value cgen Time Value cgen Time Value

0.25 31.10 5.271 20 787.33 34.95 8.408 23 050.99 39.70 13.423 28 040.15 40.70 19.058 31 762.88 44.75 27.868 36 543.35
0.50 32.40 5.468 38 382.63 33.85 8.156 42 762.18 41.80 13.824 52 346.73 41.55 18.871 59 528.80 46.05 27.930 68 794.08
0.75 33.90 5.677 55 974.38 36.85 8.715 62 471.44 39.95 13.191 76 644.94 44.50 19.847 87 299.65 48.30 29.474 101 038.51
1.0 35.15 5.888 73 566.90 31.55 7.699 82 187.60 36.00 12.120 100 946.55 43.20 19.526 115 060.20 45.10 27.633 133 295.60

Avg. 33.14 5.576 47 177.81 34.30 8.245 52 618.05 39.36 13.139 64 494.59 42.49 19.326 73 412.88 46.05 28.226 84 917.88

Table 11. Results in experiment 3 of MA for � = 0.25,0.5, $,1 and n = 55, 60, $, 100 (continued).

�Zn 80 85 90 95 100
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
cgen Time Value cgen Time Value cgen Time Value cgen Time Value cgen Time Value

0.25 50.55 39.842 40474.74 54.55 55.781 46182.06 50.95 66.974 50773.75 54.35 89.617 56977.11 60.70 119.867 60 920.78
0.50 45.80 35.908 76454.70 46.45 47.846 87520.18 48.75 63.846 96479.25 57.50 91.619 108558.40 65.45 128.293 116 256.78
0.75 49.15 38.556 112424.76 52.15 52.291 128844.25 53.55 69.097 142181.65 60.25 95.001 160137.43 59.95 118.148 171 633.06
1.0 49.25 38.460 148403.30 48.95 49.469 170185.35 58.95 74.645 187868.10 54.00 87.561 211723.30 58.50 116.923 226 975.00

Avg. 48.69 38.192 94439.38 50.53 51.347 108182.96 53.05 68.641 119325.69 56.53 90.950 134349.06 61.15 120.808 143 946.40

Table 12. Results in experiment 3 of 2XI for � = 0.25,0.5, $,1 and n = 55, 60, $, 100.

�Zn 55 60 65 70 75 80 85
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ- Time Differ-

ence ence ence ence ence ence ence

0.1 21.392 5.69 31.672 9.47 28.389 5.55 44.351 9.79 66.093 11.45 89.934 7.80 124.185 15.25
0.2 22.070 13.10 33.709 13.25 27.225 9.13 43.623 17.00 61.772 20.70 85.591 17.98 122.700 27.27
0.3 22.422 12.85 34.942 17.31 30.261 19.43 42.888 24.22 62.548 33.31 86.822 45.46 131.300 51.81
0.4 21.700 19.75 34.935 15.50 29.790 28.05 42.994 36.50 62.411 30.90 88.247 44.40 132.039 61.25

Avg. 21.896 12.849 33.814 13.883 28.916 15.541 43.464 21.878 63.206 24.089 87.649 28.907 127.556 38.896



A Memetic Algorithm for a Scheduling Problem 473

Table 13. Results in experiment 4 of 2XI for n = 10,15, …, 90.

n BB MA(pop = 2n)
Avg. Avg. Avg. Avg. Avg.
Time Optimum cgen Time Error

10 0.000 2 295.52 1.16 0.000 0.000
15 0.000 4 764.85 1.43 0.000 0.000
20 0.000 7 410.75 1.44 0.003 0.000
25 0.000 11 432.93 1.33 0.007 0.000
30 0.001 15 786.79 1.32 0.014 0.000
35 0.001 20 914.86 1.55 0.029 0.000
40 0.001 27 976.77 1.53 0.051 0.001
45 0.002 33 937.46 1.46 0.077 0.002
50 0.002 43 643.57 1.65 0.129 0.002
55 0.002 50 943.35 1.37 0.167 0.003
60 0.003 60 240.29 1.32 0.220 0.004
65 0.003 71 314.25 1.47 0.340 0.005
70 0.004 82 835.90 1.61 0.516 0.005
75 0.005 91 638.00 1.57 0.662 0.006
80 0.006 104 991.05 1.33 0.721 0.006
85 0.007 119 088.32 1.64 1.125 0.008
90 0.009 132 949.69 1.97 1.747 0.009

Avg. 0.005 5 189 201.85 1.479 0.342 0.003

Table 14. Results in experiment 4 for each �.

