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A genetic algorithm (GA) based optimisation procedure hasand surface finish, in an adaptive-control grinding system, can
been developed to optimise the surface grinding process usinge found in [2]. The use of quadratic programming for the
a multi-objective function model. The following ten processoptimisation of grinding parameters subject to a multi-objective
variables are considered in this work: wheel speed, workpiecdunction has been reported in [3]. In our previous work, a
speed, depth of dressing, lead of dressing, cross-feedrate, wheglA-based optimisation procedure has been successfully
diameter, wheel width, grinding ratio, wheel bond percentage,implemented for solving the surface grinding process problem
and grain size. The procedure evaluates the production cosgonsidering four process variables using single [4] and multi-
and production rate for the optimum grinding conditions, gpjective functions [5].
subject to constraints such as thermal damage, wheel-wear Thjs paper describes a genetic algorithm (GA)-based optimis-
parameters, machine-tool stiffness and surface finish. A workegdtion procedure to optimise grinding conditions using a multi-
example is used to illustrate how this procedure can be use@pjective function model with a weighted approach for surface
to produce optimum production rate, low production cost, andgrinding. The procedure evaluates the optimum grinding con-
fine surface quality for the surface grinding process. ditions subject to constraints such as thermal damage, wheel-
wear parameters and machine-tool stiffness. In this work ten
process variables have been considered which have not been
considered previously (only four variables were considered)
owing to computational difficulties. Initially, a detailed descrip-
tion of the mathematical model of the grinding process is
1. Introduction given. Then, the optimisation procedure i_s described. Finally,
a worked example is used to illustrate this new approach.

Optimisation analysis of machining processes is usually based
on minimising production cost, maximising production rate, or
obtaining the finest possible surface quality by using empirical .
relationsghips betweeFr)l the tool life andqthe gpesr/ating S?)arari)leterg- Mathematical Model of the Surface
Optimisation analysis is also applicable to grinding processesrinding Process
provided suitable tool-life equations are available. Fortunately,
many such equation for practical grinding processes have beefhe mathematical model proposed by Wen et al. [3] is adopted
published in which numerous process variables are involved,, iis work.
The development of comprehensive grinding process models
and computer-aided manufacturing provides a basis for realising
grinding parameter optimisation.

Previous work on the optimisation of grinding parameters
has concentrated on the possible approaches for optimising
constraints during grinding [1]. The technique of optimising The aim of carrying out grinding operations is to obtain the
both grinding and dressing conditions for the maximum work-finished product with minimum production cost, maximum
piece removal rate subject to constraints on workpiece burproduction rate, and the finest possible surface finish. The
authors, therefore, chose the production cost and production
rate as subobjectives for the surface grinding process. The
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2.2 Optimisation Variables 2.4 Constraints

Since numerous process variables are involved in grinding!t IS Well recognised that a more complete solution to the

especially where changes are extremely influential on the ﬁnagrinding_ problem is one that take_s into account sevgral realistic
performance of the parts, it is required to optimise eVeryconstramts of the actual operations. The constraints can be

variable. Unfortunately, among the numerous process variableg,i\'ideeI into process con_straints_ and variable constraints. The
only four variables have been considered up to now [3-5] process constraints considered in the present work are thermal
because of the complexity of solving the equations. In thisdamage,_ yvheel wear parameter, _machlne tool stiffness and
paper, in addition, six more variables have been included (i surface finish. The variable constraints are the upper and lower

total, ten variables): "imits of the grinding conditions.

1. Wheel speed. 2.4.1 Thermal Damage Constraints

2. Workpiece speed. Because the grinding process requires an extremely high input

3. Depth of dressing. of energy per unit volume of material removed, and almost

4. Lead of dressing. all of the energy is converted into heat that is concentrated

5. Cross-feed rate. Wlthln_the grinding zone, there may be thermal damage to the
) workpiece. One of the most common types of thermal damage

6. Wheel diameter. is workpiece burn, which limits the production rate directly.

7. Wheel width. On the basis of heat transfer analysis and experimental

8. Grain size. measurements, it has been shown that burning occurs when a

9. Wheel bond percentage. critical grinding zone temperature is reached. This temperature

is related directly to the specific energy, which consists of
chip formation energy, ploughing energy, and sliding energy.
Combining the relationships, the specific grinding enetdly

is given in terms of the operating parameters by the Eq. (3).

