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Design and NC Machining of Concave-Arc Ball-End Milling
Cutters
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The paper presents a geometric modelling approach for the
precision design and NC machining of a concave-arc ball-
end milling (CABEM) cutter which is an important tool
for mould-making industries. This paper presents systematic
models of the cutting edge, helical groove, and grinding
wheel design for the NC machining of a CABEM cutter.
Both the normal to the revolving axis and the tangent to
the groove, are used to derive the required precision sec-
tional profiles of the grinding wheel. In compliance with the
maximal sectional radius of the cutter, the profile of the
groove section and both the radial and axial cutting speeds
of the grinding wheel are computed in sequence. Using the
computer simulation results of the groove actually obtained,
this paper proposes a method to resolve the problems of
the residual revolving surface and the narrow cutting edge
strip. This paper is intended to serve as a reference for the
design and NC machining of cutters of this type.

Keywords: Concave-arc ball-end milling cutter; Helical
groove; NC machining; Reverse engineering

1. Introduction

The increase in product machining has led to ever increasing
demands being placed upon the revolving cutters employed
in the NC machining of freeform and complex surfaces of
dies and moulds. These revolving cutters feature helical
cutting edges and grooves to facilitate both milling and chip
removal. The precise shape of the cutter is not fixed; it
varies according to the particular machining situation for
which it is being used. For this reason, studies relating to
revolving cutters are both broad in scope and versatile
in application.

There have been many studies relating to the design of
this type of revolving cutter [1–5]. The manufacturing theory
of this cutter type is discussed in [6,7], and the specific
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problems relating to the manufacture of this type of cutter
using a forming cutter are discussed in [8–10]. Monitoring
during the machining process has been investigated [11–14],
and the cutting edge and its smooth conjunction has been
studied [15, 16]. Zhou et al. [17,18] studied the forming
principle and the position of the rake plane. Finally, issues
relating to the normal section of the helical groove, the
manufacturing process, cutting parameters and cutter
measurement have been discussed [19–21]. Although it is
difficult to identify the exact number precisely, there are
only a few papers which discuss both the design of the
cutting edge and the NC machining of the helical groove.

As mentioned in [22], revolving cutters have different
shapes, including cylinder-shaped, cone-shaped, concave-arc
shaped, torch-shaped, and involute-shaped. Although revolv-
ing cutters with concave-arcs have been widely used, it is
not easy to locate papers which deal with this cutter type.
They are mentioned by Tang and Chen [23], but little detail
is provided. For this reason, this paper will focus upon
issues relating to this type of cutter.

A review of work carried out on this type of cutter reveals
that most studies concern themselves only with the design
of the helical cutting edge and the groove section [24–26].
Other papers discuss the NC machining of the rake face or
of the helical groove by multiple machining processes. One
problem is that most studies have been too far removed
from actual engineering applications, or require complicated
manufacturing processes, which are expensive to implement
in the real machining world.

To redress this problem, this paper will present not only
the design models for the cutting edge and helical groove,
but also models of section design, feed speeds and the
relative displacement of the grinding wheel during NC mach-
ining of the cutter. The models of actually obtained cutting
edges and grooves will also be presented, together with a
proposed method to rectify the problems of the residual
revolving surface and narrow cutting strip.

It will be shown that a reverse engineering process for
the envelope is essential. The enveloping surface, i.e. the
groove surface should be designed first, followed by the
definition of the profile and relative motion of the grind-
ing wheel.
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2. Profile Design of the Ball-End Cutter
with Concave-Arc Generator

As shown in Fig. 1, the profile of a revolving cutter with a
concave-arc generator is formed by rotating the curve ABCD
around the z-axis. The radius of arc AB is R. The centre
angle of arc BC should be determined by the particular
engineering situation. The centre-point Q of arc BC may
have many different positions relative to the centre-point P
of arc AB. Only the case where the straight line PQ is
perpendicular to the z-axis is dealt with in this paper. The
radius of concave arc BC is R1. CD is a straight line parallel
to the z-axis. The revolving surfaces formed by ABCD can
be expressed by a sectional-continuous function.

