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A Surface Based Approach for Constant Scallop Height
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The machining of sculptured surfaces such as moulds and dies
in 3-axis milling relies on the chordal deviation, the scallop
height parameter and the planning strategy. The choice of these
parameters must ensure that manufacturing surfaces respect the
geometrical specifications. The current strategies for machin-
ing, consist primarily in driving the tool in parallel planes
which generates a tightening of the tool paths. A constant
scallop height planning strategy has been developed to avoid
this tightening. In this paper, we present a new method of
constant scallop height tool-path generation based on the
concept of the machining surface. The concept of the machining
surface is developed and its use to generate constant scallop
height tool paths is described. The approach is compared with
existing methods in terms of precision and in particular its
aptitude to treat curvature discontinuities.
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1. Introduction

The machining of sculptured surfaces such as moulds and dies
in 3- or 5-axis end milling requires the construction of success-
ive tool paths and their juxtaposition according to a machining
strategy. The machining strategy relies on the choice of a tool
driving direction and two discretisation steps, the step length
along the path or chordal deviation (longitudinal step) and the
cutter path interval or scallop height (transversal step). The
tool path is then made of a discrete set of points representing
the successive positions of the tool centre which will enable
it to cover the surface. If the numerical control unit can read
and interpret tool paths expressed in a polynomial, canonical,
B-spline or NURBS format, the tool path consists of curves
respecting the chordal deviation criterion.

The choice of the chordal deviation and the scallop height
parameters must lead to the realisation of manufactured surfaces
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conforming to the required geometrical specifications of form
deviation and surface roughness [1]. For a given part, the use
of high-speed milling (HSM) makes it possible to increase the
number of tool paths, and therefore to reduce the scallop
height, without increasing machining time [2]. However, the
current strategies for machining consist primarily in driving
the tool in parallel planes, which does not optimise the rate
of material removal. Along a tool path, the variations of the
normal orientation on the surface in the perpendicular plane
of the tool path generate a tightening of the toolpath over the
whole surface. This tightening increases machining time and
creates over machining in some areas (Fig. 1).

In order to increase the quality and the speed of machining,
we propose to exploit the constant scallop height planning
strategy. This strategy generates uniform scallops on the surface
and ensures a better coverage of the surface by the tool path.
The narrowing of successive paths obtained with other stra-
tegies can be removed.

Few published papers deal with the generation of constant
scallop height tool paths for 3-axis milling with a ball endmill
[3–5]. Furthermore, these methods are quite similar. Tool paths
are planned in parametric space and the first two fundamental
forms are used to evaluate the surface properties at the point
considered.

In this paper, we use a new method of constant scallop
height tool-path generation based on the concept of the machin-
ing surface [6,7]. The machining surface enables us to consider
the tool path as a surface and not only as a set of points
(linear interpolation) or a set of curves (polynomial
interpolation). Every curve onto the machining surface is a
potential tool path which machines the surface without colli-
sion. Given a machining surface, the tool-path generation con-
sists in choosing a set of curves belonging to the surface. The
knowledge of this surface gives us more elements, to plan
more precisely, the relative position of these curves.

In this paper, the concept of the machining surface is
presented, and its use to generate constant scallop height tool
paths. The approach is then compared with the existing methods
and in particular with its aptitude to treat curvature disconti-
nuities on the surface.
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Fig. 1. Tool paths tightening.

2. The Concept of the Machining Surface

The concept of the machining surface has been developed to
improve the quality of the machined surfaces by associating a
surface representation to the tool paths. First of all, qualitative
advantages come from the integration of the functional con-
straints of design in the construction of the machining surface
so that the machined surface conforms with the design intent.
The tool-path generation is improved by the continuous rep-
resentation of the tool path, instead of the discrete represen-
tation of the conventional approaches.

A general definition of the machining surface (MS) is a
surface including all the information necessary for the driving
of the tool, so that the envelope surface of the tool movement
sweeping the MS gives the expected free form [6].

