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Influence of Punch Radius and Angle on the Outward Curling
Process of Tubes

You-Min Huang and Yuung-Ming Huang
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Using the theory of updated Lagrangian formulation, this study
adopted the elasto-plastic finite-element method and extended
the increment determination method, the rmin method, to include
the element’s yielding, nodal contact with or separation from
the tool, maximum strain and limit of rotation increment. The
computer code for a finite-element method is established using
the modified Coulomb’s friction law. Conical punches with
different radii and angles are used in the forming simulation
of hard copper and brass tube ends. The effects of various
elements including the half-apex angle of punch (�) and its
radius (R), the ratio of the thickness of the tube wall to the
mean diameter of tube, mechanical properties, and lubrication
on the tube’s outward curling, are investigated. Simulation
findings indicate that when the bending radius at the punch
inlet (�) satisfies the condition of � � �c, curling is present
at the tube end. On the other hand, if � � �c, the tube end
experiences flaring. The variable �c is called the critical bend-
ing radius. The value of �c increases as the value of �
increases. Furthermore, the findings also show that �c is neither
correlated with tube material nor lubrication.

Keywords: Elasto-plastic; Finite elements; Half-apex angle;
Outward-curling process

1. Introduction

The process of forming convex edges of a metal tube is often
employed for connecting two tube parts, linking and locking
a tube part and its components, and connecting fluid pipelines
or combining complementary pipelines with reinforcement at
the tube’s end. It is a common industrial technology related
to tube ends. The tube end processes are generally divided
into tapper flaring, flange flaring, step flaring, and curl forming.
The tube-curling deformation discussed in this paper curls the
opening of the tube’s end outward in a circle. The simulation
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of the tube-curling deformation is a complex and difficult
task because the deformation process is highly nonlinear. The
nonlinear deformation characteristic is due to:

1. The large displacement, rotation, and deformation during
metal deformation.

2. The nonlinear material deformation behaviour when metal
material experiences large deformation.

3. The nonlinear boundary condition generated by the friction
between the metal and tool interface, and their contact con-
ditions.

These characteristics made the finite-element method the most
widely used of the metal process analyses. To improve the
process and increase industrial productivity, this study
developed an elasto-plastic finite-element computer code using
the selective reduced integration (SRI) simulation method,
which employs four integral point elements within the four
nodes of a rectangle. The objective is to simulate the tube-
curling deformation process.

Nadai [1] studied tube-nosing in 1943. The theoretical induc-
tion was an extension of the curved shell theory. Nadai assumed
the friction coefficient to be constant, and ignored the presence
of effective stress variation in the shell. Cruden and Tompson
[2] conducted a series of tube-nosing experiments to establish
the various limitations of tube-nosing and evaluate the effects
of various parameters. Manabe and Nishimura [3–7] also con-
ducted a series of experiments on both conical tube-flaring and
tube-nosing processes to investigate the effects of various
parameters on the forming load and stress–strain distribution.
The parameters studied include the conical punch with different
angles, lubrication, material and tube wall thickness. Tang and
Kobayashi [8] proposed a rigid-plastic finite-element theory
and developed a computer code to simulate the cold-nosing of
105 mm AISI 1018 steel. Huang et al. [9] simulated the cold-
nosing process through elasto-plastic and rigid-plastic finite-
element methods and compared the simulation results with
experimental data to verify the accuracy of the rigid-plastic
finite element. Kitazawa et al. [10,11] conducted experiments
with conical punches, and copper and brass materials with the
assumption that the tube materials were rigid-perfectly plastic.
They had explored previously the effect of the arc radius of
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the punch, angle, and tube wall thickness on the tube-curling
deformation process. Kitazawa [12] used carbon steel, copper,
and brass as the tube materials in his experiment of tube-
curling deformation. When the flaring energy increment at the
front edge of the tube end (�Wf) is greater than the energy
increment at the curl edge (�Wc), the tube end material
undergoes outward curling forming because of the absence of
unbending. On the other hand, if �Wc � �Wf, the tube end
material is attached to the conical punch surface because of
unbending and fails to curl or form flaring. The energy rule
was used to induce the deformation energy at the time of tube
forming for the purpose of comparison and verification, thus
establishing the criterion of outward curling.