10. Grinding ratio.

2.3 Relationships Between the Two Subobjectives

and the Ten Optimisation Variables 9.64 X 10 %V, 2102.4V,,
P U=138+ =2 Vs (e.gx 10*3+7>
Vi DeVs
2.3.1 Production Cost kV.L.a,) VDY
. . . 3 X (AO + V. Dl/2 1/2) V. 1/2 (3)
In the surface grinding process, the production costs comprise wHe Gy wp

three elements: the cost direCtly related to the grinding of the]'he Corresponding critical Specific grinding enetdy at which

part, the cost of non-productive time, and the cost of materiaburning starts, can be expressed in terms of the operating
consumption. The total production cost during the grindingparameters as

process CT, considering the various elements mentioned above

. . . D4
is shown in Eq. (1) U* =6.2+ 1.76 (agm\/&V/z) (4)
M. (Lw + L\ (b, + ay bl M, . . .
CT= 60p (leoo()) ( f, be) (g S+ m) + @% +t In practice, the specific energy must not exceed the critical
specific energyJ*, otherwise workpiece burn occurs. Accord-
. Mden  Mc X 1 X mhD, ab,L, mwdodD, N Gy ing to the relationship between grinding parameters and specific
60N, 60pN,LV,1000 = pG PN, PNy energy (Eq. (4)), the thermal damage constraint can be speci-
fied as
1)
U=uU*

2.3.2 Production Rate )
2.4.2 Wheel Wear Parameter Constraint

The production rate is represented by the workpiece removaA

parameter WRP. The WRP is directly related to the grinding. nother constraint IS t_he whee_l wear parameter WWP' which
o . . . . Tis related to the grinding conditions and the details of wheel
conditions and details of wheel dressing preceding the grind-

0 operations dressing preceding the grinding operations, and can be
g op : expressed as follows:
2doc 11/19 VW e
(1+ L ) L V. \A

k,a,d5/% R27129
43/304 0.47{5/38027/19 2 8
DZ37504\/ O L 0475 5oRe

WRP = 94.4

-

D1.2NOL—43/304VOL0.3
e

(1 + do/L)LZE (VYV,)3 N,
Where VOL = 1.33X + 2.2S — 8, and where the values ( (1 + 2d,J3L) )
of Xis 0, 1, 2, 3, 4, etc., for wheel hardness if I, J, K, ©

L, M, etc., respectively, an& is wheel structure number, 4, The grinding ratio G is determined by the typical wheel wear
5, 6, etc. behaviour given by a plot of WWP against the accumulated

®)
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workpiece removal (WRP). The wheel wear constraint can beobjective is introduced. The resultant weighted objective func-

obtained as follows: tion to be minimised here is:

WRP/WWP= G CT WRP

COF = Wlﬁ - sz (11)

2.4.3 Machine Tool Stiffness Constraint

o . . Subject to:
In grinding, chatter results in undulation roughness on the
grinding wheel or workpiece surface and is highly undesirable. Uusuw
A reduction of the workpiece removal rate is usually required WRP/WWP= G
to eliminate grinding chatter. In addition, wheel surface un-
evenness necessitates frequent wheel redressing. Thus, chatter MSC = |Renl/Krn

results in worsening of surface quality and it lowers the
machining production rate. Chatter avoidance is therefore a
significant constraint in the selection of the operating WRP = WRF (for finish grinding)
parameters.

