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Conventionally, parameter design is carried out prior to toler-
ance design for economic considerations. However, this non-
combined (two-step) design strategy cannot guarantee an econ-
omic and quality product for some quality characteristics. The
rapid development of new products, and the planning and
early implementation of product development are the important
keys to competitiveness. This paper presents an approach based
on the techniques of orthogonal arrays, computer simulation,
and statistical methods. It also adopts a cost function that
represents the combined impact of assigned parameters and
tolerance values. This cost function is the sum of the tolerance
cost and the quality loss. Computer simulation generates a set
of experimental data by following the experimental design
suggested by the orthogonal array. The orthogonal array
experiment enables an engineer to generate experimental data
required for statistical analysis with less experimental effort.
Based on the experimental data and cost function, a set of
response values are found for statistical analysis, and for
detecting the critical assignment of parameter and tolerance
values. As a result, a combined robust parameter and tolerance
design for quality improvement and cost reduction can be
achieved effectively at an early stage of design and planning.

Keywords: Computer simulation; Orthogonal arrays; Para-
meter; Quality loss; Robust design; Tolerance; Tolerance cost

1. Introduction

In traditional product development, each step is conceived as
a unit with clear inputs and outputs. Steps further downstream,
such as manufacturing process development, are not supposed
to start until the results of previous steps, such as component
design, are well defined. Although it is true that downstream
work must take upstream decisions into account, the major
problem that is ignored by the traditional model is that
upstream steps may produce unrealistic, impractical, or non-
optimal results for downstream implementation. For these
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reasons, concurrent engineering (CE) aims at starting all devel-
opment process steps as early as possible, or even simul-
taneously [1]. Its success comes from each step influencing
the others as the development process moves forward. One of
the most important features of CE is the inclusion of manufac-
turing concerns early in the product design process. Hence, an
effective method is essential to ensure that a successful inte-
gration of design and manufacturing affairs can be achieved.
Statistical modelling, which includes computer simulation and
statistical analysis, is one of the methods that may be used to
meet this goal.

In the past, statistical models were constructed using approxi-
mate analytical methods, and, at best, were estimated during
the first few moments of the distribution of the designed
product based on the component distributions. This process
was long and tedious and often did not include all of the
relevant factors; however, using computer simulation tech-
niques, this process takes a fraction of the time. In this study,
a Monte Carlo simulation is adopted [2]. Decision-making
during design activities is a dynamic and evolutionary process
which involves adding or deleting design criteria, changing the
associated criteria values, and adjusting preference priorities
for the relevant criteria. To maximise the effectiveness of the
design process, it is necessary to provide a method which
enables designers to have feedback and direction for design
improvement. Statistical analysis is adopted as a series of tests
during which changes are made to the independent variables
(input variables) to observe and identify the reasons for changes
in the dependent variables (response values).

To reduce the number of computer simulation runs required
for statistical analysis, powerful statistical tools such as the
techniques of designed experiments should be adopted [3].
There are various approaches for studying specific experimental
design such as build–test–fix, one factor at a time, full factorial
experiments, and orthogonal array experiments. Build–test–fix
assumes that any results that fall within the specification limits
are equally good. This approach is slow and inefficient because
it is strongly dependent on the skill of the experimenter.
Consequently, there is always a need to rework and improve
the performance. The one-factor-at-a-time experiment assumes
that one factor-at-a-time is thoroughly studied separately and
under fixed conditions. This approach is ineffective because
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pairwise comparison is needed for each factor until the factor
has been evaluated. Additionally, this approach does not tell
the experimenter how the effect of a factor changes when the
other factors change owing to an interaction. The full factorial
experiment investigates all possible combinations, maximising
the possibility of finding a favourable result. The weakness of
this approach is that too many experiments are used for the
amount of information required to understand the factor effects.
In fact, full factorial experiments are only practical for a small
number of factors and levels. An orthogonal array experiment
is a method of setting up experiments that require only a
fraction of the experiments required for a full factorial combi-
nation [4,5]. The treatment combinations are chosen to provide
sufficient information to determine the factor effects. When a
design project is initiated, the knowledge base is relatively
small and typically there exists a large number of input factors
that the experimenter may want to examine. To identify
important input variables effectively, efficient methods such as
orthogonal array experiments are used.

