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In order to improve the design of products and reduce design
changes, cost, and time to market, life cycle engineering has
emerged as an effective approach to address these issues in
today’s competitive global market. As over 70% of the total
life cycle cost of a product is committed at the early design
stage, designers can substantially reduce the life cycle cost of
products by giving due consideration to the life cycle impli-
cations of their design decisions. During the early design
stages there may be competing requirements. In addition,
detailed information is scarce and decisions must be made
quickly. Thus, both the overhead in developing parametric life
cycle cost (LCC) models for a wide range of concepts or
requirements, and the lack of detailed information make the
application of traditional LCC models impractical. A different
approach is required because a traditional LCC method should
be incorporated in the very early design stages. This paper
explores an approximate method for providing the preliminary
life cycle cost. Learning algorithms trained to use the known
characteristics of existing products can perhaps allow the life
cycle cost of new products to be approximated quickly during
the conceptual design phase without the overhead of defining
new LCC models. Artificial neural networks are trained to
generalise product attributes and life cycle cost data from pre-
existing LCC studies. Then, the product designers query the
trained artificial model with new high-level product attribute
data to obtain an LCC for a new product concept quickly.
Foundations for the learning LCC approach are established,
and then an application is provided. This paper has been
developed to provide designers with LCC information to guide
them in conceptual design.
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1. Introduction

The ability of a company to compete effectively in the increas-
ingly competitive global market is influenced to a large extent
by the cost, as well as the quality, of its products and by the
ability to bring products onto the market in a timely manner.
It has been recognised that the life cycle, or concurrent,
engineering approach to the design of products has a great
potential to achieve these goals. People are always concerned
about product cost, which encompasses the entire product life
from conception to disposal. Manufacturers usually consider
only how to reduce the cost of materials acquisition, pro-
duction, and logistics. In order to survive in the competitive
market environment, manufacturers now have to consider
reducing the cost of the entire life cycle of a product, called
the life cycle cost (LCC). Owing to widespread consciousness
of global environmental problems and environmental legislative
measures such as take back and recycling laws, manufacturers
also have to consider reducing the cost which a user incurs
during consumption and which society incurs in disassembling,
recycling, and disposal. The costs incurred during production,
use, and disposal are mostly committed by early design
decisions. Studies reported in Dowlatshahi [1] and by other
researchers in design, suggest that the design of the product
influences 70%–85% of the total cost. Therefore, designers can
reduce substantially the LCC of the product they design by
giving due consideration to life cycle cost implications of their
design decisions. Design methods for minimising the LCC of
the product thus become very important and valuable.

The need for sustainable development has begun to change
the way many companies design products. Traditional product
designers are being asked to judge the cost of the products
they are developing. Not only is this an additional task for
designers, but it is something they are not necessarily qualified
to do. Therefore, the LCC models created by cost estimators
should be integrated with traditional design models, making
the parametric LCC results available on demand. However, the
use of detailed parametric models is not well suited to early
conceptual design, where ideas are diverse and numerous,
details are very scarce, and the pace is swift. This is unfortunate
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Fig. 1. The learning LCC model in the design environment.

because the early phases of the design process are widely
believed to be the most influential in defining the LCC of
products.

This paper describes the development of an estimation
method for product LCC, called a learning LCC model, for
use in conceptual design. This method facilitates an integrated
system of the design process, allowing the approximate and
rapid estimation of the product LCC based on high-level
information, typically known in the conceptual phase. An
artificial neural network (ANN) is trained on product attributes
and the LCC data from pre-existing detailed LCC studies. The
product designers query the trained artificial model with new
high-level product attribute data to obtain an approximate LCC
quickly for a new product concept. This does not require a
new LCC model. The designer can then use the predicted cost
performance, along with key performance measures from other
models, in a trade-off analysis and concept selection (Fig. 1).

Key ideas that must be developed and tested to validate the
learning LCC concept are studied in this paper, which provides
a basis for the learning LCC concept, a preliminary application,
and a discussion of its limitations. This paper is organised as
follows. In Section 2, as the background section, the conceptual
design and previous LCC studies are reviewed. In addition,
state-of-the-art LCC methods are discussed. The learning LCC
concept is described in Section 3. Section 4 elucidates the
development of learning LCC models. The four primary
elements established in Section 4 are as follows: a meaningful
set of product attribute inputs; a useful set of the outputs of
LCC factors; a training data set based upon previously analysed
products; and an appropriately trained LCC model. The test of
the learning LCC models is then presented in Section 5.
Finally, some conclusions and suggestions for future research
are provided in Section 6.