In this study, the same material constants and dimensions
used in other studies [12] are adopted in the simulation of the
outward curling process. The findings are compared with the
results reported in [12] to verify the accuracy of the elasto-
plastic finite-element computer code developed.

2. Description of the Basic Theory

2.1 Stiffness Equation

Adopting the updated Lagrangian formulation (ULF) in the
framework of the application of incremental deformation for
the metal forming process (bulk forming and sheet forming)
is the most practical approach for describing the incremental
characteristics of the plastic flow rule. The current configuration
in ULF at each deformation stage is used as the reference
state for evaluating the deformation for a small time interval
�t such that first-order theory is consistent with the accuracy
requirement.

The virtual work rate equation of the updated Lagrangian
equation is written as

Fig. 1. Boundary conditions for the deformation tubes geometry of
outward curling at an initial and a particular stage. Units, mm;
R, punch radius; �, half-apex punch angle; �, bending radius at
punch inlet.
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The J2 flow rule

�* =
E

1 + v
[�ik�jl +

v
1 − 2v

�ij�kl −
3�(E/(1+v)) ��

ij�
�
kl

2�̄2 (0H� + E/(1 + v))
] 	· kl (2)

is employed to model the elasto-plastic behaviour of sheet
metal, where H� is the strain hardening rate, �̄ is the effective
stress, E is the Young’s modulus, v is the Poisson’s ratio, ��

ij

is the deviatoric part of �ij. � takes 1 for the plastic state and
0 for the elastic state or the unloading.

It is assumed that the distribution of the velocity {v} in a
discretised element is

{v} = [N] {d·} (3)

where [N] is the shape function matrix and {d·} denotes the
nodal velocity. The rate of deformation and the velocity
gradient are written as

{	·} = [B] {d·} (4)
{L} = {E} {d·} (5)

where [B] and [E] represent the strain rate–velocity matrix and
the velocity gradient–velocity matrix, respectively. Substituting
Eqs (4) and (5) into Eq. (1), the elemental stiffness matrix
is obtained.

As the principle of virtual work rate Eq. and the constitutive
relationship are linear Eq. of rates, they can be replaced by
increments defined with respect to any monotonously increasing
measure, such as the tool-displacement increment.

Following the standard procedure of finite elements to form
the whole global stiffness matrix,

[K] {�u} = {�F} (6)

in which

[K] = �
�e�

�
V�e�

[B]T([Dep] − [Q]) [B]-V + �
�e�

�
V�e�

[E]T[G][E]-V

{�F} = ��
�e�

�
S�e�

[N]T {t�}-S� �t

In these equations, [K] is the global tangent stiffness matrix,
[Dep] is the elemental elasto-plastic constitutive matrix, �u
denotes the nodal displacement increment, and {�F] denotes
the prescribed nodal force increment. [Q] and [G] are defined
as stress-correction matrices due to the current stress at any
stage of deformation.
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Fig. 2. (a) Deformed geometries, and (b) nodal velocity distributions in the outward curling of tubes at 12 different forming stages. Hard copper
tube, n = 0.05; t0 = 0.8 mm; � = 60°; R = 3.4 mm.

2.2 SRI Scheme

As the implementation of the full integration (FI) scheme for
the quadrilateral element leads to an excessively constraining
effect when the material is in the nearly incompressible elasto-
plastic situation in the forming process [13], Hughes proposed
that the strain rate–velocity matrix be decomposed to the
dilation matrix [B]dil and the deviation matrix [B]dev, i.e.