Considering each tool geometry and for each type for mach-
ining (3- or 5-axis) in end milling or in flank milling, a specific
definition of the machining surface is proposed [7]. In 3-axis
end milling, the definition of the machining surface corresponds
to the definition of a general offset surface. Since we use a
ball-end mill in this work, the machining surface is a traditional
offset surface.

Tool-path generation using offset surfaces has been the
subject of numerous papers [8,9]. Among the problems encoun-
tered in tool-path generation using offset surfaces, the most
constraining are the problems of loops or self-intersections and
of precision [10,11] The problem of loops arises when using
a tool of radius larger than the smallest concave curvature
radius of the surface. In order to be free from loop problems,
we will consider tools whose radius is smaller than the smallest
concave radius of curvature of the surface to be machined.
This appears consistent within the concept of finishing milling
used to generate constant scallop height tool paths. The problem
of precision comes from the model for representing offset
surfaces. For most cases, it is not possible to model these
surfaces by a parameterised NURBS surface without approxi-
mations. Therefore, we will adopt an implicit representation of
the machining surface:

SM(u,v) = SD(u,v) + RN(u,v)

The advantage of using the machining surface to generate
tool paths with a constant scallop height, is that the distance
between the driven point (the tool centre) and the associated
point on the scallop curve is constant and equal to the radius
of the tool. In the methods where the point of contact between
the tool and the surface (CC point) is driven, the distances
between the CC point and the associated points of the scallops
vary along the tool path.

3. The Geometry of a Constant Scallop
Height Tool Path

Let us consider two adjacent tool paths Ci and Ci�1 located
on the machining surface SM, offset surface of distance R from
the design surface, and a surface of constant scallop height
SSh, offset by a distance equal to the scallop height Sh. For
each path, the envelope surface of the tool movement is a
pipe surface the radius of which is equal to the tool radius
and whose spine is the curve followed by the tool centre. The
scallop curve generated by the two paths is thus the intersection
of the two pipe surfaces. In the case of a constant scallop
height machining, this curve belongs to the surface of constant
scallop height SSh.

In practice, the previous geometrical problem can be reduced
to two successive problems. The first problem consists of
finding the scallop curve Ti which is generated by the first
path Ci, where Ti is the intersection of the envelope surface
associated to Ci, with the surface of constant scallop height
SSh (Fig. 2). In the second problem, we build the adjacent tool
path Ci�1 which belongs to the machining surface SM starting
from the scallop curve, so that the scallop curve Ti is the
intersection of the two pipe surfaces associated with Ci and
Ci�1 (Fig. 3).
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Fig. 2. The geometry of constant scallop height tool path.

Fig. 3. The geometry of constant scallop height tool path.

We show now that the curve Ci�1 is the intersection of the
machining surface with the pipe surface generated by the
scallop curve Ti.

For each point Pi,j on the scallop curve Ti, the tangent ti,j

to the curve Ti is given by the cross-product:

ti,j � ni,j � ni�1,j (1)

with ni,j and ni�1,j the unit normals to the pipe surfaces at the
point considered:

ni,j � CLi,jPi,j
→

, ni�1,j � CLi�1,jPi,j
→

, (2)

CLi,j and CLi�1,j are the tool locations which generate the point
Pi,j onto the scallop curve.

At a scallop point Pi,j, we can associate a tool centre-point
CLi�1,j on the path Ci�1 with:

dist(CLi�1,j, Pij) � R, ni�1,j · ti,j � 0 (3)

The searched path Ci�1, and the locus of the points CLi�1,j,
thus belong to a pipe surface of radius R whose spine is the
scallop curve Ti. Finally, the tool path Ci�1 is the intersection
of the previous pipe surface and the machining surface SM.
The intersection of the pipe surface associated to Ti, with the
machining surface SM produces two curves of which one is
Ci�1 and the other is Ci, which is in agreement with Eqs (1)
and (2). The construction of constant scallop height tool paths
can thus be carried out by successive intersections between
pipe surfaces and the machining and constant scallop height
surfaces.

The methods developed by Suresh and Yang [3], Sarma and
Dutta [4], and Lin and Koren [5] have in common the planning
of tool paths in parametric space while using fundamental
forms to define differential characteristics of the surface at the
considered point. The initial path is sampled to calculate the

Fig. 4. Discrete construction of the tool path.

