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Reactive Recovery of Job Shop Schedules – A Review
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In the recent past, a great deal of time and effort has been
devoted to the development of job shop schedules. These
schedules are able to cope with the dynamic and stochastic
nature of job shops that consist of the uncertainties both at
the planning stages and on on-line execution. Deviations from
predictive schedules occur when the job shop experiences both
external disturbances (e.g. urgent job arrivals) and internal
disruptions (e.g. machine breakdowns). To avoid complete
rescheduling of the job shop a repair and recovery strategy
for the schedule becomes essential. This paper provides a
comprehensive review of the literature on the reactive recovery
of job shop schedules and proposes further research work in
this area.
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1. Introduction

Job shops face uncertainties owing to disruptions occurring on
the shop floor. In the real world, machines break down, wrong
job quantities are produced, a machine other than the one that
was planned performs the work, supplies do not arrive when
expected, power fails during critical operations, set-up takes
longer than anticipated, parts are misplaced, personnel do not
perform as expected, etc. [1]. These events cause the predictive
schedules to be disrupted and this in turn renders the original
schedule useless. In such cases, a simple approach would be
to gather the data from the shop floor when the deviation
occurs and totally reschedule the system [2]. This process is
time-consuming, as there could be a large amount of infor-
mation to be collected from the shop floor and it could be
difficult to collect. In addition, the time involved in collecting
the information could be excessive leading to the failure of
the scheduling mechanism.

Therefore, it is becoming increasingly established that the
predominant scheduling activity in the real world is reactive
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scheduling, which can be defined broadly as the continuous
adaptation and improvement of precomputed predictive sched-
ules [3]. Reactive scheduling has a number of similarities
and differences to predictive scheduling. In one sense, many
predictive scheduling approaches, which may be considered to
operate “off-line”, are concerned with the iterative improvement
of some initial schedule (for example, by interchanging two
jobs and evaluating the performance measures). Reactive sched-
uling can be construed as a similar activity, albeit conducted
“on-line” in which the previously accepted schedule, which
has now been flawed owing to an unexpected event, is repaired
by techniques that can be essentially similar to those used to
improve a predictive schedule iteratively. It is, however, the
on-line nature of reactive scheduling and associated real-time
execution requirements that constitute one of the major differ-
ences between predictive and reactive scheduling. The reactive
schedule must be computable in the time window within which
the schedule remains valid. In a complex real-time environment,
this timespan could be very short.

Reactive scheduling can be seen as an upgrade of the
predictive schedule with the addition of an on-line schedule
recovery repair strategy built on the predictive schedule. Sched-
ule recovery, therefore, is a concept that largely amalgamates
the off-line and on-line environment for reactive scheduling.
Better schedule recovery requires human knowledge of the
scheduling environment. As the scheduling systems have gradu-
ally moved from theoretical formulations to computerised shop
floor implementations, emphasis has been laid on schedule
recovery principles that can deal effectively with the reactive
environment in the shortest time frame. Much work has been
devoted to this area in recent years, but no attempt has been
made to focus specifically on the study of repair methodologies.
Thus, we are reviewing these methods and bringing them to
a common platform for discussion. The purpose of this paper
is to explore the scope and status of both the existing and the
proposed schedule recovery approaches. In addition, the differ-
ent approaches will be compared and a robust plan for future
work will be formulated so that effort can be channelled into
a common and beneficial direction.

In the next section, we describe the various scheduling
approaches in static and dynamic job shop environments. In
Section 3 an overview of the various schedule recovery
methods implemented and proposed in the literature is
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presented. Section 4 evaluates various methods of schedule
recovery and outlines a course for future work. Finally, we
conclude with a summary of the work presented in the literature
and the scope for future work.

2. Job Shop Scheduling Approaches

The scheduling environment in the job shop can be classified
into two distinct categories: static and dynamic and stochastic.
In a static job shop it is assumed that a number of jobs, each
consisting of a sequence of operations with given processing
times are to be manufactured on a number of machines and
the aim is to sequence the operations optimally. In a dynamic
and stochastic job shop, real-life is represented by jobs arriving
randomly over time, and the uncertainties concerning job attri-
butes, such as processing times and shop floor availabilities
are considered.

2.1 Static Scheduling

The static scheduling problem has been widely investigated.
Many techniques have been proposed and implemented, as
shown in Fig. 1. The branch and bound technique [4], math-
ematical integer programming [5,6] and simple heuristic sched-
uling rules [7–10], have been used successfully. However,
these methods are usually applied to relatively simple problems.
The use of dispatching rules is another approach that has been
widely studied, and these rules have been applied individually
[11–14] as well as in combinations [15–18] with other dis-
patching rules. There is no single dispatching rule that can
with certainty give good results for all performance measures.
Recently, artificial intelligence related techniques such as gen-
etic algorithms [19,20], neural networks [21], fuzzy logic [22],
tabu search [23–25] and simulated annealing [26,27] have also
been used to solve static job shop problems.