2. Background

2.1 Conceptual Design

The conceptual design phase defines the basic characteristics
of a product, ranging from cost [2] to environmental impact
[3]. Decisions that emerge from the conceptual phase are often

locked in, owing to the large amount of resources (time,
manpower, and money) required to change course as launch
deadlines approach. Therefore, it is important that cost con-
siderations are used in the evaluation of concept feasibility
along with other requirements. This means that the design team
must be able to evaluate the approximate cost performance of
many solution concepts, early in the design process (see Fig. 2).

Time is usually scarce during the product development cycle.
Development time can mean the difference between leading or
following in an industry; therefore, it limits the ability to create
detailed models for many different concepts. Additionally, in
conceptual design, the lack of information is a significant
barrier to the creation of the models required to evaluate
different ideas.

Although it is a good idea for product designers to have
some knowledge of cost estimation, it is not, and should not
be, their area of primary expertise. Ideally, the services of cost
estimators should be extended to designers. Communication,
although necessary for such an extension, is often a barrier as
it takes time to establish and maintain the synchronisation of
information between designers and cost estimators.

2.2 Life Cycle Approach to Design

In an attempt to improve the design of products and reduce
design changes and time to market, concurrent, or life cycle,
engineering has emerged as an effective approach to address
these issues in today’s competitive global market. The unique
aspect of life cycle engineering is that the complete life cycle
of the product is kept under consideration in each phase of
product development [4]. Life cycle engineering goes beyond
the life of the product itself and simultaneously considers the

Fig. 2. The concept development process.
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issues of the manufacturing process and the product service sys-
tems.

The life cycle of the product begins with the identification
of needs and extends through design, production, customer use,
support, and finally, disposal. Alting [5] distinguishes between
six phases in a product’s life: need recognition, design develop-
ment, production, distribution, use, and disposal. However, the
life cycle of the product in most other papers is usually divided
into only four phases: design development, production, use,
and disposal. The process life cycle begins with the definition
of the production task by the preliminary product design. This
entails production planning, plant layout, equipment selection,
process planning and other similar activities. The third life
cycle, which deals with logistic support, should also be initiated
at the preliminary design phase. This involves the development
of support for the design and production stages, consumer
support and maintenance during product usage, and support
for product recovery.

In suggesting a life cycle engineering approach to design,
Alting [5] also identified a number of issues that must be
addressed: ease of manufacture, environmental protection,
working conditions, resource optimisation, life cycle cost, and
product properties. In this paper, we intend to concentrate on
the product LCC.

2.3 Life Cycle Cost Analysis

Typically, design and economic justification have been con-
sidered as two separate undertakings. Though they both have
the common goal of arriving at a competitive product, their
goals are diametrically opposed to each other – the goal of
designing the best product possible often conflicts with the
goal of cost minimisation [6]. As stated earlier, it has been
reported that during the design stage, most (70%–85%) of the
total LCC of a product is committed. This can be reduced by
giving due consideration to LCC issues early in the design.
LCC analysis provides the framework for specifying the esti-
mated total incremental costs of developing, producing, using,
and disposing of a particular item.

Cost estimation is usually done by professional cost esti-
mators who may have little or no design experience and may
or may not be an integral part of the design process. The
estimates by designers and professional cost estimators tend to
differ. Because cost estimators can put more time and effort
into their calculations, their estimates are usually more accurate.
Designers do not have the cost estimators’ skill and experience.
Furthermore, cost estimators will be satisfied if they obtain a
reasonable estimate [7]. The cost estimating community rarely
focuses on why a system will cost what it does [8]. Designers,
the other hand, will not be satisfied with just an estimate; on
seeing the estimate they search for an understanding of why
the product costs what it does, and for more cost-effective
solutions. The most important task for the designers, therefore,
is to balance the relationship between cost information and
design decisions. Therefore, it is important to develop a method
that gives the designers quick and accurate estimates of the
financial consequences of their design decisions, and procedures
to determine optimal design parameters.