Fig. 5. Discrete construction of the tool path.

points of the following path. This path is then built by interp-
olation of the calculated points. To be able to compare the
performance of our approach with existing methods and so as
not to leave ambiguities at the surface intersections, we suggest
generating successive tool paths point by point in the parametric
space. The initial path is sampled and at every point we
compute the associated scallop point as well as the correspond-
ing point of the next tool path.

The first part of the problem is the search for the point Pi,j

element of the scallop curve when the tool is located on the
point CLi,j on the initial path. The point Pi,j is given by (Fig. 4):

Pij � {SSh} � {Plane P1} � {Sphere S1}

where sphere S1 is the active part of the tool and plane P1

the plane normal to Ci passing through CLi,j.
The second part of the problem consists of determining the

point CLi�1 of the following path from the scallop point Pi,j.
The point CLi�1,j is given by (Fig. 5):

CLi�1 � {SSh} � {Plane P2} � {Sphere S2}

where sphere S2 is the active part of the tool and plane P2

the plane normal to Ti passing through Pi,j.
Contrary to [3] and [5] where the assumption is made that

the problem is on a plane, i.e. that the point CLi�1,j is located
in the plane perpendicular to Ci passing through CLi,j, the
construction is now carried out in two different planes. The
point Pi,j is in the P1 plane and the point CLi�1,j in the P2

plane. The problem is indeed on a plane because the three
points Pi,j, CLi,j, and CLi�1,j are in the P2 plane of normal
ti,j (1)(2) but this plane is not known at the beginning of
the construction.

4. Algorithms

In existing methods, it is necessary to associate a curve with
all of the calculated points CL to generate the following path.
This is necessary to calculate the tangent vector to the tool
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path or the scallop curve in order to define the study plane.
This is not the case when using the method of the machining
surface. The tangent vector is given by the cross-product of
the normals of both surfaces considered for intersection calcu-
lation (Eq. (1)). In order to compare the methods, we thus
propose to consider two versions of the method of the machin-
ing surface. We use the association of curves to compare the
performances of the various methods (algorithm 1), but not to
study the impact of curve association on the behaviour of
calculated paths (algorithm 2).

Algorithm 1. Computation of the tool positions CLi,j on suc-
cessive path Ci with association of curve.

Initial conditions:
Design surface SD: S(u,v)
Constant scallop height surface SSh: S(u,v) � Sh.N(u,v)
Machining surface SM: S(u,v) � R.N(u,v)

For i � 1, n
For j � 1, m

Compute cutting plane P1j, perpendicular to Ci at CLi,j

Compute the intersection point Pi,j of SSh, P1j and
Sphere S1

End
Associate the scallop curve Ti to {Pi,j}
For j � 1, m

Compute cutting plane P2j, normal to Ti at Pi,j

Compute the intersection point CLi�1,j of SM, P2j and
Sphere S2

End
Associate the tool path Ci�1 to {CLi�1,j}

End

Algorithm 2. Computation of the tool positions CLi,j on suc-
cessive path Ci without association of curve.

Initial conditions:
Design surface SD: S(u,v)
Constant scallop height surface SSh: S(u,v) � Sh.N(u,v)
Machining surface SM: S(u,v) � R.N(u,v)

For i � 1, n
For j � 1, m

Compute the tangent to the intersection curve between
the pipe surface (Ci) and SSh

Compute the intersection point Pij of SSh, Pj and
sphere S1

End
For j � 1, m

Compute the tangent to the intersection curve between
the pipe surface (Ti) and SM

Compute the intersection point CLi�1,j of SM, P2j and
sphere S2

End
End

The selected method for curve fitting is the interpolation by
cubic B-spline curves. We use a parameter setting proportional
to the chord length [12]. Whatever the method, the tool paths
are calculated in parametric space. In the case of algorithm 1,
it is necessary to calculate the tangent to the current curve
(scallop curve or tool path) so that the cutting plane (P1 or