[B] = [B]dil + [B]dev (7)

in which the matrices [B]dil and [B]dev are integrated by conven-
tional four-point integration. When the material is deformed to
the nearly incompressible elasto-plastic state, the dilation matrix
[B]dil must be replaced by the modified dilation matrix [B̄]dil

that is integrated by the one point integration, i.e.

[B̄] = [B̄]dil + [B]dev (8)

in which [B̄] is the modified strain rate–velocity matrix. Substi-
tuting Eq. (8) into Eq. (7), the modified strain rate–velocity
matrix is

[B̄] = [B] + ([B̄]dil − [B]dil) (9)

Explicitly, the velocity gradient–velocity matrix [E] is replaced
by the modified velocity gradient–velocity matrix [Ē]

[Ē] = [E] + ([Ē]dil − [E]dil) (10)

3. Numerical Analysis

The analytical model of the tube-curling process is axially
symmetric. Thus, only the righthand half of the centre axis is
considered. Division of the part’s finite elements is automati-
cally processed by the computer. Since there is drastic defor-
mation from the bending and curling at the tube’s end, a finer
element division is required for this section in order to derive
precise computation results. The lefthand half shown in Fig. 1
denotes the sizes of the part and die at the beginning. The
detailed dimensions are given in Table 1. In the local coordi-
nates, axis 1 denotes the tangential direction of the contact
between tube material and the tool, while axis n denotes the
normal direction of the same contact. Constant coordinates
(X,Y) and local coordinates (l, n) describe the nodal force,
displacement and element’s stress and strain.
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Fig. 3. As Fig. 2, but R = 3.8 mm.

Table 1. Punch angle and radius.

Punch apex Punch radius R (mm)
angle � (deg.)

60 2.0, 2.4, 2.8, 3.1, 3.4, 3.8, 4.1, 4.4, 4.8, 5.1
65 2.4, 2.8, 3.1, 3.4, 3.8, 4.1, 4.4, 4.8, 5.5, 5.4
70 3.1, 3.4, 3.8, 4.1, 4.4, 4.8, 5.1, 5.4, 5.8, 6.1
75 3.4, 3.8, 4.1, 4.4, 4.8, 5.1, 5.4, 5.8, 6.1, 6.4
80 4.8, 5.4, 5.8, 6.1, 6.4, 6.8, 7.2, 7.6, 8.0, 8.4
85 5.8, 6.1, 6.4, 6.8, 7.4, 9.0, 9.4, 9.8, 10.2, 10.6, 11.0

Table 2 gives the material conditions of our simulation. The
exterior radius of the tube remains unchanged at 25.4 mm; but
there are three different tube wall thickness values, namely,
0.4, 0.6 and 0.8 mm, used in the experiment and computation.
The Poisson’s ratio and Young’s modulus of the hard copper
tube are 0.33 and 110740 MPa, respectively. The Poisson’s
ratio and Young’s modulus of brass are 0.34 and 96500
MPa, respectively.

3.1 Boundary Condition

The righthand half of the tube shown in Fig. 1 denotes the
deformation shape at a certain stage during the tube-curling

Table 2. Mechanical properties of materials used.

Materials Outer Heat treatment n F Yield stress
diameter in vacuum (Mpa) �0.2 (Mpa)
× thickness

Copper 25.4 × 0.8 As received 0.09 380 220
500°C 1 h 0.53 630 26
As received 0.05 450 280
300°C 1 h 0.09 450 260
400°C 1 h 0.46 610 50
600°C 1 h 0.50 640 42

70/30 Brass 25.4 ± 0.8 As received 0.18 730 280

� = F	n; � = stress; 	 = strain.

deformation. The boundary conditions include the following
three sections:

1. The boundary on the FG and BC sections:

�fl � 0, �fn � 0, �vn = �v̄n

where �fl is the nodal tangential friction forces increment,
and �fn is the normal force increment. As the material–tool
contact area is assumed to involve friction, �fl and �fn are
not equal to zero. �vn, which denotes the nodal displacement
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increment in the normal direction of the profile of the tools,
is determined from the prescribed displacement increment
of the punch �v̄n.