2.3.1 Cost Estimating Approaches

Depending on the stage of the analysis and the level of detail
expected, an LCC model may be a simple series of cost
estimation relationships (CERs) or a set of computer sub-
routines. LCC analysis during the conceptual or preliminary
design phases may require the use of basic accounting tech-
niques and the model may be simple in construction [9]. On
the other hand, LCC analysis done during the detailed design
stage may be more elaborate. Just as the design process
produces a lower level of functional requirements through
functional decomposition to enable design solutions to be
developed easily, it is imperative to perform a cost decompo-
sition. Such a cost decomposition is known as a cost breakdown
structure (CBS). Cost function/models can then be allocated to
the various categories to allow easy calculation of the total cost.

Estimation models used in industry can be broadly classified
as parametric models, analogous models, and detailed models.
Parametric estimation is the generation and application of
equations that describe relationships between cost schedules
and measurable attributes of a system that must be developed,
sustained, and retired [10]. Cost estimation made by analogy
identifies a similar product or component and adjusts its costs
for differences between it and the target product [11]. The
effectiveness of this method depends heavily on an ability to
identify correctly any differences between the case in hand
and those deemed to be comparable [12]. A detailed model
uses estimates of labour time and rates and also material
quantities and prices to estimate the direct costs of a product
or activity [11]. An allocation rate is then used to allow for
indirect/overhead costs. It is a most time-consuming and costly
approach, and requires a detailed knowledge of the product
and its processes. However, the most accurate cost estimates
can be made using this approach.

2.4 Review of Life Cycle Cost Methods

There are different approaches to develop cost models for LCC
analysis. Most LCC models are structured along three general
lines: conceptual, analytical, and heuristic [13,14]. Conceptual
models consist of a set of hypothesised relationships expressed
in a qualitative framework. They are generally very flexible,
and can accommodate a wide range of systems. They require
a minimum of details and require little ability to quantify a
system’s cost characteristics. Conceptual models are limited
when they come to analyses [14]. Analytical models are usually
based on mathematical relationships which are designed to
describe a certain aspect of a system/product under certain
conditions/assumptions. These assumptions tend to restrict or
limit the model’s ability to reflect the actual system’s perform-
ance. Heuristic models are ill-structured analytical models,
usually employing an approach which produces a feasible and
sufficient solution, but does not guarantee that the solution is
optimal [13]. These models are usually developed through the
use of computer simulation [14]. Heuristic models are not as
general as analytical models, and can normally be used only
for the specific situation for which they are intended.

Some authors have focused on presenting frameworks to be
used for LCC analysis, whereas others have focused on
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developing models to be used for the evaluation of cost. For
the most part, these models have been developed for use in
specific phases of the product life cycle or for specific oper-
ations in a particular life cycle phase.

Greenwood and Reeve [15] presented a comprehensive
activity-based framework for supporting operational decision-
making which allows managers to predict activity and process
costs under alternative product design and production. Although
the architecture described supports process analysis, product
costing, and simulation, the framework presented is not easy
to understand. Moreover, though the authors indicated that it
is intended to be used for predictive purposes, it does not deal
with uncertainties.

Noble and Tanchoco [6] presented a conceptual framework
for concurrent design and economic justification of systems.
They proposed a design justification environment that allows
the decision maker to see the potential economic implications
for different design alternatives. The cost of manufacturing the
product was divided into fixed and variable components and
allocated on a per unit basis. Although the framework is useful,
the model is based on traditional accounting concepts which
are not very useful for accurate cost tracing.

A multistage integrated decision model, in which decisions
on product and process design are simultaneously made and
supported by economic evaluation at each stage of the manufac-
turing process, is presented by Oh and Park [16]. This paper
reclassifies the total manufacturing cost into four categories:
productivity cost, quality cost, flexibility cost, and inventory
cost. For each classified cost element, the cost function for a
unit of a product for each significant process in the manufactur-
ing operation is derived for a set of alternatives for that
particular process. For a solution procedure, a dynamic pro-
gramming method is used to obtain the optimal design decision
that minimises total product costs.

An object-oriented approach to activity-based cost estimation
that is capable of supporting the engineer in the early phases
of design is presented in Fischer et al. [17]. This method
combines a product model and a resource model, which are
both based on STEP structures.

Ong [18] presents the development of an activity-based cost-
estimating system to help designers estimate the manufacturing
cost of a printed circuit board assembly at the early concept
stage of design. Activities are identified and quantified and the
cost is allocated based on the number of activities used by the
printed circuit board. Though the author claims the model is
meant to be used at the conceptual phase of design, the data
required for the evaluation will most probably not be available
until the preliminary design stage.