P2) is defined. The tangent vector t to a curve C(t) or
C(u(t),v(t)) lying on the surface �(u,v) � S(u,v) � d N(u,v)
where d takes the value R or Sh is given by:

t � u�(t) · �u � v�(t) · �v (4)

where u�(t) and v�(t) are the parametric tangent vectors and
�u and �v the partial derivatives of the surface given by:

�� � S� � d
�N
��

(5)

�N/�� is the curvature operator defined by:

�N
��

� �b�
�S� (6)

Finally,

t � u�(t) · (Su � d · (b1
1 · Su � b2

1 · Sv)) � v�(t) · (Sv (7)
� d · (b1

2 · Su � b2
2 · Sv))

b is the tensor of curvature or the second fundamental form.

5. Agorithm Behaviour

At first, the methods are applied on a NURBS surface delimited
by two lines and two circular arcs (Fig. 6). It thus has concave
and convex areas and does not include any discontinuity of
tangency or of curvature. The tool radius R is 10 mm and the
specified scallop height is 0.001 mm.

The initial tool path is an isoparametric curve of the surface.
Then, the initial tool path is sampled at points, and points of
the adjacent path are built one by one to define a first path
and so on until the last tool path. Throughout this process we
observe the propagation of the initial points, by its traceability.
We can thus visualise the tool centre location or the surface
contact point calculated before curve associations. Indeed, the
interpolation hides the behaviour of each algorithm.

The first test consists of comparing the proposed method
with the methods suggested in [3] and [4]. We pointed out
that these methods use the association of curves. We thus use
the method of the machining surface with curve association

Fig. 6. Test surface 1.
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Fig. 7. Traceability of tool paths. *, Suresh & Yang [3]; ×, Sarma and
Dutta [4]; �, MS algorithm 1.

(algorithm 1). The selected initial tool path is the isoparametric
curve v0 � 1/3, and the machining is in the -y-axis direction
(Fig. 7). The tool paths are represented by curves with the
points used for computation. The progression is from top to
bottom and, for clarity, only one tool path in ten is represented.
We notice first of all that the three curves diverge progressively
when machining. Curves generated by Suresh & Yang [3]
present the greatest variation in comparison to the others. In
their approach, the problem is regarded as on a plane, and we
pass from one path to the other without passing by the scallop
curve (this makes it the fastest method). The distance between
successive tool paths is calculated approximately. The two
other methods are relatively close despite a slight divergence.

The second test consists of studying the influence of curve
association on the calculated tool paths (Fig. 8). The two
versions of our method are compared. It can be seen that the
interpolation largely influences the results. Although the tool
paths are very similar, the positions of points calculated by
both methods varies. This is explained by the fact that the
interpolation modifies the direction of the tangent vector to the
curves at the calculated points, but does not modify the distance
between two adjacent tool positions. Adjacent points are not
evaluated in the correct direction. We could have introduced
tangency constraints in the interpolation scheme but it would
not have been representative of the possibilities offered by the
other methods.

Fig. 8. Traceability of tool paths. �, MS algorithm 1; �, MS algor-
ithm 2.

Fig. 9. Scallop height error.

Fig. 10. Curvature approximation.

Differences between tool paths are found on the resulting
scallop height. Let us take the example of the difference
between the tool paths generated by the method in [3] and
those generated with the method of the machining surface with
curve association (Fig. 7). At the end of 100 tool paths, the
distance between the methods is approximately 2 mm. If we
consider that the drift is constant progressively with the con-
struction of the tool paths, it represents approximately 20 	m
(7%) of error between two consecutive tool paths, that is to
say an error on the scallop height of 0.15 	m (15%) (Fig. 9).