The equation of the revolving surface corresponding to
arc AB can be expressed as follows:

r1 = {�(R2 − z2) cos�, �(R2 − z2) sin�, z}, (1)

z � [−R, 0], � � [0, 2�]

The equation of the revolving surface corresponding to arc
BC can be expressed as follows:

r2 = {(R + R1 − R1 cos�1) cos�, (R + R1 − R1 cos�1) sin�, (2)
R1 sin�1}, �1 � [0, �], � � [0, 2�]

The equation of the revolving surface corresponding to line
CD can be expressed as follows:

r3 = {(R + R1 − R1 cos�) cos�, (3)

(R + R1 − R1 cos�) sin�, R1 sin� + h},

� � [0, 2�], h � [0, h1]

3. Cutting Edge on the Revolving
Surface

The cutting edge on the revolving surface formed by arc
AB is a helical curve which has a constant angle � with
the generator curve.
From Eq. (1), it is known that:

�r1� = �−
z

�(R2 − z2)
cos�, −

z

�(R2 − z2)
sin�, 1�

r1� = {−�(R2 − z2) sin�, �(R2 − z2) cos�, 0}

(4)

�E = r1z
2 =

z2

R2 − z2

F = r1z � r1� = 0

G = r2
1� = R2 − z2

(5)

Fig. 1. Concave-arc ball-end milling cutter.

Let the tangent vector of the point on the cutting edge
be dr and the tangent vector of the point on the generator
curve be �r. It will be seen that:

�dr = r1zd + r1�d�

�r = r1z�z
(6)

According to the definition of the dot product of two
vectors, it is known that the angle � between dr and �r is
determined as follows:

cos2 � =
(dr1 � �r1)2

�dr1�2 ��r1�2
=

Edz2

Edz2 + Gd�2 (7)

i.e.

d� = tan � ��E
G� dz =

R
R2 − z2 dz (8)

After integration, Eq. (8) becomes:

�1 = R tan � 	z

0

1
R2 − z2 dz = . tan � ln

R + z
R − z

(9)

The cutting edge may be obtained by substituting Eq. (9)
into Eq. (1). For the revolving surface formed by arc BC,
we have:

�r2�1
= {R1 sin�1 cos�, R1 sin�1 sin�, R1 cos�1}

r2� = {−(R + R1 − R1 cos�1) sin�, (R + R1 − R1 cos�1) cos�,0}
(10)

�
E = r2

2�1
= R2

1

F = r2�1
� r2� = 0

G = r2�
2 = (R + R1 − R1 cos�1)2

(11)

Accordingly, we can obtain:

d� = tan� ��E
G

d�1 =
R1 tan�

R + R1 − R1 cos�1

d�1 (12)

After integration, Eq. (12) becomes:

�2 =
2R1

R + R1

tan� cosec �* tan−1 (13)

�−cosec �* tan
�/2 − �1

2
+ cot�*� + C

where:

�* = cos−1
R1

R + R1

In accordance with the initial condition that �2 = 0 when
�1 = 0, we find:

C = −
2R1

R + R1

tan� cosec �* tan−1 (cot�* − csc�*) (14)

Substituting the constant C into Eq. (13), given:

�2 =
2R1

R + R1
tan� cosec �* tan−1 �−cosec �* tan

�/2 − �1

2
+ cot�*�

−
2R1

R + R1
tan� cosec �* tan −1 (cot�* − csc�*) (15)
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4. Design of the Helical Grooves on the
Ball-End

Since the radius of the cross-section of the revolving cutter is
variable in the z-direction, the section of the groove also
varies; its depth decreases in the direction of the increasing z-
coordinate. During NC machining of the cutter it is not possible
to change the section profile of the grinding wheel according
to variations in cutter radius. To overcome this problem, the
section design of the cutter groove may be defined based on
the maximum radius of the cutter. A process of reverse engin-
eering of the profile envelope which fits the required groove
section may be used to determine the required section of the
grinding wheel. Adjusting the feed of the grinding wheel in
the radial direction controls the depth of the groove. It is
necessary to check the groove actually obtained and then to
carry out a rectification operation so as to ensure that the
correct profile is obtained. We now consider issues relating to
the groove.