As a part of a design for manufacture research program at
the University of Rhode Island, a number of computer-based
models for estimating the cost of fabricating parts have been
developed [19]. The objective of these studies was to provide
methods with which the designer or design team can quickly
obtain information on costs before detailed design has taken
place. Studies have been completed for machine parts, injec-
tion-moulded parts, die-cast parts and sheet-metal stampings.

In a series of papers, Boothroyd and Dewhurst [20,21]
presented models for calculating the cost of assembly of pro-

ducts using robots, automatic machines, and manual labour.
These have been formalised into computer programs.

The concept of service model analysis (SMA) as an evalu-
ation method of design for serviceability was developed by
Gershenson and Ishii [22]. SMA focuses on any form of
service needs in estimating life cycle ownership cost. A com-
puter software package infers the labour necessary for various
service operations, identities cost drivers, and indicates areas
for improvement. Service models include regular maintenance,
repair of failed components of systems, and service for undesir-
able side effects.

Technical cost modelling (TCM) is presented in automotive
engineering [23]. This is an approach to determine the best
ways to recover materials from automobiles. The TCM
approach has been implemented using a spreadsheet. The model
tracks material flow through the various recycling stages, begin-
ning with the scrapped vehicle, to determine the net cost of
recycling. However, TCM focuses only on direct costs.

Navinchandra [24] has developed a CAD tool, ReStar, for
disassembly sequence optimisation and environmental recovery
analysis. It inputs a description of the product and generates
a disassembly plan. The program currently has disassembly
schedules and costs in its database. It has some information
on energy and emissions; but according to the author, this part
of ReStar’s databases is not well developed because of a lack
of reliable information sources.

Emblemsvag and Bras [25] illustrated how an activity-based
deterministic cost model can be used in the decision-making
process to obtain an overall cost-efficient design. The recycling
of the product at the end of its useful life is specifically
considered. The recycling phase is broken down into a hier-
archy of activities. Then, for each particular design, a determi-
nation is made of the activities required and the calculated
cost. Though this model is supposed to help designers make
decisions, the model as presented in this paper can be used
only to make decisions at the product level.

Bras and Emblemsvag [26] further extend their work in
Emblemsvag and Bras [25] to include uncertainties. The objec-
tive in developing an activity-based cost model is to identify
the activities that will be present in the life cycle of a product
and assign reliable cost drivers and associated consumptions
to the activities. Uncertainty distributions are assigned to the
numbers used in the calculations, representing the inherent
uncertainty in the model.

Although these methods are all useful, they are not ideally
suited for early conceptual design. Qualitative information is
difficult to use in highly dimensional multi-attribute trade-
offs, and the analytical techniques are still prohibitive from a
modelling viewpoint.

3. The Learning LCC Concept

The learning LCC model is a different approach from other
LCC methods. Unlike the others, it does not require any LCC
modelling on a product basis. Learning algorithms train arti-
ficial neural networks (ANNs) using high-level product attri-
butes and corresponding LCC factors from pre-existing life
cycle cost studies. Through this training, the ANN is adapted
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to emulate existing LCC studies and generalise trends between
products. This is illustrated in Fig. 3.

The product designers query this learning model with high-
level product attributes to obtain an approximate LCC quickly
for a new product concept. Designers provide high-level attri-
butes of new product concepts to obtain LCC predictions based
upon trends inferred from real products and LCC studies used
as training data.

The learning LCC model learns from detailed LCC studies,
yet possesses a high-level interface allowing it to operate with
the limited data available in conceptual design. It has the
flexibility to learn and grow as new information becomes
available, but it does not require the creation of a new model
to make an LCC prediction for a new product concept. Also,
by supporting the extremely fast comparison of the cost per-
formance of product concepts, it does not delay product devel-
opment.

However, the learning LCC model is not envisaged as a
replacement for traditional detailed LCC models, but as a
complement to them. In the early design stages, the learning
LCC uses previously conducted detailed LCC studies to provide
rapid feedback on a wide variety of concepts. In later design
stages, when a smaller range of variations is under consider-
ation, detailed parametric LCC models can be used. Results
from the detailed LCC models are then added to the training
database as new training material for the learning LCC model.

4. Development of the Learning LCC
Model

There are four components of the learning LCC model: a
meaningful set of product attribute inputs; a useful set of LCC
factor outputs; a training data set based upon previously ana-
lysed products; and an appropriately trained LCC model.

The product attribute inputs must be meaningful to designers
and consist only of product attributes typically known during
conceptual design. The LCC factor outputs should also be in
a form useful to cost estimators and designers in different
contexts. Therefore, LCC factors would provide the most flexi-
bility as different schemes can be applied subsequently. The

Fig. 3. The training process of the learning LCC model.