Generally, there are two types of input variable in product
or process design: those with tolerance requirements and those
without tolerance requirements. Since the values of the second
type of input variable do not influence product applications
and manufacturing operations, only the nominal values need
to be determined; although, parameter design is usually carried
out prior to tolerance design for economic reasons, for the first
type of input variable. For a comprehensive review of para-
meter design, see [4,6–11]. If the quality value measured by
the output variables (quality characteristics) which results from
parameter and tolerance design is in an identical unit, the
parameter and tolerance design can be combined and completed
in one step [12–14]. The combined design strategy increases
the flexibility of the allocation of parameter and tolerance
values during the design process. This ensures a further cost
reduction, and quality improvement can be achieved. Previous
work has formulated the problems mainly in a deterministic
model. However, design activities are dynamical and evolution-
ary decision-making processes. These activities involve possible
design changes and value adjustments which depend on appro-
priate suggestions from design analysis, particularly in uncertain
design environments. In addition, it is possible that a great
number of design inputs may be considered during product
development. When a combined design strategy is required,
the number of inputs doubles. It is impractical and difficult to
analyse the design problem by representing all the inputs in
one deterministic model. Hence, it is essential that the
important inputs can be identified in the initial design stage
before a detailed design analysis can be performed. Of course,
one possible method for detailed design at a later stage could
be a deterministic model. For these reasons, a statistical
approach which involves less experimental effort is introduced
in the present study to achieve our goals.

2. Experimental Design via Orthogonal
Array

An experimental design matrix consists of a set of experi-
ments which contain various levels of combinations of the

input variables to be studied, from one experiment to another.
After conducting a matrix experiment, the data from all of the
experiments in the set taken together are analysed to determine
the effects of the various combinations of levels. Generally,
these initial experiments are purposely limited to relatively
simple designs so that the important factors can be determined
efficiently. Among the various types of matrices used for
planning experiments, robust design makes heavy use of orthog-
onal arrays [4]. Orthogonal refers to the fact that the effect of
each variable can be mathematically assessed independently,
without considering the effects of the other variables. The
treatment combinations (matrix experiments) are chosen to
provide sufficient information to determine the variable effects
using statistical analysis. Conducting matrix experiments using
these special matrices (orthogonal arrays) allows the effects of
several parameters to be determined efficiently. This study
uses this type of matrix to analyse several input variables
simultaneously to find the most robust parameter and toler-
ance design.

Before performing computer simulation, an appropriate
experimental design matrix over the space of the input variables
must be chosen. The matrix consists of a set of trials which
depends on the number of input variables and the choice of
the experimental design. In this study, the input variables
consist of parameters U1, U2, U3, %, Un, and tolerances t1, t2,
t3, %., tn. That is, the total number of input variables is 2n.
The associated low, middle, and high levels for input variables
Ui and ti should be decided before computer simulation. The
combination of low, middle, and high levels for the input
variables is determined by following the suggestions from the
orthogonal array. Assume that the quality value, Xi, for each
input forms a normal distribution N(Ui,�i) in this study, where
i � 1, 2, 3, %, n. The standard deviation, �i, is estimated as
�(S2

i /9CPm
2 � (Ui � Ti)2) [15]. CPm is known the process capa-

bility index [16]. Most of the time, a component’s parameter
value Ui is equal to its Ti, and ti is equal to its Si. Hence, �i

can be further simplified as �i � ti/3CPm. Then, a Monte Carlo
simulation is performed with a known quality function Y �
f(X1,X2,X3, %, Xn), where Xi is a normal distribution, as
mentioned above. From the simulation output, the resultant
parameter value, UY, and the resultant variance, �2

Y, are
obtained. In a practical exercise, there may be more than one
quality function. A subscript, s, is added to Y, that is Ys, which
represents a situation where multiple quality functions exist.
Each quality function does not necessarily contain the identical
or the same amount of input variables.