On the x,y-plane, the model of the groove section can be
defined by the equation of the curves and the coordinates of
the connecting points. The equation of the straight line GH
may be defined as:

rGH = {R2,0} + �0{cos�, −din�} (16)

where R2 is the outer radius of the cross-section and �0 is the
length parameter used for describing an arbitrary point on
segment GH. The centre of arc HI is the point E and the
radius is given as r1. The centre of the inner land circle is the
point O and the radius is given as rb. In other words, the
distance OE is given by rb + r1, and point E can be located at
the intersection point of a circle centred at point O with a
radius rb + r1, and a line parallel to line GH at a distance r1.
Thus, G(R2,0), L(−R2 sin(�/6), R2 cos(�/6) and the position
vector of point E and the parallel line G′H′ can be mathe
matically expressed as

rE = {xE,yE} = {R2 + �0 cos� − r1 sin�, − �0 sin� + r1 cos�}

= {(r1 + rb) cos�1, (r + rb) sin�1} (17)

where �1 is the angle between the line segment OE and the
X-axis. The centre coordinate (xE, yE) of arc HI can be readily
estimated once the values of �0 and � have been obtained from
Eq. (17). Since arc HI is a tangent to the straight line GH at
point H, the coordinate of point H can be computed by:

rH = {xE + r1 cos�2, yE + r1 sin�2} (18)

where �2 is the angle between the line segment EH and the
X-axis. Once the values of �0 and �2 have been obtained, the
coordinates (xH, yH) of point H can be estimated. The shape
of arc IJ affects the strength of the cutter teeth and chip
removal significantly. Assume that JK is the rear face, KL is
the cutting edge strip and the radius of IJ is r2. The position
of point L is associated with the number of helical grooves N
in such a way that the circular angle of arc AF becomes
360°/N. If the cutter has three different helical grooves, point
L is (−R2 sin(�/6), R2 cos(�/6). If the length of the cutting
edge strip KL is n and the clearance angle of the cutting strip
is 	e, the equation of line KL can be described as

rKL = �−R2 sin
�

6
, R2 cos

�

6� + �1 �cos��

6
− 	e�, −sin	e�

(19)

where �1 is the length parameter for describing an arbitrary
point on segment KL. Let the length of KL be n. The coordi-
nates of point K become

rK = {xK,yK} = �−R2 sin
�

6
+ n cos��

6
− 	e�, (20)

R2 cos
�

6
+ n sin��

6
− 	e��

If the angle of the straight line JK with the X-axis is given
as 	E, then the equation of the straight line DE is

rJK

= �− R2 sin
�

6
+ n cos��

6
− 	e�, (21)

R2 cos
�

6
+ nsin ��

6
− 	e��

+ �2{cos	E, − sin	E}

As shown in Fig. 2, line JK is tangent to arc IJ at point J,
and arc IJ is tangent to arc HI at point I. If the centre of arc
IJ is point F and the radius is r2, then the coordinates of point
F can be given as

rF = {xF,yF} = {xE + (r1 + r2) cos
3,yE + (r1 + r2)sin�3}

= �− R2 sin
�

6
+ ncos��

6
− 	e� − r2 sin	E, R2 cos

�

6
(22)

+ nsin��

6
− 	e� − r2 cos	E� + �2{cos	E, −sin	E}

where the distance between points E and F is given by r1 + r2,
�3 is the angle between the line segment EF and the X-axis.
Once the values of �2 and �3 have been obtained from Eq.
(22), the coordinates (xQ, yQ) of point F can be computed
using Eq. (22). The Eq. of arc IJ may be expressed as

Fig. 2. Section shape of the groove.
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rIJ = {xF + r2 cos�4, yF + r2 sin�4} (23)

where �4 is the angle between line FI and line FM, and M is
an arbitrary point on arc IJ. Since point I is the tangent point
of arcs HI and IJ, the coordinates of point I can be obtained
readily by solving Eqs (18) and (23) simultaneously. Once the
values of �4 and �2 have been obtained from the above
equation, the coordinates of point I can be simply derived.
Since line JK is tangent to arc IJ at point J, the coordinates
of point J can be computed by solving:

�rIJ = {xF + r2 sin�4, yF + r2 cos�4]

rJK = �−R2 sin
�

6
+ ncos��

6
− 	e�, R2 cos

�

6
+ nsin��

6
− 	e��(24)

+ �2{cos	E, −sin	E}

where the values of �4 and �2 can be obtained from the
previous equations.