Fig. 4. The aggregation scheme for the LCC.

LCC training data must represent a range of products and
contain many complete input samples of product attribute data
and corresponding outputs of LCC factors. Data transparency
should be maintained with any LCC by fully stating any
assumptions, estimations, or uncertainties. Finally, the structure
of the learning LCC model must be chosen, trained, and
validated. In application, the learning LCC model must be fast
and provide reasonable LCC estimates.

Given these observations, there are three key areas that must
be investigated in order to evaluate the learning LCC concept.
First, the feasible LCC factors to predict the LCC must be
established. Secondly, a list of reasonable product attributes
must be identified and correlated with LCC data to create a
set of meaningful attributes. Thirdly, it must be established
that a learning LCC model can be trained to effectively emulate
LCC results. The LCC training data will be developed in the
course of gathering information to evaluate the three areas.

4.1 Identifying Life Cycle Cost Factors

The first issue is to establish the feasible LCC factors for use
in training the learning LCC models. In order to identify the
LCC factors, all the costs incurred in the product’s life are
investigated and enumerated. The LCC of a product is determ-
ined by aggregating all the LCC factors, as shown in Fig. 4.

The life cycle cost of a product is the aggregate cost to the
manufacturer, the user, and society. This is depicted in Fig. 5.

Fig. 5. Life cycle stages and cost factors [5].  1993 Alting. Reprinted
by permission of John Wiley & Sons, Inc.



466 K.-K. Seo et al.

The total cost of any product from its earliest concept
through to its retirement will eventually be borne by the user
and will have a direct bearing on the marketability of that
product [27]. As purchasers, people pay for the resources
required to develop and market the product; as owners of the
product, people pay for the resources required to deploy,
operate, and dispose of the product. The product LCC can
be decomposed into cost factors, as shown in Fig. 5. This
decomposition is by no means the most comprehensive and
representative of all products or any product. The cost factors
considered will depend on the stage at which we want to use
the model, the kind of information to be extracted from the
model, the data available as input to the model, and the product
being designed. The life cycle cost is the aggregate of all the
costs incurred in the product’s life, but it must be pointed out
that there are differences between the cost issues that will be
of interest to the person designing the product and the firm
developing the product in the LCC analysis.

Table 1 gives the cost factors for product life cycles adapted
to the feasible LCC factors useful for predicting the product
LCC. The cost factors are derived from Fig. 5, proposed by
Atling [5].

4.2 Identifying Product Concept Attributes

The second issue is to define product attributes for use in
training and querying the learning LCC model. The attributes
must be both logically and statistically linked to elements in
the LCC factors, and also must be readily available during
product concept design. The attributes must be sufficient to
discriminate between different concepts and be compact so that
the demands on the learning LCC model are reasonable.
Finally, they must be understood easily by designers and, as
a set, span the scope of the product life cycle. These criteria
were used to guide the process of systematically developing a
product attribute list.

With these goals in mind, a set of candidate product attri-
butes, based upon the literature and the experience of experts,
was formed. Ecodesign checklists and design improvement
strategies [28–33] provided a starting point for product attri-
butes. For example, checklist questions such as, “What type
of energy is required when using the product?”, suggest in-
use energy consumption and in-use energy sources as possible
attributes characterising the product use phase.

Other workers [34,35] also specifically addressed the problem
of defining product attributes. Rombouts [35] derived a list of
attributes from the ecodesign checklist defined by Brezet and
Hemel [29], whereas Mueller and Besant [34] modelled life

Table 1. The list of life cycle cost factors.

Market recognition Storage
Development Breakage
Materials Warranty service
Energy Maintenance
Facilities Waste
Wages Pollution
Packaging Health damages
Transportation Disposal/recycling dues

cycle parameters as functions of design parameters. For
example, mass, material composition, and efficiency are func-
tions of an engine’s power. Experts in both product design
and cost estimation used candidate attributes derived from the
literature. In practice, product attributes at the conceptual stage
are few and simple and are expressed in a product-specific
language. For example, frequently used product attributes in
the automotive industry are weight and fuel consumption. Also,
different levels of information are available and used at the
early stage of product design, depending on the purpose of
the design [personal communication, A. Potts, Potts Design,
Stoneham, MA, 2000].

The candidate product attributes identified initially are given
in Table 2.