6. Behaviour on Curvature Discontinuities

In this section, we study the treatment of curvature disconti-
nuities. Existing methods make the assumption that the surface

Fig. 11. Test surface 2.
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curvature is constant around the considered point. This is not
a problem during the machining of a B-spline surface made
up of only one patch because this type of surface guarantees
curvature continuity. However, the majority of industrial parts
are modelled with a multitude of patches connected in tangency
and eventually with NURBS surfaces presenting curvature dis-
continuities. For example, this is the case when we introduce
blending radii. Let us consider the machining of a cylindrical

Fig. 12. Performances on curvature discontinuities.

surface along its generatrices whose profile (Fig. 10) presents
a curvature discontinuity at the point P0. The considered point
is in the convex part of the surface before P0 and with the
hypothesis of constant curvature, the adjacent tool location
calculated is in P*

1 and not in P1 as it should be. The resulting
scallop height is thus not the expected one.

We thus study the behaviour of our algorithm and those
developed in [3] and [4]. We consider the machining of a
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sphere lying on a plane with a connection in tangency (Fig.
11). The surface consists of three surfaces: a half sphere (radius
10 mm), a portion of torus (radii 10 and 20 mm), and a plane.
This presents two curvature discontinuities along the profile.
The first is located at the linking between the plane and the
torus, and the second is between the torus and the sphere.

The adopted machining strategy is a machining according
to the circular isoparametric from the outside of the surface
towards the top of the sphere. Discontinuities are then well
situated between two adjacent tool paths. We observe the
scallop left by the tool at the two curvature discontinuities,
with the three methods of tool-path calculation. It is also
pointed out that for a given scallop height and a given tool
radius, the tool paths are more spaced (resp. less) when the
curvature is concave (resp. convex).

To compare the methods, the scallops left by the tool are
built using the method of the Z-buffer. We build, in the zone
of interest, a network of lines parallel to the z-axis and laid
out on a grid whose step size indicates the precision. The step
size of the square grid is set to 0.025 mm. Then, we carry out
the intersections between this network of lines and the envelope
surfaces of the tool movement.

Results (Fig. 12) show that methods that rely on constant
curvature generate an abnormal scallop on the discontinuity,
which is not the case for the method of the machining surface.
At the junction between the torus and the sphere, results show
a higher scallop height than the others at the discontinuity.
The distance between paths is calculated as if the curvature
were concave (torus) whereas it is convex (sphere). With a
constant distance between paths, the scallop height is larger
on the sphere than on the torus. Between the planar zone and
the torus, the scallop errors are smaller. The algorithms calcu-
late a distance between paths as if the curvature were null
(plane) whereas it is concave (torus). With a constant distance
between paths, the scallop height is lower on the torus than
on the plane.

The experimental results confirm our assumptions on the
influence of the curvature approximations. Approaching a sur-
face by its osculating sphere during the calculation of constant
scallop height tool path does not allow the correct treatment
of curvature discontinuities. Thus, moulds and dies containing
many blending radii cannot be machined with such algorithms;
this applies to plastic injected moulds in particular. The method
of machining the surface successfully treats curvature disconti-
nuities by leaving a scallop in accordance with the specifi-
cations.

7. Conclusion

The concept of the machining surface enables the adoption of
a new method to generate constant scallop height tool paths
which show benefits. First of all, there is no need to associate
an interpolating curve to build consecutive tool paths. Without
interpolation, the proposed method is more accurate than the
other methods. It does not accumulate error from the beginning
of the tool-path calculation. Moreover, the method is character-
ised by its aptitude to treat curvature discontinuities. However,

it should be noticed that these improvements increase compu-
tation time.

The concept of the machining surface also offers a frame-
work for generating constant scallop height tool paths with
flat-end or filleted end mills in 3-axis milling. However, what-
ever the method or the tool employed, it becomes necessary
to tackle the problem of tool-path planning. Indeed, according
to the initial tool path and the topology of the design surface,
we have to extrapolate the tool paths close to the borders of
the surface. Furthermore, the constant scallop height tool paths
might contain loops. These loops could be eliminated, but
some tangent discontinuities would appear on the tool path.
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Notation

SM machining surface
SD design surface
SSh constant scallop height surface
R tool radius (mm)
Sh scallop height (mm)
Ci tool path
CLi,j point on the tool path
Ti scallop curve
Pi,j point onto the scallop curve
Ni,j surface normal
ni,j pipe surface normal
ti,j tangent vector to Ti


i,j tangent vector to Ci