2.2 Dynamic and Stochastic Scheduling

The dynamic and stochastic job shops are subject to uncer-
tainties, and reflect shop floor conditions that are difficult to

Fig. 1. Static scheduling approaches.

model and handle. Shop floors are prone to disruptions such
as machine breakdown, urgent jobs, and absence of workers.
Since the operational environment in a job shop is dynamic
and stochastic, it is clear that any effective scheduling system
has to be reactive, i.e. perform schedule revisions in response
to the unforeseen events during the schedule execution [28].
These schedule revisions can be dealt with during both off-
line and on-line phases of schedule generation and execution,
as shown in Fig. 2.

The initial focus in dealing with this stochasticity was in
the off-line mode, i.e. while building the static schedule. The
methods that have evolved to produce schedules at the planning
stage itself are able to anticipate and absorb the disruptions
that might occur during the execution phase and are collectively
also known as robust [29,30] and predictable [1,31]. A schedul-
ing method is said to be robust if it provides a schedule, the
performance of which remains high in the presence of uncer-
tainties [29]. This process focuses on minimising the effects
of disruptions on the performance measures. In predictable
scheduling, the focus of the scheduling is to complete jobs
as planned while maintaining an acceptable realised schedule
performance. This is achieved by inserting idle-times into the
predictive schedule to allow it to recover from the disruptions
that may occur [31].

Online scheduling practices comprise reactive scheduling and
totally reactive scheduling. In totally reactive scheduling, a
rolling-time approach is followed in which no firm schedule
is generated in advance, and decisions are made locally in
real-time [32,33]. A frequently used reactive approach is to
use local priority dispatch rules. In this approach, whenever a
machine becomes free, a job currently in its queue is selected
for processing based on a priority index or performance meas-
ure that is calculated from the job and machine attributes [34].
Reactive scheduling is a process of revising a given schedule
in real-time owing to unexpected events occurring during the
execution of the schedule [35]. An intuitive approach would
be to resolve the problem from scratch, i.e. rerun the predictive
schedule and generate a new optimised schedule. This approach
is not encouraged in industry as the new schedule can differ
considerably from the old one and this is not desirable since
many other decisions such as assignment of personnel, delivery
of raw material and the subsequent processing of the jobs in
other facilities, may be severely disrupted. This phenomenon
is commonly referred to as shop floor nervousness [35]. There-
fore, a better approach would be to adapt the old schedule to
the new situation, by implementing a specialised repair mech-
anism to repair the schedule in an iterative mode as and when
disruptions occur.

Fig. 2. Dynamic scheduling approaches.
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3. Schedule Recovery

3.1 Definition

Schedule recovery and repair [36,37] is a procedure for mod-
ifying the original predictive schedule to accommodate sudden
temporal changes in the job shop. Examples of these temporal
changes include internal disruptions such as machine break-
down and external disruption such as arrival of an urgent job.
The goal of schedule recovery is to avoid wastage of time and
resources in capturing the status of the job shop for reschedul-
ing whenever a minor disruption occurs. If a disruption con-
tinues for a longer period of time, or when very frequent
disruptions are encountered, rescheduling is preferred, i.e.
another predictive schedule considering the present status of
the shop floor is generated. Therefore, schedule recovery can
be described as an intermediate stage introduced in automated
scheduling for monitoring in real-time and avoiding the total
rescheduling of the system as far as possible [38].

3.2 Factors Affecting Schedule Recovery

The predictive schedules are usually based on heuristics and
optimisation principles. Therefore, any correction or repair
strategy applied will cause a deviation from the originally
optimised schedule. In addition, the performance measures will
no longer be optimal after the schedule is repaired. A better
schedule recovery strategy is one that leads to minimum devi-
ation of the performance measures while incorporating the
necessary modifications and repair objectives. The focus is to
implement a recovery method that can handle the repair of
the schedules without compromising on the quality of the
schedules [39].

Since rules and constraints are involved when schedules are
adjusted, schedule recovery and repair can therefore also be
viewed as a constrained scheduling problem. The objective of
the problem could be to minimise the deviation in performance
during the repair while satisfying the constraints [40]. Con-
straints in a job shop are decided based on a number of
factors, e.g. routeing of jobs, availability of machines, and
priority assignment for jobs and machines. The constraints are

Fig. 3. Rescheduling vs. schedule recovery

built into the schedule recovery algorithm, and can be in the
form of a set of “if–then” rules or in the form of case-based
reasoning data from past experience, or in terms of an expert’s
knowledge of the domain. A reactive recovery approach can
then be evaluated on the basis of the ability of the algorithm
to satisfy the constraints to an acceptable degree, while prepar-
ing the feasible revised schedule.