According to Eqs (1), (2), and (3), the radius of the revolving
surface is variable, i.e. the shape of the grinding wheel is
different at different positions. During NC machining of the
helical groove, the grinding wheel cannot be changed fre-
quently. The groove should satisfy the function of chip blending
and removal, and provide a suitable rake angle and sufficient
strength. An accurate shape of the groove is not necessary.
Therefore, the groove shape of a cylindrical cutter with a
radius of R2 may define the section of the grinding wheel.

As mentioned above, when the number of grooves is 3, and
the cylinder radius is R2, the equation of the groove section
is a sectional continuous function consisting of 5 segments, i.e.

r = {x(t),y(t)} = (25)
{R2 − �0 cos�, −�0sin�} for GH

{xE + r1 cos
2,yE + r1 sin
2} for HI

{xF + r2 cos
3,yF + r2 sin
3} for IJ

{xK + �2 cos	E,yK − �2 sin	E} for JK

�−R2 sin
�

6
+ �1 cos��

6
− 	e�, R2 cos

�

6
− �1 sin	e� for KL

Let the above flute move along the helix on the cylinder
surface. The equation of the helical groove on cylindrical shank
may be obtained as follows:

r* = {x*,y*,z*}
= {x(t) cos� − y(t)sin�,x(t)sin� (26)
+ y(t)cos�,R2� cot�}

where � is the revolving angle parameter.
Under the condition of an equidistance transformation angle,

it is possible to project the cylinder surface onto a plane such
that the normal and the axial profiles may be obtained. Lines
GL and OG, respectively, in Fig. 3 represent these sections. It
is important that the radius of the curved line which is followed
when performing equidistance transformation is constant, so
that the same angle is also conformally mapped and reserved.
Therefore, the length of line GL is given by the length of the
corresponding arc GL which is sectioned by the normal groove,
and for the case of three grooves, then:

GL =
2�R2

3
cos� (27)

Fig. 3. Relationship between the axial and normal cutting surface.

Fig. 4. The axial profile and the cylinder surface form an ellipse with
long axis R2 sec �, and short axis R2.

Therefore, as shown in Fig. 4, the circle on the tangential
plane becomes an elliptic shape. In this elliptic shape, the
length of the short axis is given as R2 and the length of the
long axis becomes R2 sec�. The mathematical expression for
this elliptic shape can then be given as

� = {R2 sec� cos�, R2 sin�} (28)

As given in Fig. 5, the relation of point L (R2 sec� cos�, R2

sin�) on the elliptic curve and length of arc GL can be
expressed as

Fig. 5. Ellipse formed by axial profile and cylinder surface.
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2�

3
R2 cos�

= 	�

0

��′�d� = 	�

0

�(R2
2 sec2 �sin2 � + R2

2 cos2�) d�

= R2 	�

0

�(1 + tan2 �sin2 �) d� (29)

The angular parameter � at point L can be obtained by
integrating the above equations to its upper limit. Thus, the
angle LOG can be obtained as

�LOG = tan−1
R2 sin�

R2 sec� cos�
= tan−1 (cos� tan�) (30)

The design of the corresponding lines GH, HI, IJ, JK, and KL
may be found in the design of the axial profile and are,
therefore, not shown here.