After candidate attributes were identified, they were grouped
for organisational purposes and reviewed for conceptual link-
ages to the LCC factors and potential coverage of the entire
life cycle. The attributes were grouped according to the method
developed by Hubka and Eder [36], which is based on recog-
nised life cycle phases, and the nature and purpose of technical
systems. In Fig. 6, the grouped candidate attributes are pro-
vided, along with steps to identify qualitatively potentially
strong links among attributes and between attributes and the
LCC factors. The representation in Fig. 6 is based upon the
quality function deployment (QFD) [37].

If the designer was able to specify or estimate an attribute
in an appropriate qualitative or quantitative sense, the attribute
was deemed specified. If the designer could not specify the
attribute, but could typically rank order concepts, the attribute
was deemed ranked. If an attribute could not be specified or
ranked, but the designer could provide a “yes” or “no” answer,
the attribute was deemed to be binary. For example, the
designer might know that a concept will contain polymers, but
may not be able to specify or rank the amount used. If the
designer could typically provide no information about an attri-
bute, it was deemed unknown. Finally, if an attribute did not
apply to the class of products designed by the participant,
the attribute was categorised as not applicable (N/A). Results
assessing attributes based upon end-of-life grouping are shown
in Fig. 7.

This study helped us identify attributes that designers could
both understand and had knowledge of during the conceptual
design. For example, attributes such as in-use energy source
and mode of operation were readily specified, whereas modu-
larity and serviceability are more likely to be ranked with
respect to other concepts. Furthermore, we were able to assess

Table 2. Candidate product attribute set.

Durability Selling price In use energy source
Strength Product liability In use power consumption
Conductivity Distribution mass Modularity
Mass Distribution volume Upgradeability
Volume Transport distance Serviceability
Materials (various) Transportation means In use flexibility
Performance Lifetime Recycled content
Functionality Use time Recyclability
Process Mode of operation Reusability
Assemblability Additional consumable Disassemblability
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Fig. 6. Conceptual relationships between product attributes and the LCC factors.

Fig. 7. Survey results for end-of-life properties.

which attributes are likely to vary significantly from concept
to concept.

Based upon these data, the candidate attribute set was again
refined, and then tested for first-order relationships with the
LCC factors. Bivariate correlations were computed and corre-
lation tests to 95% statistical significance were performed
between quantitative attributes and the data of LCC factors for
various products. Linearity and bivariate normality in the data
were assumed when checking for trends.

This first-order examination required careful interpretation
and grouping of products. For example, the data in Table 3
suggest that many product attributes are strongly correlated
with many of the LCC factors (life cycle energy) as expected.
Insight gained about product attributes through the analysis
will later be proposed as a structure for specialising the learning
LCC models to improve results.

Mass and power consumption were most strongly correlated
with the LCC factor (life cycle energy) and disassemblability,

Table 3. An example of correlation coefficients and tests: product
attributes vs. LCC factor (life cycle energy).

Product attributes Coefficient of correlation

Mass 0.9656
Lifetime −0.1092
Use time −0.3760
Operation mode 0.2320
Additional consumable 0.6035
Energy source 0.6658
Power consumption 0.9890
Modularity 0.4610
Durability 0.0933
. . . . . . . . . . . .
Upgradability −0.0100
Serviceability 0.5807
Flexibility −0.0295
Post consumable material −0.0060
Reusability −0.0455
Recyclability −0.0325
Disassemblability 0.7730

and additional consumable and energy source were strongly
related. The affect of qualitative attributes on the LCC factor
was assessed visually through scatter plots. Additionally, it is
believed that some correlations were not apparent because of
potentially nonlinear relationships between attributes. The pro-
duct attributes strongly correlated with the LCC factors are
used to predict the product LCC in the learning LCC model.

In this study, the cost of life cycle energy consumption, that
was the one important element of LCC factors defined pre-
viously, was shown, as an example, to predict the LCC.
Tables 4 and 5 show the final product attributes chosen for
use in the learning LCC model. The analysis provided a basis
for the belief that the attribute list could span the elements in
the LCC factors.
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Table 4. The final product attribute set.

Q Mass (kg) Q Other materials (%mass)
Q Ceramics (%mass) Q Lifetime (h)
Q Fibres (%mass) Q Use time (h)
Q Ferrous metals (%mass) D Mode of operation
Q Non-ferrous metals (%mass) B Additional consumable
Q Plastics (%mass) D In use energy source
Q Paper/cardboard (%mass) Q In use power consumption (W)
Q Chemicals (%mass) B Modularity
Q Wood (%mass) B Serviceability

B Disassemblability

(Q: Quantitative, D: Dimensionless, B: Binary)

Table 5. Product attribute list used in training the learning LCC model.