Since the schedule recovery and repair integrates unexpected
events or disruptions into the original predictive schedule, the
time required to carry out the repair should be minimised so
that the schedule is still active and not outdated by the time
it is ready to replace the original schedule. When this require-
ment is not met, the basic objective of the repair is lost and
the process is flawed. Therefore, the minimum time frame
required to react to the disruptions in the original predictive
schedule may be viewed as another critical factor by which
the schedule recovery performance is evaluated.

3.3 Methods of Schedule Recovery

A summary of repair methods that have been successfully
applied in a reactive environment for schedule recovery is
presented in Table 1. These methods appear similar to the
predictive schedule generation approaches. However, the differ-
ence lies in the reactive mode in which the methods are
applied on a real-time basis.

The right–shift rescheduling approach [40] is the simplest
schedule repair approach reported. The process consists of
shifting the operations globally and expanding the schedule
towards the right on the time axis in order to accommodate
the disruptions. This “right-shifting” to accommodate the dis-
ruptions arising from machine breakdown, results in gaps in
the schedule, during which the machines are idle and waiting
for jobs [41]. The schedule obtained using this approach is
generally of poor quality, and the method can be used only if
the job shop is generally stable and only minor deviations
occur from the original schedule.

Heuristic-based approaches [41–43] consist largely of explicit
algorithms for schedule repair and optimisation. One such
heuristic-based approach that has been reported to be effective
in the literature is the affected operation rescheduling (AOR).
AOR has been implemented, and its performance with respect
to measures of efficiency and stability are compared with that
of total rescheduling and right-shift rescheduling [41]. In this
algorithm, only the operations that are affected by the disrup-
tion are rescheduled. The basic concept of AOR is to accommo-
date any disruption by pushing the starting times of some
operations forward by the minimum amount possible so as to
keep the technological constraints satisfied and to preserve the
initial sequence of the operations on each machine. Another
heuristic approach based on games theory [43] performs better
when compared to total rescheduling and right-shift scheduling.
Heuristic-based algorithms are easy to use and implement, and
can handle disruptions such as machine breakdown and urgent
job arrivals effectively. However, it does not perform a search
for optimum repair and constraint satisfaction. The schedule
generated is better in performance than right-shift rescheduling
[41] but lacks the optimisation and quality improvement fea-
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Table 1. Summary of reactive repair approaches.

Schedule recovery Advantages Disadvantages Performance measures Prerequisites for References
method effective application

Right Heuristic Simplest method. Poor quality of Makespan and Job shop should [37, 40,
shift based No algorithm is schedule. deviation from the usually be stable 42]
rescheduling approaches needed. Constraints and rules original schedule. with minor
(RSR) are not resolved. disruptions at

prolonged intervals.

Affected Simple algorithm to Response time is Makespan and Job shop should [40, 44]
operation implement. greater. deviation from the usually be stable
rescheduling Better quality schedule Limited disruptions can original schedule. with minor
(AOR) than RSR. be handled. disruptions at

Schedule quality is not prolonged intervals.
recovered after repair. The technological

constraints and
processing times are
predetermined and
fixed.

Multi- Complete automated Coordination between Computation time Dynamic job shop [45, 46,
agents in approach. the agents is difficult reactiveness and quality with uncertainties 47]
DAI Module for repair, to achieve. Better measures. and random
(active refinement and integration between disruptions can be
scheduling rescheduling. human and automated modelled.
approach) Responsiveness of agents is difficult to

system is good. achieve.
Multithreaded
operations are possible.

Case- Well-suited to domain Extensive search Schedule quality. Job shops with [28, 32,
based specific problems. through the database is Reactive efficiency in specific rule sets 52, 53]
reasoning Continuous learning time-consuming. terms of deviation and multiple
(CBR) from past cases. An extensive from the original disruptions where

Multiple disruptions experience database is schedule. scheduling
can be modelled and essential. experience is
addressed. available as expert’s

advice or case
database.

Constraint- Human interaction and Real-time approach CPU time (execution Dynamic job shops [28, 54,
based supervision is better. requires further responsiveness). with multiple 55]
scheduling Timely response is refinement. Schedule quality and disruptions and

possible in stipulated Multiple agents repaired weightage events occurring in
time frame. architecture is needed tardiness. a knowledge
Performs better than for multithreaded extensive system.

Knowledge CBR as it includes operations for random
based both knowledge base disruptions.
scheduling and constraint
and satisfaction modules.
artificial
intelligence Fuzzy Complete scan of the The knowledge of the CPU time (execution Job shops with [48, 49,
approaches logic schedule for constraint domain has to be built responsiveness). variability in 50, 51]

violation after every into the algorithm. Schedule quality and processing time and
repair. Learning and growth repaired weightage large number of
Random processing of the algorithm is not tardiness. constraints to be
times can be used for possible. adhered to either
disruptions. fully or partially.
Response is fast as the
same module is used
for schedule generation
and repair.