The relationship between grinding stiffneks, wheel wear

stiffness K, and operating parameters during grinding is 3. Implementation of GA [6, 7, 9-11]
expressed as follows: v

_1000V,f, 6 3.1 About Genetic Algorithms
°  WRP ©

R, = R; (for rough grinding)

1000vf GAs form a class of adaptive heuristics based on principles
Ko=-——5%P 7) derived from the dynamics of natural population genetics. The
wwp searching process simulates the natural evolution of biological

In this paper, it is proposed that the grinding stiffness anocreatures and turns OUt to be -an inte"igent eXpIQitation of a
wheel wear stiffness during grinding, as well as the static’@ndom search. A candidate solution (chromosomes) is represented

machine stiffness must satisfy the following constraint in orderPy an appropriate sequence of numbers. In many applications
to avoid excessive chatter during grinding: the chromosome is simply a binary string of 0 and 1. The
quality of its fitness is the function which evaluates a chromo-

MSC = |Renl/Kn some with respect to the objective function of the optimisation
where problem. A selected population of the solution (chromosome)
initially evolves by employing mechanisms modelled after those
_ 1 Vw) 1 currently believed to apply in genetics. Generally, the GA
MSC = 1+ (8) 4 . 4
2K, VG/ K mechanism consists of three fundamental operations: repro-

duction, crossover, and mutation. Reproduction is the random
selection of copies of solutions from the population, according
to their fithess value, to create one or more offspring. Crossover
The surface finishR,, of a workpiece is usually specified to defines how the selected chromosomes (parents) are recombined
be within a certainR, value. The operating parameters andto create new structures (offspring) for possible inclusion in
wheel dressing parameters influence the surface finish stronglyhe population. Mutation is a random modification of a ran-
dLerzrgorz7 A, v, \16127 doml_y_;elected chromosome. Its function_ is to guarant_e(_a_the
e (1 + T) L16/27)V) 9) p053|b|I!ty to explore th_e space o_f solutions for any initial
e s population and to permit the freeing from a zone of local
{0-4587T2‘v3e° for 0 < T... < 0.254 10) minimum. Generally, the decision about the possible inclusion
a = . 10 of crossover/mutation offspring is governed by an appropriate
0.7866Tae for 0.254< Tae < 2.54 filtering system. Both crossover and mutation occur at every
All the aforementioned deterministic constraint equationscycle, according to an assigned probabilty. The aim of the three
were empirically developed from experimental data. Theseoperations is to produce a sequence of populations that, on the
constraints were obtained from five independent sources [3laverage, tends to improve.
For the purpose of this paper, these equations are applicable.

2.4.4 Surface Finish Constraint

Toe= 125X 10°

3.2 The Optimisation Procedure Using GA
2.5 Resultant Objective Function Model ]

Step 1. Choose a coding to represent problem parameters, a
Through the analysis discussed above, the optimisation probleflection operator, a crossover operator, and a mutation oper-
for the surface grinding process can be formulated as a multiator. Choose a population size crossover probability,, and
objective, multivariable, nonlinear optimisation problem with mutation probability p,. Initialise a random population of
multiconstraints. strings of size |. Choose a maximum allowable generation

In order to overcome the large differences in numericalnumbert,,,. Sett = 0.

values between the subobjectives, normalisation of each sulstep 2. Evaluate each string in the population.
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Step 3. If t > t,.c (or) other termination criteria are
satisfied, terminate. D, b, G VOL d,
Step 4 Perform reproduction on the population. (mm)  (mm) (%) (mm)
Step 5. Perform crossover on random pairs of strings.
Step 6. Perform bitwise mutation. Accuracy 1.0 0.20 1.0 0.10 0.005
Step. Evaluate srings in the new population. Set= t+1  |nterval (351, (24, (56, (6.6, (0.255,
and go to step 3. 360) 25.8) 65) 7.5)  0.300)

End

3.3 GA Parameters [7, 9, 10]
3.5 Objective Function Transformation

Population size =20

Number of generations = 25 GAs are naturally suitable for solving maximisation problems.
Probability of crossover =08 Since the above problem is a minimisation problem, it is
Probability of mutation — 0.05 converted into an equivalent maximisation problem by the

following transformation.