3. Response Value for Experimental
Design Analysis

Measurement scores are used which are converted from the
values, UYs, �Ys, found by a numerical simulation method based
on an orthogonal array experiment. The measurement scores
include the cost items of quality loss and tolerance cost. The
optimal strategy is to determine the parameter and tolerance
values simultaneously to minimise the measurement scores. By
referring to Appendix A, the function in representing this
score is:
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TC � �q

s�1

(ks1 � ks2)
2

[(UYs � TYs)2 � �2
Ys] (1)

� �m
i�1

CM(ti)

The values of UYs, �Ys, TYs, Ks1, and Ks2 are the resultant
parameter values, resultant variances, target values, and sth
quality loss coefficients. The former two values are found from
simulation outputs; s ranges from 1 to q; q is the total number
of quality characteristics in a designed product. The tolerance
costs, CM(ti), are based on the tolerance levels, ti, established
in the experiments. For a comprehensive review on tolerance
design, see [17–20]. The value, m, is the total number of
components with q quality characteristics. As mentioned above,
the component standard deviation, �i, is estimated as ti/3.
Then, based on component parameter values, Ui, and standard
deviation, �i, the values of UYs and �Ys can be found through
simulation. The standard deviation, �i, is estimated from toler-
ance ti, and is used together with Ui to perform a simulation
for finding the outputs, UYs and �Ys. These values are substi-
tuted into Eq. (1) to obtain the measurement scores TC. It is
evident that there is an interaction between quality loss and
tolerance cost in Eq. (1). This interaction ensures that a simul-
taneous parameter and tolerance design can be realised using

Fig. 1. The wheel mounting assembly drawing.

this approach. The TC value is non-negative and continuous.
The desired value of TC is zero for the smaller-the-better type
of problem. Minimisation of the TC value is the goal of this
problem. Minimising TC is equivalent to maximising the � as
defined in the following equation:

� � �10log10TC (2)

Then, the values found from Eq. 2 are considered as the
response values in the statistical analysis.

4. An Application

Assembly is the process by which the various parts and
subassemblies are brought together to form a completed
assembly or product which is designed to fulfil a certain
mechanical function. Since assembly in the manufacturing pro-
cess consists of putting together all the component parts and
subassemblies of a given product, a proper allocation and
analysis of tolerances among the assembly components is
important to ensure that the functionality and quality of the
design requirement are met. However, from the preceeding
discussion, in addition to tolerance design, the element of
component dimensions (parameter values) should also be con-
sidered in an assembly design.

Figure 1 is a wheel mounting assembly which consists of
components X1, X2, X3, X4, and X5 [21]. They are linked with
two interrelated tolerance and dimension chains. The assembly
functions (or quality functions) for representing these two
tolerance and dimension chains are:

Y1 � X2 � X4 (3)

Y2 � � X1 � X2 � X3 � X5

Because there are two assembly functions in this example, the
possible values for s are 1 and 2. That is, q is 2. The associated
component dimensions and tolerances, U1, U2, U3, U4, and U5,
t1, t2, t3, t4, and t5, must be determined simultaneously so that
the distances between Y1 and TY1, and between Y2 and TY2 are
minimised, where the target values TY1 and TY2 are 0.14 and
0.20 mm, respectively. The two quality function coefficients,
k11, k12, k21, and k22 are 5000, 7000, 12000, and 8000, respect-
ively. The associated low, middle, and high levels for input
factors ti and Ui are decided as shown in Tables 1 and 2.
Various levels of ti and Ui are selected to provide appropriate
combinations according to the experimental design matrix.
Because the number of columns of an array represents the

Table 1. Tolerance levels ti and tolerance costs CM(ti) for each compo-
nent.