Neural Response time is very Carefully prepared CPU time (execution More applicable in [56, 57]
network fast for trained neural training sets are responsiveness). job shops with a

net. required for accurate Schedule quality and continuous flow and
Predictions are prediction. repaired weightage repetitiveness in the
extrapolated from past Extensive knowledge tardiness. type of
experience and are base and expert advice disturbances.
reliable. has to be formulated in

the form of a
knowledge base.
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tures present in other repair approaches. These approaches are
not suitable for highly stochastic job shops as they handle the
schedule disruptions independently of each other and only one
disruption is considered at any one time.

Multi-agents in a distributed artificial intelligence (DAI)
environment has been widely reported [44–47]. In DAI-based
approaches, reactive schedule recovery is achieved using multi-
agents. It allows the independent agents to coordinate their
knowledge and solve subproblems while working toward a
common goal. In this approach, intelligent agents possess the
knowledge pertaining to the schedule repair. In addition, the
agents are also actively engaged in improving the schedule.
The human scheduler can also act as one of the intelligent
agents and become actively involved in the decision process.
DAI has also been used as a blackboard-based opportunistic
approach [46]. This method supports a cooperative problem-
solving effort of independent agents communicating by posting
messages on the blackboard to modify and improve the sched-
ule. The advantage of the DAI approach is that it provides
effective integration of the human agent and the automated
knowledge agents. The central problem with the use of DAI
is how to achieve coordination among such agents, so that
they accomplish more as a group than individually.

Active scheduling [45] is a concept proposed on the prin-
ciples of multi-agents. The concept acknowledges that resched-
uling has to be very fast and the stream of data to be collected
from the shop floor has to be automated. In addition, the
schedule has to be optimised with regard to some predefined
quality functions. The following hypothesis is stated and
presented in [45]:

Rescheduling � Checking � Repairing (1)
� Improving

An algorithm has been reported [45] in which an initial sched-
ule is generated and continuously rescheduled in an infinite
loop to accommodate the disruptions. Thus, active scheduling
can also be defined as

Active scheduling � Predictive scheduling (2)
� Continuous rescheduling

Active scheduling is a completely automated rescheduling con-
cept that makes it more reactive than other approaches. It
handles multiple events simultaneously and also performs an
overall quality check of the repaired schedule while performing
local repair. The process, however, lacks a module for a human
interface that is essential for expert advice. It also lacks a case
base for if–then analysis, which could be exploited to react to
various disruptions.

Fuzzy logic has also been reported in the literature for
reactive schedule repair [48–51]. The fuzzy processing times
are substituted for the crisp processing times used by heuristic-
based scheduler. When jobs are scheduled in order of their
criticality, some constraints may be violated. Crisp processing
times are replaced by fuzzy possibility distributions, and tem-
poral constraint violations are expressed as a matter of degree.
The extent to which the due date is met, is measured by the
degree of overlap between the due date and the fuzzy estimate
of the finishing time of the job. Threshold values can be
defined for acceptable or unacceptable degrees of constraints.

If the threshold value is not met, the schedule requires resched-
uling or repair by progressive interchange of jobs. Uncertain
events or disruptions will lead to constraint violations, and
these are then evaluated by progressive shuffling of jobs. In
this manner, the fuzzy repair strategy is applied until the
violated constraints are satisfied [48]. This approach has the
advantage of a complete scan of the schedule for constraint
violations every time a new event is integrated, and the sched-
ule is optimised globally during the repair. In addition, high
variabilities in the processing times can be accommodated
easily using this approach. Another advantage is that the same
process can be used for both the generation of robust predictive
schedules and the subsequent schedule recovery [49]. On the
other hand, since fuzzy logic is a hill-climbing search method-
ology, the repair could frequently be localised, leading to
poor quality in terms of overlaps in processing times or
unsatisfied constraints.

Case-based reasoning, [28,35,52,53] has also been used for
reactive scheduling and the goal is to find a case that best
suits the disrupted schedule. Schedules are often complex, and
to model all details of the schedule or the production environ-
ment in a case is not feasible. Instead, some characteristic
surface knowledge is captured in a case. This abstraction of
the problem also supports the application of the case for a
new problem. The case database is created by domain experts
and is capable of specifying the correct reaction to schedule
disruptions. Gradually, the cases are refined and a better knowl-
edge base is created. The implementation of case-based reason-
ing in an experimental set-up for schedule correction has been
reported [35] in which case-based reasoning is combined with
an iterative improvement method using fuzzy constraints and
a tabu search for repair. Case-based reasoning combines the
advantages of both heuristics and experience modelling, as the
case contains explicit heuristics for a given problem and it
uses the solutions to old cases to solve a new problem. Another
advantage of the approach is the possibility of finding solutions
to problems that have never been encountered before using
analogous cases from the case base. However this approach is
not very responsive, as it has to search through an extensive
case base [35].