5. Sectional Profile Design of the
Grinding Wheel

Based upon the design of the groove section, a coordinate system
1 = [o1;x1,y1,z1] is constructed, which is associated with the
grinding wheel. (see Fig. 6). Let the x1-axis lie on the x,o,y-plane
with an angle of �/6 to the x-axis. The rake angle � and the
arc BC determine point o1. Let the axis o1z1 of the grinding
wheel form an angle �/2−� with the axis oz of the cutter. o1z1

and oz are straight lines which lie on different planes. oo1 is the
common normal vector of o1z1 and oz. The equation of o1z1 in
coordinate system  = [o;x,y,z] can be expressed as:

rz1
= ��3

2
a, .a,0� + ��.cos�, −

�3

2
cos�, sin�� (31)

where a = oo1, and is larger than R2. Since the profile of the
grinding wheel is a revolving surface, the normal vector of
any point on the revolving surface passes through the axis
of rotation. According to the principle of reverse engineering
of the envelope, the common normal vector of any point on
the instantaneous contact curve between the profile surface of
the grinding wheel and the groove surface must pass through
the axis of rotation, z1, i.e.

r� = r* + �r*
t × r*

�1

= {x* + �Nx, y* + �Ny, z* + �Nz} (32)
= rz1

Fig. 6. The relative position between coordinate systems  and 1.

The three components should be equated, respectively, to obtain:

�3

2
a +

�

2
cos� = x* + �Nx (33)

a
2

−
�3

2
� cos� = y* + �Ny (34)

� sin� = z* + �Nz (35)

From Eq. (35), it is known that:

� = z* cosec� + �Nz cosec� (36)

Substitute � into Eq. (34), and �3 can be obtained:

� =
a − �3z cot� − 2y*

2Ny + �3Nz cot�
(37)

Substitute � and � into Eq. (34) to obtain

z* cot�(Ny + �3Nx)

− Nz cot�(�3x* + y*) + (38)

a(2Nx cot� + �3Ny − Nx)

+ 2(y*Nx − x*Ny) = 0

By using the following property of a spiral surface:

y*Nx − x*Ny = bNz (39)

where b is the spiral parameter, and b = R2 cot� is the situation
where a point on the groove surface is also on the profile of
the grinding wheel can be expressed as:

z* cot�(Ny + �3Nx)

− Nz cot�(�3x* + y*) (40)

+ a(2Nxcot� + �3Ny − Nx) + 2bNz

= 0

From Eq. (40), the contact curve between the profile of the
grinding wheel and the spiral groove may be given as:

r� = {x(�),y(�),z(�)} (41)

In order to express the contact curve of Eq. (41) of the
coordinate system 1 = [o;x1,y1,z1] in terms of ′ = [o;x′,y′,z′],
we will have to rotate the coordinate system  = [o;x,y,z]
around the z-axis through an angle of �/6. The transformation
from  = [o;x,y,z] to ′ = [o;x′,y′,z′] is as follows:

x′ = . x(�) +
�3

2
y(�)

y′ = −
�3

2
x(�) + . y(�) (42)

z′ = z(�)

The transmission from ′ = [o;x′,y′,z′] to 1 = [o;x1,y1,z1] is
given as:

x1 = x′ − a
y1 = y′ sin� + z′ cos� (43)
z1 = y′ cos� + z′ sin�

Therefore, the contact curve can be expressed in the coordinate
system 1 = [o;x1,y1,z1] as
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x1 = . x(�) +
13
2

y(�) − a

y1 = −
�3

2
x(�) sin� + . y(�) sin� + z(�) cos� (44)

z1 =
�3

2
x(�) cos� − . y(�) cos� + z(�) sin�

By rotating the contact curve of Eq. (44) around the z1-axis,
the connection of intersecting point between the profile surface
and the plane y1 = 0 immediately leads to the profile curve of
the grinding wheel. The profile curve can thus be expressed as

rc = {xc,0,zc} = {(x2
1 + y2

1)1/2,0,z1} (45)

6. Feed Speed of the Grinding Wheel in
NC Machining

Let the angular speed � of the cutter be constant, i.e.