3.4 Special Coding Maximise, NOF= 1/(1+COF)

12)
In order to solve this problem using GA, a special type of Where, COF is the combined objective function and NOF is
coding system is used to represent the variablgsV,, d,, N Néw objective function.

L, f, De Dy, d, VOL, and G. The coding consists of 19 It is also a constrained optimisation problem. Penalty terms

digits. The first 10 digits are binary numbers (0 or 1) and theCorresponding to the constraint violation are added to the new
next 9 digits are numbers ranging from 0 to 9. objective function and a fitness function is obtained. Penalty

terms are added only if the constraints are violated.

(e.g.)
Coding 3.6 Fitness Function (FFN)
1111101000 2 7 3 7 9 2 5 2 4
! T A FEN = NOF — (%) WWP<G vva(\‘:v"w—RFF’,»
\A Vw 0o L f, De by G VOL d,
. Ra — R
Decoding —(1-MSCX10°) — ( R ) (13)
Vs = 1000 + (de_coded value of first 10 digits) (1y where, MSC is the machine tool stiffness constraint.
2000 (m mirr?)

V., = 15.5 + (11th digit) (0.5)= 16.5 (m min?)
oc = 0.03 + (12th digit) (0.005)= 0.065 (mm) 3.7 Reproduction [6, 9]
L = 0.03 + (13th digit) (0.005)= 0.045 (mm rev?) A rank select hod i di duction. The individ
f, = 1.92 + (14th digit) (0.02)= 2.06 (mm pass)) rank selection method is used for reproduction. The individ-

_ > _ uals in the population are ranked according to fitness, and the
De = 851+ (15th digit) (1) = 360 (mm) expected value of each individual depends on its rank rather
bs = 24 + (16th digit) (0.2)= 24.4 (mm) than on its absolute fitness. Ranking avoids giving the largest
G = 56 + (17th digit) (1) = 61 share of offspring to a small group of highly fit individuals, and
VOL = 6.6 + (18th digit) (0.1)= 6.8 (%) thus reduces the selection pressure when the fitness variance is
d, = 0.255+ (19th digit) (0.005)= 0.275 (mm) high. It also maintains the selection pressure when the fitness

variance is low: the ratio of expected values of individuals

With this coding we obtain the following solution accuracy in rankedi andi + 1 will be the same whether their absolute
the given interval: fithess differences are high or low.

The linear ranking method proposed by Baker (see [6]) is
as follows: each individual in the population is ranked in

Vs(m V(M dc L(mm £ (mm increasing order of fitness, from 1 #d. The expected value
min~Y)  min~%) (mm) rev’) pass?) of each individuali in the population at time is given by
Expected valuei(t
Accuracy 1.0 05 0.005 0005  0.02 xpected valuei(1)
Interval (1000, (155, (0.03, (0.03,  (1.92, — Min + (max-min)@1k69 — 1
2023)  20) 0.075) 0.075)  2.10) N—-1

whereN = 20.
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Minimum and maximum values for the above equations ardantermediate population for subsequent genetic operation. Flip-
obtained by performing reproduction with the following set ping a coin with a probability 0.8 is simulated as follows: A
of values. 3 digit number between 0 to 1 is chosen at random. If the
random number is smaller than 0.8, the outcome of coin
flipping is true, otherwise the outcome is false.

The next step is to find a crossover site at random. A

Number Max Min Py Poo o .
crossover site is chosen by creating a random number between
1 to 18. For example, if the random number is 11, the strings
1 11 0.9 0.045 0.055 are crossed at site 11 and two new children strings are created.
2 15 0.4 0.025 0.075 After crossover, the children strings are placed in the intermedi-
3 1.6 0.4 0.020 0.080 ate population.
where,
Pa = probability of selecting the first rank 3.9 Mutation [11]
Pwo = probability of selecting the 20th rank

. . _For bitwise mutation, a coin is flipped with a probabili
From the above results, in order to have very low selection bp P b

pressure for the first rank and high selection pressure for the. 0.05 for every bit. If the outcome is true, the bit is altered

20th K dt id auick . 0 1 or O depending on the bit value. If it is a number from
. rank, and 10 avoid quick convergence, maxmgm and o 9, then this value is exchanged with the next one selected
minimum values are selected as 1.6 and 0.4, respectively.

for mutation.