The concept of constraint-based scheduling has been
reported [28,54–55] for schedule repair of a prototype schedul-
ing system (CABINS). The incremental accumulation and reuse
of past experience is achieved through case-based reasoning,
whereas constraint-based scheduling has been used for the
propagation and resolution of the effect of repair. The dominant
constraints satisfied during the schedule recovery are activity
precedence and resource capacity. Experimental results have
been reported to show CABINS being able to capture and
effectively use the user’s scheduling preferences to outperform
other scheduling methods in both predictive schedule generation
and the reactive response to unpredictable events. Constraint-
based scheduling models use “spreadsheet” or “blackboard”
style architecture that provide better interaction for “what if”
analysis and interactive decision support between the system
and the user. The advantage is that the user has direct control
of the repair action formulation and performs an active role
in the decision-making in choosing the repair strategy. CABINS
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also shows far better responsiveness and better schedule quality
when compared to the case-based reasoning approach [55].

Artificial intelligence techniques such as neural networks
[56, 57] and genetic algorithms [58] have also been used in
schedule recovery. Neural networks have been applied in the
recovery of the production schedule of glass coating (AIRCO
process) [56] in which rich control strategies for reactive
scheduling have been identified. The purpose is to maintain
control over the environment where the predetermined schedule
has been interrupted, because of an urgent order, maintenance,
or reassignment of job priorities. The training of a neural
network is usually performed in a single pass and in some
cases excessive re-training time can prove disadvantageous
[57]. A trained neural network is used to predict the repair
strategy by extrapolating the acquired knowledge, which is
contained in an extensive knowledge database. For accurate
predictions, appropriate training sets are required for each
combination of circumstances. The response time of the trained
neural network is very fast and predictions are usually reliable,
making it a suitable tool for reactive repair. Neural networks
are also advantageous as they can learn and grow with the
growth in the knowledge database and accumulation of experi-
ence. Genetic algorithms mimic the natural selection process
of genes to perform schedule repair. Crossover and mutation
operators are used to generate successive population of better
schedules [58] to accommodate the deviations in the original
schedule. Genetic algorithms are efficient and produce nearly
optimum schedules but require a high computational effort.

4. Discussion

Reactive scheduling techniques currently available do not con-
sider all types of disruptions that occur in shop floors. In the
approaches discussed in the previous section, most of the work
in schedule recovery has concentrated on urgent job arrivals

Fig. 4. Architecture of proposed system (APRS).

and machine breakdowns. Other factors of uncertainty in the
shop floor have yet to be modelled and considered in the
schedule recovery approaches. A prototype model REAKTION
[59] has been proposed to consider various types of disruption
that may be external in nature (e.g. short-term acceptance of
a high-priority order or delay in material delivery) or internal
in nature (e.g. machine intensity, change of start time, change
of priority and order splitting). In order to have a fully
automated rescheduler in an on-line reactive environment, it is
necessary to model and repair all types of disruption and event
that can occur in a stochastic job shop. The approaches capable
of handling independent repairs and continuous quality
improvement hold better prospects for reactive scheduling
and repair.

Another area in which the current schedule recovery
approaches are deficient is interaction with the human sched-
uler. It would be useful to have a tool that explores the benefit
of real-time integration and interaction between the human
scheduler and the scheduling system so that the human sched-
uler’s experience and spontaneous intelligence are exploited.
The need for such an interactive scheduler has been proposed
[60] and the schedule recovery system is required to possess
the ability to generate automated schedules, and the ability to
react to unexpected events using a schedule editor and a
schedule recovery module. An intelligent supervisory function
assisted by a human scheduler for revising an active but flawed
schedule has also been proposed [52].

In the future, schedule recovery must play a stronger role
in the development of the predictive reactive schedule that has
continuous off-line and on-line control of the shop floor. A
few expert models like REAKTION and CABINS that have
been proposed are currently in the development stages. The
deficiency of most of the reactive recovery approaches lies in
the handling of varied types of deviation and in the active
involvement of the human agent. The authors are therefore
proposing a new model that supports the integration of the
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predictive schedule with multiple schedule recovery techniques
in order to generate an iterative scheduling environment that
can amalgamate off-line schedule generation and on-line sched-
ule correction policies. In addition, a versatile interface with
the human scheduler is planned to exploit his experience in
schedule correction. A closer control of the quality of the
repaired schedule and high responsiveness will be emphasised
in the development of the model.

In the proposed future model, AutoSHARP (Automated Sched-
uling and Human Assisted Reactive Planner), a robust predictive
schedule will be generated during off-line planning. This predic-
tive scheduler is a scheduling algorithm that optimises multiple
performance criteria. The schedule is robust, as artificial time
gaps are inserted to accommodate minor deviations during the
generation of the schedule. The schedule is then executed on the
shop floor. As soon as a disruption on the shop floor is encoun-
tered, an algorithm is triggered that measures the severity of the
disruption. If the disruption can be accommodated in the time
allowances of the robust schedule, no action is required. Other-
wise, the repair agents are used for the modification of the
flawed schedule.