� = d�/dt = Constant (46)

The speed vz in the axial direction can be calculated by:

vz =
dz
dt

(47)

For the revolving surface formed by arc AB, we obtain:

vz1 =
dz1

dt
= �

R2 − z2

R
cot� (48)

If the radial feed speed of the grinding wheel varies linearly
with the variation of radius, overcut will occur. Since the
grinding wheel is designed based upon the maximum radius
of the cylinder, the displacement in the direction of the radial
feed should be modified as follows:

Sg = rb −
rb

R2

�(x2 + y2) (49)

By using Eq. (8), it will be found that the radial speed of the
grinding wheel is as follows:

vg1
=

dSg1

dt
= −

rb

R2

d�(R2 − z2)

dt
=

1
RR2

rb z� cot� �(R2 − z2)

(50)

For the revolving surface formed by the arc BC, we obtain:

vz2
=

dz2

dt
= � cot� cos�1 (R + R1 − R1 cos�) (51)

The displacement in the direction of radial feed should be
modified as follows:

Sg2
= rb −

rb

R2

(R + R1 − R1 cos�) (52)

The radial feed speed is given by the following:

vg2
= −

1
R2

rb � cot� sin�1 (R + R1 − R1 cos�) (53)

At the conjunction of the two cutting edges, � = �/2,�1 = 0 and
we obtain:

vz1
= �R cot� = vz2

(54)

vg1
= 0 = vg2

(55)

7. The Groove Surface

The equations of the grinding wheel profile is:

r̂ = {xc cos
, xc sin
, zc} = {x̂,ŷ,ẑ} (56)

Expressed in the coordinate system , Eq. (56) becomes Eq.
(57), i.e.

x = . (xc cos
 + a) −
√3
2

(xc sin
 sin� − zc cos�)










y =
�3

2
(xc cos
 + a) + . (xc sin
 sin� − zc cos�) (57)

z = xc sin
 cos� + zc sin�

Considering the combined effects of �, V*g and Vz, the equation
of the grinding wheel profile is:

Fig. 7. (a) The sectional profile of the grinding wheel. (b) The grind-
ing wheel.
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x** = �x + . 	z

0

V*
g dz� cos� − �y +

�3

2 	z

0

V*
g dz� sin�









y** = �x + . 	z

0

V*
g dz� sin� + �y +

�3

2 	z

0

V*
g dz� cos� (58)

z** = �z + . 	z

0

Vz dz�
where � is defined by Eq. (9). With the effect of enveloping,
the actual surface of the groove at the ball-end part is defined
by Eq. (59), i.e.






r** = {x**,y**,z**}

(r**
xc

,r**
v ,r**

zc
) = 0 (59)

This may also be expressed as:

x**
xc

y**
xc

z**
xc

x**
v y**

v z**
v

x**
zc

y**
zc

z**
zc

= 0
(60)

Since the full derivation of (r**
xc

,r**
v ,r**

zc
) is rather lengthy,

only the final expression is given here, i.e.

(r*
xc, r*

v, r*
z) = 0 or (r*

xc, r*
v, r*

�1
) = 0 (61)

From Eq. (61), the feed speeds of the grinding wheel are
continuous. We know that the detailed expressions of Eqs (60)
and (61) are very complicated. In fact, xc is discrete, and the
surface of the groove actually obtained can be defined by
numerical methods. Since the full derivation of
(r**

xc
,r**

v ,r**
zc

) = 0 is rather lengthy, only the final expression is
given here, i.e.

r** = {xc cosv cos��6 + �� − xc sinv

sin� sin��6 + �� + a cos��6 + ��
+ zc cos� sin��6 + �� + �rb −

rb

R2

f(u)�
cos��6 + �� xc cosv sin��6 + ��
+ xc sinv sin� cos��6 + �� + a sin��6 + �� (62)

− zc cos� cos��6 + �� + �rb −
rb

R2

f(u)�
sin ��6 + �� xc sinv cos� + zc sin� + g(u)}

a cos� + �rb −
rb

R2

f(u)� cos� + az′c sinv sin� (63)

+ zcz′c cosv cos�

Fig. 8. Feed speed of the grinder in (a) the axial and (b) the radial
directions.

Fig. 9. The radial displacement of the grinding wheel.
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Fig. 10. The angular parameter of revolving surface.