3.8 Crossover [11] 4. Data of the Problem

The strings in the mating pool formed after reproduction are
used in the crossover operation. In a single-point crossover o
two strings are selected at random and crossed at a randoRfSCriPtion Symbol  Vvalue
site. Since the mating pool contains strings at random, we pick

pairs of strings from the top of the list. When two strings areNumber of workpiece loaded on p 1
chosen for crossover, first a coin is flipped, with a probability @P'e épc% h o
p. = 0.8, to check whether a crossover is desired or not. I#é?r?gtt Igntthe g\florri?]'sif]e ((nr:]rpn)) tW igg
the outcome of the coin-flipping is true, the crossover iSWidF:hyof vgorkpiege (mn%) ij 60
performed, otherwise the strings are placed directly in theEmpty width of grinding (mm) be 25
Total thickness of cut (mm) a, 0.1
Grinding down feed (mm pas$ a, 0.0505
(@) Number of sparkout grinding passes S, 2
e (pass)
% 6.05 Distance of wheel idling (mm) S 100
S 6 b Speed of wheel idling (mm mir) vV, 254
2 595 Time for loading and unloading t, 5
2 594 workpiece (min)
S 585 Time for adjusting machine tool ten 30
% 575 (min)
F e Total number of workpieces to be Ny 20
56 i - R — . ground between two dressings (pc)
12345678 910111213141516171819202122232425 Batch size of workpiece N, 12
Generation number Total number of workpieces to be N4 2000
(b) ground during the life of dresser (pc)
L 20 Cost of wheel per mfh($ mm 3) Cs 0.003
3 Workpiece hardness (Rockwell R. 58
£ 19
8 » hardness)
218 Surface finish limitation-roughp(m) R, 1.8
g 47 Workpiece removal parameter WRP* 20
g limitation
g 16 Static machine stiffness (N mm?) Km 100000
PR Dynamic machine characteristics Rem 1
";5 Initial percentage of wear flat area A, 0
14+ SN — Wear constant (mmt) Ky 3.937 X
123 456 7 8 91011121314151617 1819202122232425 1077
Generation number Constant dependent on coolant and k, 0.0869

Fig. 1.(a) Total production cost obtained after each generatitm). ( grain type
Workpiece removal parameter obtained after each generation.
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Number String CT WRP COF NOF FFN
1 1110010000 174685095 6.16 17.55 -0.131 1.15 1.15
2 0001001101 177270801 6.21 12.07 0.009 0.99 —66.70
3 1010100001 774027721 5.96 17.08 -0.129 1.15 -19.80
4 1001000110 662522914 5.89 15.27 -0.087 1.10 -3.73
5 1100011000 142256851 6.16 14.88 -0.064 1.07 1.07
6 0011100101 684792768 5.91 12.97 -0.029 1.03 -58.53
7 0101011011 269403685 6.10 13.77 -0.039 1.04 -61.89
8 1110101000 851574795 5.80 16.33 -0.119 1.13 1.13
9 1001111101 111000204 6.14 11.94 0.009 0.99 0.99

10 0010100100 165053448 6.25 11.60 0.022 0.98 -50.55

11 1111101001 264574777 6.09 17.82 -0.141 1.16 1.30

12 0000111101 952707995 5.73 10.02 -0.036 0.97 -55.03

13 0000111110 678975438 5.87 11.92 -0.005 1.00 -90.30

14 1110011011 732088983 5.88 15.10 -0.084 1.09 1.09

15 1010111010 752463382 5.86 14.94 -0.081 1.09 1.09

16 0100011111 640518815 5.87 11.45 0.007 0.99 -5.90

17 0111000010 268980935 6.01 14.86 -0.071 1.08 -53.02

18 1010010100 454272684 6.02 14.81 -0.069 1.07 -16.46

19 0011100010 013900228 6.03 9.59 -0.062 0.94 -22.57

20 1011100011 873792524 5.81 17.35 -0.143 1.17 -7.40

Table 2. Population obtained after 2nd generation.