2. The boundary on the CD, DE, EF, and GA sections:

�Fx = 0, �Fy = 0

The above condition reflects that the nodes on this boundary
are free.

3. The boundary on the AB section:

�vx = 0, �vy = 0

The AB section is the fixed boundary at the bottom end of
the tube. The displacement increment of the node at this
location along the y-axis direction is set at zero, whereas node
B is completely fixed without any movement.

As the tube-curling process proceeds, the boundary will be
changed. It is thus necessary to examine the normal force �fn

of the contact nodes along boundary sections FG and BC in
each deformation stage. If �fn reaches zero, then the nodes
will become free and the boundary condition is shifted from
(1) to (2). Meanwhile, the free nodes along the GA and EF
sections of the tube are also checked in the computation. If
the node comes into contact with the punch, the free-boundary
condition is changed to the constraint condition (1).

3.2 Treatment of the Elasto-Plastic and Contact
Problems

The contact condition should remain unchanged within one
incremental deformation process, as clearly implied from the
interpretation in the former boundary condition. In order to
satisfy this requirement, the r-minimum method proposed by
Yamada et al. [14] is adopted and extended towards treating
the elasto-plastic and contact problems [15]. The increment of
each loading step is controlled by the smallest value of the
following six values.

1. Elasto-plastic state. When the stress of an element is greater
than the yielding stress, r1 is computed by [15] so as to
ascertain the stress just as the yielding surface is reached.

2. The maximum strain increment. The r2 term is obtained by
the ratio of the defaulted maximum strain increment  to
the principal strain increment d	, i.e. r2 = /d	, to limit the
incremental step to such a size that the first-order theory is
valid within the step.

3. The maximum rotation increment. The r3 term is calculated
by the defaulted maximum rotation increment � to the
rotation increment d�, i.e. r3 = �/d�, to limit the incremen-
tal step to such a size that the first-order theory is valid
within the step.

4. Penetration condition. When forming proceeds, the free
nodes of the tube may penetrate the tools. The ratio r4 [16]
is calculated such that the free nodes just come into contact
with tools.

5. Separation condition. When forming proceeds, the contact
nodes may be separated from the contact surface. The r5

term [16] is calculated for each contact node, such that the
normal component of nodal force becomes zero.

6. Sliding-sticking friction condition. The modified Coulomb’s
friction law provides two alternative contact states, i.e.
sliding or sticking states. Such states are checked for each
contacting node by the following conditions:

vrel(i)
l • vrel(I−l)

l � 0

(a) if �vrel(i)
l � � VCRI, then f1 = �fn, the node is in

sliding state
(b) if �vrel(i)

l � � VCRI, then f1 = �fn(vrel
l /VCRI), the node

is in quasi-sticking state.
vrel(i)

l • vrel(I−1)
l � 0.

The direction of a sliding node is opposite to the direction
of the previous incremental step, making the contact node a
sticking node at the next incremental step. The ratio r6 is then
obtained here, r6 = Tolf/�vrel(i)

l �, which produces the change of
friction state from sliding to sticking, where Tolf (= 0.0001)
is a small tolerance.

The constants of the maximum strain increment  and
maximum rotation increment � used here are 0.002° and 0.5°,
respectively. These constants are proved to be valid in the first-
order theory. Furthermore, a small tolerance in the check pro-
cedure of the penetration and separation condition is permitted.

3.3 Unloading Process

The phenomenon of spring-back after unloading is significant
in the tube-forming process. The unloading procedure is
executed by assuming that the nodes on the bottom end of the
tube are fixed. All of the elements are reset to be elastic. The
force of the nodes which come into contact with the tools is
reversed in becoming the prescribed force boundary condition
on the tube, i.e. F· = − F.