+ z′c �rb −
rb

R2

f(u)� sinv sin� + xc

cosv cos� + �vgz′c cosv +

vzz′c sinv cos� − vz sin�� du
d�

= 0

where

z′c =
dzc

dxc

(64)

The equation of the sphere is given as:

f(u) = �(R2 − z2), g(u) = z (65)

du
d�

=
dz
d�

=
R2 − z2

R
cot� (66)

The equation of the concave-arc is given as:

f(u) = R + R1 − R1 cos�1 g(u) = R1 sin�1 (67)

du
d�

=
d�1

d�
=

R + R1 − R cos�1

R1
cot� (68)

8. Computer Simulation and Remedy

Applying the models given above, the cutting edge and groove
surface actually obtained may be simulated by a computer.
The key issues include three aspects:

1. The actual and theoretical cutting edge.
2. The section curves of the groove actually obtained at differ-

ent positions.
3. Whether a not overcut occurs or if a residual revolving

surface is present.

In order to simulate the results of the cutting edge, given a
series of value of zi, from Eqs (1) or (5), the section radius
can be defined by ri = �(xi

2 + yi
2). From the following equation:

�(x*2
i + y*2

i ) = ri

z* = zi (69)

(r*
xc, r*

v, r*
u) = 0

we can calculate a series of values of (xc,v,z). These are
substituted into Eqs (62) – (68), to obtain a series of points
on the cutting edge.

A CABEM milling cutter is selected as one example to
illustrate the effectiveness of the proposed mathematical model-
ling and residual compensation method. The cutter has a helical
angle of �/3, a rake angle of � = 5°, the radius of groove arc
HI of r1 = 1 mm, the radius of groove arc IJ of r2 = 2 mm, the
length of the cutting edge strip of n = 0.5 mm, the clearance
angles of the cutting strip of 	e = 6° and 	E = 30°, the distance
between o and o1 of a = 20 mm, cylindrical radius of 4 mm,
and the remaining circular end radius of 2 mm. The modelling
and residual compensation methods proposed above are used
to design and produce the high-precision CABEM cutter sys-
tematically on a simple two-axis NC machine. The sectional
profile of helical grooves on the cylinder shank of the CABEM
cutter is given in Fig. 2. The grinding wheel and sectional
profile are Fig. 7. Figure 8 shows the feed speed of the grinder
in both the axial and the radial directions. Figure 9 shows the
radial displacement of the grinding wheel. Figure 10 shows the
angular parameter of the revolving surface.

In order to obtain the shape of the groove at different
sections vi may be obtained from Eq. (63) for different values
of xc. Substituting vi into Eq. (62), given a series of points on
the section.

The actual cutting edge obtained and the cutting edge
designed are as shown in Fig. 11. It can be seen that the actual
cutting edge is slightly different from the designed cutting edge.

According to the above simulation results, the residual
revolving surface may be rectified by the following approach.

A cone-shaped grinding wheel with a bottom angle of
�/2 − 	e is used to eliminate the residual revolving surface.
The relative positions of the grinding wheel and the cutter are
shown in Fig. 12. While maintaining constant axial and revolv-
ing speeds, the radial speed vg is modified by a factor �0,
since the actual point (x*, y*) on the cutting edge is different
from the designed point (x., y). From the relationship between
the designed point and the obtained point (as shown in Fig. 13),
the following equation exists:

{x,y}{�0x − x*,�0y − y*} (70)
− �(x2 + y2) �((�0x − x*)2 + (�0y − y*)2) sin	e = 0

From Eq. (70), factor �0 may be defined. The revised radial
speed may be calculated from:

vg =
d(�0f)

dt
=

d(�0�(x2 + y2))

dt
(71)

By replacing vg with vg, the residual surface can be elimin-
ated. The problem of the narrow cutting edge strip can also
be solved. Since the designed point (x., y) is approximate to
the actual point (x*, y*), the actual relief angle is approximate
to the designed value, and so an ideal special revolving cutter
is obtained.
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Fig. 11. The actual and desired (thick line) cutting edge curve. (a)
The projected cutting edge curve of the CABEM on the X,Y-plane.
(b) The spatial cutting edge curve of the CABEM.