Product attributes Unit Level of information

Mass kg Quantitative, specified
Ceramics %mass Quantitative, specified
Fibres %mass Quantitative, specified
Ferrous metals %mass Quantitative, specified
Non-ferrous metals %mass Quantitative, specified
Plastics %mass Quantitative, specified
Paper/cardboard %mass Quantitative, specified
Chemicals %mass Quantitative, specified
Wood %mass Quantitative, specified
Other materials %mass Quantitative, specified
Lifetime h Quantitative, specified
Use time h Quantitative, specified
Operation mode Dimensionless Qualitative, specified
Additional consumable Dimensionless Qualitative, binary
Energy source Dimensionless Qualitative, specified
Power consumption W Quantitative, specified
Modularity Dimensionless Qualitative, binary
Serviceability Dimensionless Qualitative, binary
Disassembleability Dimensionless Qualitative, binary

5. Test of the Learning LCC Model

Finally, with product attributes and LCC factors defined, ANN-
based learning LCC models were trained in an effort to validate
the concept. As also mentioned earlier, a feasibility test was
conducted, focusing only on the total life cycle energy con-
sumption component of the LCC factors. Training data with
product attributes and corresponding life cycle energy consump-
tion from past studies were collected for 150 different products.
The products included were various types of electronic
appliance, vehicles, and other goods. These data were obtained
from the same sources as the data used in the development of
the list of LCC factors and the product attribute list provided
by previous studies. The total energy consumption during the
life cycle was investigated through the energy unit (MJ), which
was converted into electric power units (kWh). Finally, the
LCC for life cycle energy consumption was derived by multi-
plying the electric power unit by the electric power rate
($ kWh)−1. The examples of learning patterns for testing the
learning LCC model are shown in Fig. 8.

A multiple-layer neural network with back propagation train-
ing [38,39] was used to predict the product LCC. In order to
decide the structure of the back propagation neural network,
the error convergence rate was checked by changing the number

Fig. 8. Examples of learning patterns for the learning LCC model.

of hidden layers and the number of nodes in each layer, and
by adjusting the learning rate �, and momentum term �. Here,
� and � are constants whose values are between 0 and 1.
More than 60 experiments were performed to determine the
best combination of the learning rates (�), the momentum term
(�), the number of hidden layers, the number of neurons in
hidden layers, the learning rules, and the transfer functions.
The resulting network had a hidden layer with 16 neurons.
The most popular learning rules and generalised delta rules
and a sigmoid transfer function were used for the output node.
Figure 9 shows the structure of the back-propagation neural
network, which consists of an input layer with 19 nodes, a
hidden layer with 16 nodes, and an output layer with one node.

The artificial neural network for the learning LCC models
was implemented in C++. The training of the back-propagation
neural network took 2688 s for 150 learning patterns on a
500 MHz Pentium III processor. When � = 0.6 and � = 0.1,
the number of iteration was 60 000, and the mean square error
was 0.000143. The ANN runs its learning cycle by reading a
text file containing the training data. Once the model learns,
users can set the model inputs (product attributes) to values
corresponding to a product concept. The learning LCC model
then immediately provides the predicted LCC output.

The trained neural network was evaluated using products
with known LCC results. The learning LCC model was
assessed in two different ways: absolute accuracy and the
ability to generalise trends. Five different products were used
in the assessment.

The results of LCC prediction and accuracy comparisons for
the five products are provided in Table 6 and Fig. 10. The
absolute errors of LCC predictions were 0.11%–12.02% of the
levels given by the true LCC analyses. During the early
conceptual design stages of product development, available

Fig. 9. Structure of the back-propagation neural network for predicting
the product LCC.
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Table 6. Comparison of the LCC of products as predicted by the
learning LCC model with the detailed LCC.

Detailed LCC Learning LCC Absolute error
($) ($) (%)

Vacuum cleaner 595.96 572.03 4.06
Heater 2893.22 3241.38 12.02
Washing machine 6359.30 6365.62 0.11
Refrigerator 2220.72 2193.78 1.23
TV 2935.70 3023.57 3.01

Fig. 10. Comparison results of the LCC of products in Table 6.

data are limited and the cost analyst must depend primarily
on the use of various parametric cost estimating techniques for
the development of cost data. The accuracy of an LCC model
predicted from an actual LCC is typically −30–+50% [40], so
these results seem very satisfactory.