Meanwhile, the verification of the penetration, friction, and
separation condition is excluded in the simulation program.

4. Results and Discussion

Figure 2 shows the simulation results of curling forming of
copper tubes with the punch semi-angle, � = 60°, and the arc
radius, R = 3.4 mm. Figure 2(a) denotes the geometric shape
of the deformation, in which the last shape is the final shape
of the part after unloading. Figure 2(b) shows the nodal velocity
distribution during deformation. The last diagram shows the
nodal velocity distribution after unloading. These figures show
that the tube end material enters smoothly along the punch
surface at the initial stage. After that, the tube end material
gradually bends outward and curls up, resulting in the so-
called outward curling forming. Figure 3 shows the simulation
result in the case of R = 3.8 mm. The tube end material still
shows the so-called flaring forming after passing the arc induc-
tion section and conical face forming.

Figure 4 shows the result of curling simulation of copper
tubes in the case of � = 75° and R = 6.1 mm. In contrast,
Fig. 5 shows the simulation result of flaring forming in the
case of R = 6.4 mm.

Figure 6 shows the strain distributions corresponding to
those of Figs 2 and 3 at a punch travel of 12 mm. Figure 7
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Fig. 4. As Fig. 2, but � = 75°; R = 6.1 mm.

shows the strain distributions corresponding to those of Figs
4 and 5 at a punch progress of 14 mm. The deformation is
mostly the result of pulling in the circumference direction,
bending in the meridian direction and shearing in the thickness
direction. The maximum diameter of the tube end is the flaring
forming. Thus, its strain value in the circumference direction
is far greater than that of outward curling. The reduction in
tube wall thickness is also more significant in flaring forming.
Thus, under the same progress, fracture of the tube end occurs
more easily in flaring forming than in other situations.

Figures 8 and 9 show the simulation results for hard copper
and brass, respectively. The same tube wall thickness, tube
radius, lubrication condition, and half-apex of the punch are
used in both simulations. However, different values of the
punch arc radius are used, which generate different types of
forming, namely, flaring and curling. That is, if the arc
radius, �, at the punch entrance is greater than the critical
bending radius, �C, then the tube end material forms flaring
along the punch arc induction section and conical face. On
the contrary, if �C � �, the tube end material leaves the
punch surface and forms curling. Both figures show that the
critical bending radius increases as the half-apex of the
punch increases. A comparison shows that the results of our

numerical simulation are identical to the experimental data
reported in [12]. The so-called critical bending radius, �C,
can be expressed as follows:

�C = RC −
t0
2

=
(RCmax + Rfmin)

2
−

t0

2
(11)

where

RC = punch radius corresponding to �C

Rfmin = minimum value of punch radius required to flare
RCmax = maximum value of punch radius required to curl

t0 = wall thickness of tubes

Figures 10 and 11 show the correlation between the non-
dimensional critical bending radius (�̄C) and the half apex
angle of the punch with two different wall-thickness-to-
diameter ratios in the cases of hard copper tube and brass
tube, respectively. The value of �̄C can be defined as follows:

�̄C =
�C

�(t0d0)
(12)

If �̄C is unrelated to the wall-thickness-to-diameter ratio, then
the geometrical similarity law of the critical bending radius
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Fig. 5. As Fig. 2, but � = 75°; R = 6.4 mm.

Fig. 6. Comparison of calculated strain distributions under curling and
flaring processes. Hard copper tube, n = 0.05; t0 = 0.8 mm; � = 60°.

exists. Judging from the fact that the two curves shown in
Figs 10 and 11 are almost identical, we can be certain of the
existence of the geometrical similarity law of the critical
bending radius of the tube materials.

Fig. 7. As Fig. 6, but � = 75°.