Component i Lower level Middle level Upper level
(mm ($)) (mm ($)) (mm ($))

t1 0.03 (30.0002) 0.06 (12.0250) 0.09 (6.1201)
t2 0.02 (23.6103) 0.04 (13.6812) 0.06 (9.5133)
t3 0.03 (30.0002) 0.06 (12.0250) 0.09 (6.1201)
t4 0.04 (9.0850) 0.06 (6.3041) 0.08 (5.0924)
t5 0.03 (11.9430) 0.05 (7.4464) 0.07 (5.5926)
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Table 2. Parameter levels Ui for each component.

Component i Lower level Middle level Upper level
(mm) (mm) (mm)

U1 4.9654 5.0000 5.0346
U2 8.4740 8.5000 8.5260
U3 3.9654 4.0000 4.0346
U4 8.3311 8.3600 8.3889
U5 17.6740 17.7000 17.7260

maximum number of variables that can be studied using this
particular array, L27(313) is a good choice for this experiment
which is shown in Appendix B [4]. CPm is assumed to be 1,
the component standard deviation, �i, is estimated as ti/3. By
following the appropriate level combinations, we carry out a
Monte Carlo simulation S� using computer software programs
under the assumption that Xi � N(Ui,�i) and using Eq. (3).
Then the outputs, UY1, �Y1, UY2 and �Y2, for two assembly
functions are obtained in the eth experimental run, where e is
1, 2, 3, %, 27. Based on Eqs (1) and (2), the response values,
�, can also be found for statistical analysis. The analysis can
be completed successfully with statistical software SAS. The
effect on the ten input variables is significant at a 5% confi-
dence level. Test statistic F from Table 3 will be used to rank
the order of importance of the input variables. These values
indicate that input variables t3, t1, t5, t4, U4, and U2 should be
closely controlled. When a design improvement is required,
these factors must be focused on.

Another goal in carrying out the experiment is to determine
the optimum level for each factor (variable). The approximated
optimum level for a factor is the level that gives the highest
value of factor effect average in the experimental region. The
average of factor effects, (�factor)level, is found by calculating
the average � for each control factor level (variable level).
They are summarised in Table 3. The factor effect averages,
(�t1)3, (�t3)3, (�t4)2, (�t5)2, (�U2)2, and (�U4)1 with values of
�20.624, �20.637, �20.528, �20.482, �20.143, and �39.302
considered as optimum settings which would give the highest

Table 3. Factor effect average and ANOVA analysis.

Factor Average � by factor level DF SS MS F-ratio
(�factor)level

1 2 3

U1 �20.821 �20.704 �21.218 2 2.613 1.306 1.101
U2 �21.465 �20.615 �20.664 2 0.852 0.426 0.359
U3 �20.835 �20.661 �21.247 2 2.474 1.237 1.043
U4 �20.143 �21.084 �21.376 2 2.874 1.437 1.211
U5 �21.181 �20.793 �20.769 2 2.528 1.264 1.066
t1 �21.346 �20.774 �20.624 2 1.306 0.653 0.551
t2 �20.664 �21.060 �21.019 2 4.100 2.050 1.728
t3 �21.335 �20.771 �20.637 2 1.632 0.816 0.6889
t4 �21.326 �20.528 �20.889 2 8.135 4.068 3.429
t5 �21.137 �20.482 �21.125 2 0.965 0.483 0.407

Error – – – 6 7.118 1.186 –
Total – – – 26 34.597 – –

�opt. In other words, the optimum factor levels (t1)3, (t3)3, (t4)2,
(t5)2, (U2)2, and (U4)1 of 0.09, 0.09, 0.06, 0.05, 8.50, and 8.33,
respectively, would result in the least cost TC. This is because,
ignoring the factors of t2, U1, U3, and U5, the corresponding
sum of the squares is small. If they are included, the predicted
�opt would be biased on the higher side. An additive model
can be used to predict the value of �opt for the optimum
settings. The corresponding equation is as follows:

�opt � � � ((�t1)3 � �) � ((�t3)3 � � � ((�t4)2 � �)

� ((�t5)2 � �)� ((�U2)2 � �) � ((�U4)1 � �) (4)

where the overall mean is � is �20.914.
�opt is found to be �18.456. Based on the value of �opt, TC*
is 70.086.