A significant step forward fig4 will be to make provisions in
the repair agents for considering various types of disruption.
Depending on the type of disruption, the specific agent is acti-
vated to invoke an event-specific strategy. Thus, the schedule
recovery in AutoSHARP can be viewed as a continuous process
in which agents are busy improving the schedule and integrating
the new events as they arrive. The system checks every event
to see if it violates the basic constraint and tries to reach a
solution. The resultant schedule is checked for schedule quality.
If a successful repair is achieved, the revised schedule replaces
the original schedule and thereafter execution restarts. The time
frame in which the repair is to be performed is critical, and is
required to be as short as possible. If the repair is not satisfactory,
the supervisory function of the human scheduler is activated.
The human scheduler can provide a solution, based on experience
when all other repair strategies fail. The human scheduler can also
overrule some decisions and alter the schedule when necessary.
Rescheduling is triggered only if all the repair strategies fail to
give a feasible schedule and the intervention of the human
scheduler is ineffective in salvaging the original schedule.

5. Conclusions

Reactive scheduling of a job shop using various approaches for
schedule recovery and repair has been extensively reported. In
this paper, the various methods have been summarised and
compared on common measures. In addition, the factors that
have been lacking in the current work have been identified and
we have proposed a unified methodology, AutoSHARP, which
is aimed at resolving the deficiencies in the existing approaches.
The focus is to develop a new engine to integrate predictive and
reactive scheduling using repair strategies based on multiple
approaches to handle different events and to exploit the spon-
taneous intelligence and experience of a human scheduler. Such
a system must be developed to consider the scheduling needs of
the dynamic and stochastic job shop on a continuous basis, and
provide qualitative schedules at all times. Reactive schedule

recovery has matured as a concept, but it is strongly felt that in
order to evolve as a successful shop floor tool, further effort is
required in the development of a generic system that has inbuilt
alternatives for handling the dynamics of the job shop under
different problem scenarios and shop floor practices.

References

1. R. O’Donovah, R. Uzsoy and K. N. Mckay, “Predictable scheduling
of single machine with break down and sensitive jobs”, International
Journal of Production Research, 37(18), pp. 4217–4233, 1999.

2. R. Shafaei and P. Brunn, “Workshop scheduling using practical
(inaccurate) data. Part 2: An investigation of the robustness of the
scheduling rules in a dynamic and stochastic environment”, Inter-
national Journal of Production Research, 37(18), pp. 4105–4117, 1999.

3. E. Szelke, and R. M. Kerr, “Foreword”, IFIP Transactions B
(Applications in Technology), B-15, p. 1, 1994.

4. D. Biskup and W. Piewitt, “A note on an efficient algorithm for the
single machine tardiness problem”, International Journal of Production
Economics, 66, pp. 287–292, 2000.

5. K. Kim and P. J. Egbelu, “A mathematical mode for job shop
scheduling with multiple process plan consideration per job”, Pro-
duction Planning and Control, 9(3), pp. 250–259, 1998.

6. K. Haase and A. Kimms, “Lot sizing and scheduling with sequence
dependent set-up costs and times and efficient rescheduling opport-
unities”, International Journal of Production Economics, 66, pp. 159–
169, 2000.

7. M. Singer, “Forecasting policies for scheduling a stochastic due date
job shop”, International Journal of Production Research, 38(15), pp.
3623–3637, 2000.

8. S. O. Duffuaa, A. Raouf, M. Ben-Daya and M. Makki, “One machine
scheduling to minimize mean tardiness with minimum number tardy”,
Production Planning and Control, 8(3), pp. 226–230, 1997.

9. H. Iima, R. Kudo, N. Sannomiya and Y. Kobayashi, “An autonomous
decentralized scheduling algorithm for scheduling problem in a metal
mould assembly process”, Journal for Intelligent Manufacturing, 10,
pp. 161–167, 1999.

10. S. Mohri, T. Masuda and H. Ishii, “Bi-criteria scheduling problem of
three identical parallel machines”, International Journal of Production
Economics, 60–61, pp. 529–536, 2000.

11. M. K. Reeja and C. Rajendran, “Dispatching rules for scheduling in
assembly job shops – Part 1”, International Journal of Production
Research, 38(9), pp. 2051–2066, 2000.

12. P. R. Philopoom, “The choice of dispatching rules in the shop using
internally set due dates with quoted lead-time and tardiness costs”,
International Journal of Production Research, 38(7), pp. 1641–1655,
2000.

13. R. Cigolini, A. Comi, A. Micheletti, M. Perona and A. Portioli,
“Implementing new dispatching rules at SGS-Thomson Microelec-
tronics”, Production Planning and Control, 10(1), pp. 97–106, 1999.

14. O. Holthaus and C. Rajendran, “Efficient job shop dispatching
rules: further developments”, Production Planning and Control,
11(2), pp. 171–178, 2000.

15. S. Barman, “Simple priority rules combinations: an approach to
improve both the flow time and tardiness”, International Journal
of Production Research, 35(10), pp. 2857–2870, 1997.