� BB MA(pop = 2n)
Avg. Avg. cgen Avg. Avg.
Time Optimum Time Error

0.1 0.002 12 286.21 1.41 0.333 0.000
0.2 0.003 21 087.53 1.46 0.330 0.000
0.3 0.003 29 888.82 1.43 0.335 0.000
0.4 0.004 38 690.11 1.50 0.352 0.000
0.5 0.002 47 491.39 1.59 0.378 0.000
0.6 0.002 56 292.67 1.46 0.339 0.002
0.7 0.002 65 093.95 1.48 0.327 0.004
0.8 0.004 73 895.22 1.51 0.358 0.006
0.9 0.002 82 696.5 1.51 0.337 0.008
1.0 0.003 91 497.78 1.44 0.327 0.011

Avg. 0.003 51 892.02 1.48 0.342 0.003

11. E. L. Lawler, L. K. Lenstra, A. H. G. Rinnooy Kan and D. B.
Shmoys, “Sequencing and scheduling: algorithms and complexity”,
in S.C. Graves, A. H. G. Rinnooy Kan and P. Zipkin (ed.),
Handbooks in Operations Research and Management Science,
vol 4, Logistics of Production and Inventory, North-Holland,
Amsterdam, pp. 455–522, 1993.

12. A. Nagar, S. H. Sunderesh and J. Haddock, “A branch-and-bound
approach for a two-machine flowshop scheduling problem”, Journal
of the Operational Research Society, 46, pp. 721–734, 1995.

13. W. C. Yeh, “A new branch-and-bound approach for the
n/2/flowshop/�F+�Cmax flowshop scheduling problem”, Computers
and Operations Research, 26, pp. 1293–1310, 1999.

14. W. C. Yeh, “An efficient branch-and-bound algorithm for the
two-machine bicriteria flowshop scheduling problem”, Journal of
Manufacturing Systems, 20, pp. 113–123, 2001.

15. N. R. Smith, F. Al-Khayyal and F. Griffin, “A tree-search method
for solving a cutting stock assignment problem”, International
Journal of Production Research, 38, pp. 1557–1578, 2000.

16. C. A Cotta, J. F. Aldana, A. J. Nebro and J. M. Troya, “Hybridiz-
ing genetic algorithms with branch-and-bound techniques for the
resolution of the TSP”, Artificial Neural Nets and Genetic Algor-
ithm, pp. 277–280, 1995.

17. S. Ghoshray, K. K. Yeh and J. Andrian, “Modified genetic algor-
ithms by efficient unification with simulated annealing”, Artificial
Neural Nets and Genetic Algorithm, pp. 487–490, 1995.

18. E. M. Robert, “Breeding hybrid strategies: optimial behavior for
ologopolists”, Proceeding of 3th International Conference on Gen-
etic Algorithms, pp. 198–207, 1989.

19. K. Takashi, K. Hiroaki and N. Masakazu, “A hybrid search for
genetic algorithms: combining genetic algorithms, tabu search, and
simulated annealing”, Proceeding of 5th International Conference
on Genetic Algorithms, p. 641, 1993.

20. P. Moscato and M. Norman, “A memetic aapproach for the
traveling salesman problem: implementation of a computational
ecology for combinatorial optimization on message-passing sys-
tem”, Proceeding of 20th International Conference on Parallel
Computing and Transportation Applications, 1992.

21. M. Hattori, M. Naruse, J. Shirataki and T. Tomikawa, “A study
of parameter optimization in mega-genetic algorithm”, Proceeding
of 20th International Conference on Computers and Industrial
Engineering, pp. 445–448, 1996.

22. G. Leipins and M. Hilliard, “Genetic algorithm: foundation
and applications”, Annals of Operations Research, 21, pp. 31–
58, 1989.

23. W. C. Yeh, “A memetic algorithm for the min k-cut problem”,
Control and Intelligent Systems, 28, pp. 47–55, 2000.