Figures 12 and 13 show the relationship between the
maximum punch radius and half-apex angle of the punch when
curling occurs in the numerical simulation of wall thickness
values of 0.4, 0.6, and 0.8 mm in the cases of hard copper
tube and brass tube, respectively. When values of both the
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Fig. 8. The effect of tube thickness on the relationship between critical
bending radius and punch angle. Hard copper tube, n = 0.05.

Fig. 9. As Fig. 8, but brass tube, n = 0.05.

Fig. 10. Non-dimensional critical bending radius – half-apex angle of
punch relationships in outward curling of tubes. Hard copper tube,
n = 0.05.

Fig. 11. As Fig. 10, but brass tube, n = 0.18.

Fig. 12. Maximum radius of punch to curl for various half-apex angles
of punch. Hard copper tube, n = 0.05.

Fig. 13. As Fig. 12, but brass tube, n = 0.18.
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Fig. 14. Dependence of the critical bending radius on the work harden-
ing exponent. � = 60°; t0 = 0.8 mm.

radius and the corresponding half-apex angle of the punch fall
on the curve, the conditions will lead to flaring. On the other
hand, when both values fall below the curve, the conditions
will lead to curling. These figures indicate that the maximum
punch radius increases as the half-apex angle of the punch
enlarges.

Figure 14 shows the correlation between the material’s work
hardening exponent (n) and the critical bending radius. Regard-
less of the variation in n value between 0.03 and 0.53 owing
to different tube materials, results of the numerical simulation
indicate that the value of the critical bending radius remains
constant, thus forming a straight line. These findings are almost
identical to the experimental data shown in [12], and it implies
that the critical bending radius at the time of curling is
unrelated to the work hardening exponent.

Figure 15 shows the effects of lubrication on the relation-
ships between the critical bending radius and half-apex angle
of the punch. The critical bending radius increases with the
increasing half-apex angle of the punch in the case of � =
0.05 and � = 0.20. Furthermore, the result revealed that there
is a negligible difference in the magnitude of the critical
bending radius between the two lubricant conditions.

Fig. 15. Dependence of the critical bending radius on lubricating con-
ditions. Brass tube, t0 = 0.8 mm.

5. Conclusion

An elasto-plastic finite-element computer code was developed
from the updated Lagrangian formulation to simulate tube-
curling with a conical punch process. The high nonlinearity of
the process was taken into account in an incremental manner
and an rmin technique was adopted to limit the size of each
increment step for a linear relation.

The modified Coulomb’s friction law developed is a continu-
ous function. As discussed earlier, this function can handle the
sliding and viscosity phenomena of the tool and metal interface
that are difficult to describe with the ordinary discontinuous
friction model. The SRI finite-element is the four-node-
quadrilateral element in four integration points. Then the SRI
coupled with the finite-element large deformation analysis is
further applied successfully to the analysis of the conical tube-
curling formation process. According to the above analyses
and discussion, the following conclusions can be drawn:

1. A critical bending radius, �C, exists. If the arch radius, �,
at the punch entrance is larger than the critical bending
radius, �C, then the tube end material travels along the
punch arch induction part and the conical face to form
flaring. On the other hand, if �C � �, the tube end material
leaves from the punch surface and results in curling. The
value of the critical bending radius increases as the half-
apex angle of the punch increases.

2 The critical bending radius, �C, follows the geometrical
similarity law. The value of �C increases as the half-apex
angle of the punch increases. We also learned that the value
of �C is not correlated with the tube material, lubrication
conditions or the wall-thickness-to-diameter radius ratio.

3. The circumference strain of flaring is greater than that of
curling. Flaring also has greater reduction in thickness than
curling. Thus, tube end fracture occurs more easily in
flaring. In contrast, products with curling can guarantee
handling safety and reinforce the end portion of tube
materials.

4. The die shape is expressed as a numerical function. Thus,
the finite-element model developed in this study can be
used in the continuous shape of any tools and employed to
simulate all types of flaring or curling processes.
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