16. M. K. Reeja and C. Rajendran, “Dispatching rules for scheduling
in assembly job shops – Part 2”, International Journal of Pro-
duction Research, 38(10), pp. 2349–2360, 2000.

17. E. Hart and P. Ross, “A heuristic combination method for solving
job shop scheduling problems”, PPSN V, Lecture Notes in Computer
Science, 1498, pp. 845–854, 1998.

18. H. Pierreval and N. Mebarki, “Dynamic selection of dispatching
rules for manufacturing system scheduling”, International Journal of
Production Research, 35(6), pp. 1575–1591, 1997.

19. V. A. Armentana and R. Mazzini, “A genetic algorithm for scheduling
on a single machine with set-up times and due dates”, Production
Planning and Control, 11(7), pp. 713–720, 2000.

20. L. P. Khoo, S. G. Lee and X. F. Yin, “A prototype genetic algorithm
enhanced multi-objective scheduler for manufacturing systems”, Inter-



Reactive Recovery of Job Shop Schedules 763

national Journal of Advanced Manufacturing Technology, 16, pp.
131–138, 2000.

21. A. El-Bouri, S. Balakrishnan and N. Popplewell, “Sequencing jobs
on a single machine; a neural network approach”, IFIP Transactions
B (Applications in Technology) B-15, pp. 39–55, 1994.

22. M. Kuroda and Z. Wang, “Fuzzy job shop scheduling”, International
Journal of Production Economics, 44, pp. 45–51, 1996.

23. V. A. Armentano and D. S. Yamashita, “Tabu search for scheduling
on identical parallel machines to minimize mean tardiness”, Journal
for Intelligent Manufacturing, 11, pp. 453–460, 2000.

24. V. A. Armantano and R. C. Scrich, “Tabu search for minimizing
total tardiness in a job shop”, International Journal of Production
Economics, 63, pp. 131–140, 2000.

25. S. G. Ponnambalam, P. Aravindan and S. V. Rajesh, “Tabu search
algorithm for job shop scheduling”, International Journal of Advanced
Manufacturing Technology, 16, pp. 765–771, 2000.

26. S. G. Poonambalam, N. Jawahar and P. Arvindan, “A simulated
annealing algorithm for job shop scheduling”, Production Planning
and Control, 10(8), pp. 767–777, 1999.

27. T. Satake, K. Morikawa, K. Takaahashi and N. Nakamura, “Simulated
annealing approach for the minimizing the make span of the general
job shop”, International Journal of Production Economics, 60–61, pp.
515–522, 1999.

28. K. P. Sycara and K. Miyashita, “Adaptive schedule repair”, IFIP
TC5/WG5.7 International Workshop on Knowledge-Based Reactive
Scheduling, IFIP Transactions B (Applications in Technology), B-15,
pp. 107–123, 1994.

29. R. Shafaei and P. Brunn, “Workshop scheduling using practical
(inaccurate) data – Part 1: The performance of the heuristic scheduling
rules in a dynamic job shop environment using a rolling time horizon
approach”, International Journal of Production Research, 37, pp. 3913–
3925, 1999.

30. E. J. Yelligi and G. T. Mackulak, “Robust deterministic scheduling
in the stochastic environments: the method of capacity hedge points”,
International Journal of Production Research, 35, pp. 369–379, 1997.

31. S. V. Mehta and R. Uzsoy, “Predictable scheduling of a single
machine subject to the breakdowns”, International Journal of Computer
Integrated Manufacturing, 12, pp. 15–38, 1999.

32. I. M. Ovacik and R. Uzsoy, “Rolling horizon algorithms for single
machine dynamic scheduling problem with the sequence dependent
setup times”, International Journal of Production Research, 32, pp.
1243–1263, 1994.

33. I. M. Ovacik and R. Uzsoy, “Rolling horizon procedure for dynamic
parallel machine scheduling with sequence dependent setup times”,
International Journal of Production Research, 33, pp. 3173–3192, 1995.

34. K. Bhaskaran and M. Pinedo, “Dispatching”, Chap. 83, in G. Salvendy
(ed.), Handbook of Industrial Engineering, Wiley, New York, 1991.

35. J. Dorn, “Case based reactive scheduling”, Chap. 4, in Artificial
Intelligence in Reactive Scheduling, Chapman and Hall (UK), pp.
32–50, 1994.

36. J. Efstathiou, “Anytime heuristic schedule repair in manufacturing
industry”, IEE Proceedings: Control Theory and Applications,
143(2), pp. 114–124, 1996.

37. J. Efstathiou, “Formalizing the repair of schedule through knowledge
acquisitions”, Proceedings, Advances in Knowledge Acquisition, 9th
European Knowledge Acquisition Workshop, EKAW ‘96, pp. 306–
320, 1996.

38. J. Efstathiou, “Automated schedule repair on the shop floor”,
IIA’96/SOCO’96. International ICSC Symposia on Intelligent Indus-
trial Automation and Soft Computing, pp. A44–A50, 1996.