Number String CT WRP COF NOF FFN
1 1110010000 851574795 5.80 14.42 -0.071 1.08 -0.33
2 1010100001 493792524 6.02 17.76 -0.143 1.17 -8.84
3 1011101001 873772524 5.81 17.42 -0.145 1.17 -7.08
4 0000111111 953707995 5.73 10.17 0.032 0.97 -64.21
5 1110001000 142792524 6.07 15.84 -0.092 1.10 1.10
6 1010010001 473156851 6.08 16.19 -0.101 1.11 -2.13
7 1010010101 472792524 5.98 16.27 -0.108 1.12 -2.24
8 1110011001 142463382 6.13 15.43 -0.079 1.09 1.09
9 1110011100 454272815 6.01 17.53 -0.138 1.16 -10.11

10 1010001000 142156858 6.18 13.64 -0.032 1.03 1.03

11 1010011011 265053478 6.18 15.47 -0.078 1.08 -19.40

12 1111101101 454272815 6.01 18.15 —-0.153 1.18 —-7.56

13 1010010001 265053478 6.08 15.54 -0.085 1.09 -25.70

*14 1111101000 273792524 6.08 19.01 -0.172 1.21 1.21

15 1011100111 154272815 6.18 15.90 -0.089 1.10 -10.73

16 1010011100 464272684 6.04 15.44 -0.084 1.09 -13.74

17 1010001000 142156851 6.18 13.87 —-0.038 1.04 1.04

18 1111100010 142463382 6.13 15.66 -0.085 1.09 1.09

19 1111100010 850574795 5.80 16.74 -0.129 1.15 1.15

20 1010101010 142156851 6.18 14.11 -0.004 1.05 1.05

*Best point in this population.

5. Results and Comparison Table 3. Optimisation results.

In this work, 25 generations are used for obtaining a solutiony_ v, e L f,

to the optimisation of the surface grinding process. The initial2000 16.50 0.065 0.045 2.06

random population is given in Table 1 and the population

obtained after the second generation is given in Table 2. Note

that after the second generation a solution (Table 3) is obtaine@ b G VoL dy

. . N S 60 24.40 61.0 6.80 0.275

The best point obtained after each generation is given in Fig. 1.

Results are compared with quadratic programming (4 variables)

and genetic algorithms (4 variables) and are given in Table 4CT WRP COF NOF FFN

It is observed from the results that by employing GA, 2.0%6.08 19.01 -0.172 1.207 1.207

reduction in cost and 8.8% increase in workpiece removat
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Table 4. Comparison of results.

Number Method Variables A Vo Ooc L CT WRP COF

1 QP 4 2000 19.96 0.055 0.044 6.20 17.47  -0.127
2 GA 4 1988 18.40 0.060 0.044 6.90 18.07 -0.132
3 GA 10 2000 16.50 0.065 0.045 6.08 19.01 -0.172

parameter is achieved in comparison with quadratic program- Also, these methods have problems when applied to the

ming (QP) as found in [3]. An overall improvement of 35.46% surface grinding process, which involves more variables and

is obtained in the combined objective function. constraints. So to overcome the above problems, GA is used
In comparison with GA (4 variables), 11.9% reduction in in this work for solving the surface grinding problem. It is

cost and 5.2% increase in WRP is achieved. An overallobserved that GA has outperformed the quadratic programming

improvement of 30.3% is obtained in the combined objectivetechnique [3]. It is also observed that there is a considerable

function. reduction in computational effort. This GA technique has also
For solving this problem, using an exhaustive search methodyeen successfully implemented for solving the above problem