Fig. 12. The relative position between the grinding wheel and the cutter.

Fig. 13. The definition of the adjusted wheel angle �0.

Fig. 14. The geometric model of overcutting by grinding wheel.

Considering the ball-end part, it will be seen that overcut
begins when the groove has an angle of 2�/3, and that overcut
increases towards the tip of the ball-end. Therefore, it is
necessary to change the grinding wheel when machining this
area, as shown in Fig. 14, it is known that when:

f �
(�3 − 1)2

2�3
r1

R2

rb

(72)

overcut will occur. If:

f =
(�3 − 1)2

2�3
r1

R2

rb

(73)

gives z = z*, then the grinding wheel should be changed to the
one shown in Fig. 15, and grinding should continue until the
edge profile of the ball-end is complete. The start point
(x*,y*,z*) is obtained by substituting z = z* into Eqs (62) and
(63).

Fig. 15. The cone-shaped grinding wheel with rake angle �.
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9. Conclusions

From the related models and the simulated results, it is known
that the design and manufacture of a ball-end cutter with a
concave-arc generator presents many difficulties and requires
much conventional skill. If a method is used to machine the
rake face and the groove separately, the process is very compli-
cated. This paper provides an effective 2-axis NC machining
approach for, so that an ideal ball-end cutter with a concave-
arc generator may be obtained through the proper control of
the feed speeds of the grinding wheel in the radial and axial
direction. This paper presents a low-cost method for the design
and NC machining of this type of cutter.
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Nomenclature

a distance between o and o1 (origin of � and �1)
b parameter of helix
C integration constant
E coefficients of first fundamental form (= r2

z)
F coefficients of first fundamental form (= rz � r�)
G coefficients of first fundamental form (=r2

�)
N number of helical grooves
Nx,Ny,Nz components of normal cross of rt and r�

n length of cutting edge strip KL
R radius of sphere surface
R1 radius of generator of concave-arc
R2 maximum revolving radius of cutter
r1 equation of revolving surface corresponding to arc

AB
r2 equation of revolving surface corresponding to arc

BC
r3 equation of revolving surface corresponding to line

CD
r1 radius of arc HI of groove
r2 radius of arc IJ of groove
rb radius of inner land circle
rc sectional profile of grinding wheel
r� profile equation of grinding wheel in wheel coordi-

nate system 1

rz1
equation of line o1z1 in terms of coordinate system 

r* equation of helical groove of cylinder part
r� contact curve between the profile of the grinding

wheel and the spiral groove
r** actual surface of groove
dr tangent vector of cutting edge
S radial displacement of grinding wheel
Vg radial feed speed of grinding wheel
Vz axial feed speed of grinding wheel
V̂g modified radial feed speed of grinding wheel
Vg radial feed speed of the grinding wheel with a

bottom angle of 90° − 	e

{x,y,z} equation of revolving surface of cutter
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{x1,y1,z1} contact curve of wheel coordinate system
{xc,0,zc} sectional profile of grinding wheel
{x�,y�,z�} profile equation of grinding wheel in wheel coordi-

nate system
{x*,y*,z*} equation of helical groove of cylinder part
{x**,y**, actual surface of groove
z**}
{x(�),y(�), contact curve between profile of grinding wheel and

spiral groovez(�)}
	e clearance angle of cutting strip
	E angle of straight line JK to X-axis
� rake angle
� helical angle between tangent vector of helical curve

and tangent vector of longitude curve
� angular parameter of revolving surface
�0 initial angle of �

�1,�2,
�3,�4 anglar parameter of circular arc
�0 actual modified radial feed speed parameter of grind-

ing wheel
� length parameter
� length parameter
�1 angular parameter of toroid revolving surface
�2 angular parameter of revolving surface formed by

concave-arc
 coordinate system attached to pinion cutter
1 coordinate system attached to grinding wheel
1 temporary coordinate system;  rotates 30° around

z-axis
� revolving angular velocity of cutter
�0,�1,�2 length parameter