39. J. T. Lee, Y. S. Oh, G. S. Jo, “Minimum adjustment for repairing
an initial solution in reactive scheduling”, Journal of KISS (B)
(Software and Applications), 25 (6), pp. 923–930, 1998.

40. V. J. Leon, S. D. Wu and R. H. Storer, “Robustness measures and
robust scheduling for job shop”. IEE Transactions, 26(5) pp. 32–
43, 1994.

41. R. J. Abumaizar and J.A Svestka, “Rescheduling job shops under
random disruptions”, International Journal of Production Research,
35(7), pp. 2065–2082, 1997.

42. P. Brandimarte, M. Rigodanza and L. Roero, “Conceptual modeling
of an object oriented scheduling architecture based on the shifting
bottleneck procedure”, International Journal of Production Research,
35(7), pp. 2065–2082, 1997.

43. V. J. Leon, S. D. Wu and R. H. Storer, “Games theoretic control
approach for job shops in the presence of disruptions”, International
Journal of Production Research. 32 (6), pp. 1451–1476, 1994.

44. G. Hasle and S. F. Smith, “Directing an opportunist scheduler: an
empirical investigation on reactive scenario”, Chap. 1, Artificial
Intelligence in Reactive Scheduling, Chapman and Hall (UK), pp.
1–11, 1994.

45. H. Henseler, “From reactive to active scheduling by using multi
agents”, Chap. 2, Artificial Intelligence in Reactive scheduling, Chap-
man and Hall (UK), pp. 12–18, 1994.

46. E. Szelke and G. Markus, “A black board based perspective of
reactive scheduling”, Chap. 6, Artificial Intelligence in Reactive
scheduling, Chapman and Hall (UK), pp. 60–77, 1994.

47. R. J. Rabelo and L. M. Camarinha-Matos, “A holistic control architec-
ture infrastructure for dynamic scheduling”, Chap. 7, Artificial Intelli-
gence in Reactive scheduling, Chapman and Hall (UK), pp. 78–
94, 1994.

48. J. Dorn, R. Kerr and G. Thalhammer, “Reactive scheduling in a
fuzzy-temporal framework”, Knowledge Based Reactive Scheduling,
IFIP Transactions B (Applications in Technology), B-15, pp. 39–
54, 1994.

49. G. Schmidt, “How to apply fuzzy logic to reactive production
scheduling”, Knowledge Based Reactive Scheduling, IFIP Trans-
actions B (Applications in Technology), B-15, pp. 57–66, 1994.

50. J. Dorn, R. Kerr and G. Thalhammer, “Reactive scheduling: improv-
ing the robustness of schedules and restricting the effects of shop floor
disturbances by fuzzy reasoning”, International Journal of Human–
Computer Studies, 42(6), pp. 687–704, 1995.

51. W. Slany, “Scheduling as a fuzzy multiple criteria optimization
problem”, Fuzzy Sets and System, 78(2), pp. 197–222, 1996.

52. K. Miyashita and K. P. Sycara, “Exploiting failure information for
the case based schedule repair”, Journal of Japanese Society of
Artificial Intelligence, 9(4), pp. 559–568, 1994

53. E. Szelke and G. Markus, “A learning reactive scheduler using
CBR/L”, Computer in Industry, 33(1), pp. 31–46, 1997.

54. K. Miyashita, “Case based knowledge acquisition for schedule optim-
ization”, Artificial Intelligence in Engineering, 9(4), pp. 277–287,
1995.

55. J. E. Spargg, G. Fozzard and D. J. Tyler, “Constraint based reactive
rescheduling in a stochastic environment”, Proceedings, Recent
Advances in AI Planning, 4th European Conference on Planning,
ECP’97, pp. 403–413, 1997.

56. B. J. Garner and G. J. Ridley, “Application of neural network
process models in reactive scheduling”, Knowledge Based Reactive
Scheduling, IFIP Transactions B (Applications in Technology), B-15,
pp. 19–28, 1994.

57. G. A. Rovithakis, S. E. Perrakis and M. A. Christodoulou, “Appli-
cation of a neural network scheduler on a real manufacturing system”,
IEEE Transactions on Control Systems Technology, 9(2), pp. 261–
270, 2001.

58. J. G. Qi, G. R. Burns and D. K. Harrison, “The application of the
parallel multi population genetic algorithms to dynamic job shop
scheduling”, International Journal of Advanced Manufacturing Tech-
nology, 16, pp. 609–615, 2000.

59. H. Henseler, “REAKTION: a system for event independent reactive
scheduling”. Chap. 3, Artificial Intelligence in Reactive Scheduling,
Chapman and Hall (UK), pp. 19–31, 1994.

60. P. Jordan, J. Browne and M. Browne, “Production activity control
for small manufacturing enterprises”, Knowledge Based Reactive
Scheduling, IFIP Transactions B (Applications in Technology), B-
15, pp. 19–28, 1994.