In order to explain the difference between the combined and
the non-combined design strategy, an additional experiment
representing the non-combined design strategy (traditional
approach or two-step design strategy) is performed. In this
experimental run, only the tolerance values with the conditions
of TY1 � U2 � U4 and TY2 � � U1 � U2 � U3 � U5 are
considered as factors which are usually assumed in the non-
combined design strategy. In this example, U1 � 16, U2 �
18, U3 � 29, U4 � 1.8, and U5 � 2.3. As for the experimental
run in the combined design strategy, the associated low, middle,
and high levels for input factors ti must also be pre-defined;
they are given in Table 1. The experimental combinations
should also follow those suggested from the design matrix
shown in Appendix C [4]. The results for statistical analysis
are summarised in Table 4. The optimum settings,
(�t1)3, (�t2)3, and (�t3)3 are �22.504, �22.514, and �22.494.
The optimum factor levels, (t1)3, (t2)3, and (t3)3, are 0.09, 0.06,
and 0.09, respectively. �opt is �21.938 and TC* is 156.237.
Apparently, the combined design strategy has a lower TC than
the non-combined design strategy because additional factors
such as parameter values are included. This increases the
flexibility in the assignment of parameter and tolerance values.
Consequently, a further cost reduction and quality improvement
can be achieved.
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Table 4. Factor effect average and ANOVA analysis.

Factor Average � by factor level DF SS MS F-ratio
(�factor)level

1 2 3

t1 �23.157 �22.700 �22.503 2 1.349 0.675 1018.714
t2 �23.093 �22.754 �22.514 2 1.015 0.507 766.194
t3 �23.152 �22.715 �22.494 2 1.344 0.672 1014.506
t4 �22.872 �22.784 �22.705 2 0.083 0.041 62.866
t5 �22.902 �22.778 �22.680 2 0.148 0.074 112.450

Error – – – 7 0.004 0.001 –
Total – – – 17 3.945 – –

5. Conclusion

This study illustrates the efficiency of using Monte Carlo
simulation, orthogonal array experiments, and statistical analy-
sis for the quality improvement and cost reduction of a product.
To reflect the combined impact of designed parameter and
tolerance values, the sum of quality loss and tolerance cost is
considered as a measurement score for statistical analysis. An
assembly problem demonstrates the approach, and the results
reveal that the critical and optimal parameter and tolerance
values can be determined effectively with less experimental
effort. A comparison between a combined design stragegy and
a non-combined design strategy indicates that the former is
superior to the latter. This results from the increased flexibility
of the allocation of parameter and tolerance values during the
design process. The design strategy presented can be applied
to find a set of key factors from a large number of input
factors to focus on before detailed design, particularly, in the
earlier stage of planning and design.
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Appendix A

The expected value of Eq. (A1) is:

Case A1. Assuming that the design target, T, is not far from
the process mean, U and U �� �m. The quality loss coef-
ficients and design tolerances are different for two directions
[22].

The loss function for this case is:

LA(X) � � K2(X�T)2 (X � T)

K1(X � T)2 (X � T)
(A1)

Let E(LA(X)) be the expected quality loss representing the
above function.
Derivation:

E(LA(X)) � �T

0

K1(X � T)2h(U,�m)dX � 2�	

T

K2(X � T)2h(U,�m)dX

�
�	

0

K1(X � T)2h(U,�m)dX

2
�
�	

0

K2(X � T)2h(U, �m)dX

2

�
K1[(U � T)2 � �2

m]
2

�
K2[(U � T)2 � �2

m]
2

�
(K1 � K2)

2
[(U � T)2 � �2

m]

Appendix B

L27(313) orthogonal array.

Appendix C

L18(21
37) orthogonal array.