The results of LCC prediction would rank the different
products in a relative sense. This is important for cases where
designers are comparing very different design concepts. Rank
order may provide some useful guidance for a designer’s
decisions at the conceptual product design. In Fig. 11, the five
products are compared relative to LCC by the TV.

Secondly, the five products were used to test the learning
LCC model’s ability to generalise and predict trends correctly
for a given product concept. The characteristics of each test-
case product were held constant, with the exception of the
attribute for which trends were being assessed – mass and
power consumption.

The mass results for the washing machine, shown in Table 7
and Fig. 12, are representative for illustrating trends as pre-

Fig. 11. Ranking different products with the LCC results by the TV
as the baseline product.

Table 7. Prediction of the LCC results according to mass trends for
the washing machine.

Mass (kg) Learning LCC Detailed LCC

30 5923.78
40 6009.48
50 6095.17
60 6180.86
70 6266.45
82 6365.62 6359.30
90 6437.32

100 6522.50
110 6607.47
120 6692.12

Fig. 12. Results of mass trends for the washing machine.

dicted by the learning LCC model. Results produced in trying
to assess trends with respect to mass were generally good.

The trend predicted for power consumption is shown in
Table 8 and Fig. 13. The power consumption results were also
good, as expected.

The prediction results of trends for the other products were
generally good too. The methodology developed in this paper
to predict the product LCC is somewhat generalised since the
results of the trend experiment were shown to be satisfactory.
This generalisation can be extended to the product LCC accord-
ing to various product attributes and diverse products.

6. Conclusions and Future Research

It has been recognised that the design process requires cost
models that:

Table 8. Prediction of the LCC results according to energy consump-
tion trends for the washing machine.

Energy consumption Learning LCC Detailed LCC
(W)

1000 6337.91
1100 6343.44
1200 6348.94
1300 6354.53
1400 6360.02
1500 6365.62 6359.30
1600 6371.11
1700 6376.60
1800 6382.09
1900 6387.69
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Fig. 13. Results of energy consumption trends for the washing machine.

1. Take into account the complete life cycle of products.
2. Can be used at the very early stages of design.
3. Can provide information to designers in a timely manner

and in a form that can be understood and used.

Some efforts have been made toward providing the designer
with cost information during the design process. The product
LCC is mainly determined by early design decisions. However,
at the early conceptual design stage, designers do not know
the costs incurred in subsequent life cycle phases. Thus, the
estimation method for minimising the product life cycle cost
should be able to offer sufficient prediction of the product
LCC in response to design decisions and design guidelines for
reducing the product LCC.

The lack of analytical methods for early conceptual design
motivated the development of a learning LCC concept. This
paper described procedures to develop a foundation for the
concept. Three areas critical to the preliminary validation of
the approach were explored: model outputs in the form of the
LCC factors; model inputs in the form of a compact, meaning-
ful, and understandable set of concept attributes; and the ability
to predict the product LCC through training an ANN-based
learning LCC model.

The LCC factors for a learning LCC model were investi-
gated, and they were able to be used to predict the product
LCC. A list of meaningful product concept attributes required
for inputs to the learning LCC model was made: utilisation
only of product information readily available during conceptual
design; conciseness to reduce demands on the learning LCC
model; and relationships to elements of the LCC factors. A
candidate set of product attributes was identified, and tested for
first-order relationships to elements in the list of LCC factors.

Finally, LCC data and product attributes were collected for
150 products, and ANN-based learning LCC models were
trained to predict the product LCC, and then tested. The
learning LCC models for five products with known LCC
results were successfully tested to assess performance in two
categories: absolute accuracy, and the ability to predict trends
associated with changes for a given product concept.

We believe that the learning LCC concept merits further
study. In particular, data availability was found to be a critical
element in the development of the concept. In practice, it may
be necessary to use proprietary LCC sources. Further tests
using more data are required to determine to what extent the
learning LCC model can provide reasonable predictions for

innovative products and to test for other LCC factors in
addition to the cost of life cycle energy.

It is apparent that the learning LCC model should be feasible
for estimating the cost incurred in subsequent phases of the
product life cycle based on design decisions at early conceptual
design stages and for minimising the product LCC by selecting,
modifying or optimising those design decisions.
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