10 X 10* combinations have to be tried. However, by with the single objective function of minimising the production

employing GA, only 520 combinations (25 generations) havecost [4]. This procedure can be easily modified to suit other

been tried, and after evaluating 60 combinations (2 generationsjetal cutting operations such as turning [5], milling, cylindrical

a result is obtained. For the 4 variables problem using QP [3prinding, and non-conventional machining processes.

after 13 iterations, an answer is obtained. Since there is no

reference available for solving a 10-variables problem using

conventional methods (based on the 4-variables problem usingeferences

QP) it is assumed that the computational effort will be very

high in comparison with GA. 1. S. Malkin, “Practical approaches to grinding optimization in,

Milton C. Shaw Grinding Symposium, ASME Winter Annual

Meeting, Miami Beach, pp. 289-299, 1985.
2. G. Amitay, “Adaptive control optimization of grinding”, Journal
i icati of Engineering for Industry, ASME, pp. 103-108, 1981.
6. GA for Other Metal CUttmg AppllcatIOI”IS 3. X. M. Wen, A. A. O. Tay and A. Y. C. Nee, “Micro-computer
based optimization of the surface grinding process”, Journal of
With suitable systems, this procedure can be easily modified ~Materials Processing Technology, 29, pp. 75-90, 1992.

. . . . 4. R. Saravanan, S.Vengadesan and M. Sachithanandam, “Selection
to suit other metal cutting applications such as turning [5,8], of Operating Parameters in Surface Grinding Process Using Gen-

milling, Cylinc_irica_l griqding and _non-conventional machining. etic Algorithm (GA)”, Proceedings of 18th All India Manufactur-
An example is given in Appendix A. ing Technology, Design and Research Conference, pp. 167-171,
1998.

5. R. Saravanan, G. Sekar and M. Sachithanandam, “Optimization
of CNC machining operations subject to constraints using genetic
. algorithm (GA)”, International Conference on Intelligent Flexible
7. Conclusion Autonomous Manufacturing Systems, CIT, Coimbatore, India, 10—
12 January 2000.
. . . . 6. Melanie Mitchell, An Introduction to Genetic Algorithms, Prentice-
For solving machining optimisation problems, various conven- " - of India. 1998
tional technlques have been used. It is observed that they, Kalyanmoy Deb and Moyank Goyal, “Optimization of engineering
conventional methods are not robust, for the following reasons: designs using a combined genetic search”, Proceedings of the
Seventh International Conference on Genetic Algorithms, pp. 521—
The convergence to an optimal solution depends on the chosen 528, 1997.

initial solution. 8. J. S. Agapiou, “The optimization of machining operations based
. . . on a combined criterion, Part 1: The use of combined objectives
Most algorithms tend to get stuck on a suboptimal solution. in single pass operations”, Transactions of ASME, Journal of

An algorithm efficient in solving one machining optimisation Engineering for Industry, 114, pp. 500-507, 1992.

problem may not be efficient in solving a different machining 9 David E. Goldberg and Kalyanmoy Deb, "A comparative analysis
of selection schemes used in genetic algorithms”, Proceedings of

optimisation problem. the Workshop on the Foundations of Genetic Algorithms and
Algorithms are not efficient in handling multi-objective Classifier-Systems, pp. 69-93, 1990.
functions. 10. Gregory J. E. Rawlins, Foundations of Genetic Algorithm, Morgan

. - . . . . L Kaufmann, 1991.
Computational difficulties arise in solving multivariable 11. Kalyanmoy Deb, Optimization for Engineering Design: Algorithms
problems (more than four variables). and Examples, Prentice Hall of India, 1995.



Appendix A. Turning Optimisation Using GA

Data of the Problem

Description Value
D, diameter of the workpiece 152 mm
L, length of the workpiece 202 mm
Vmin, Minimum allowable cutting speed 30 m min
Vimaw Maximum allowable cutting speed 200 m min
frmine Minimum allowable feedrate 0.254 mm rév
fnae Maximum allowable feedrate 0.762 mm rév
Ramaxg): Maximum surface roughness of 50n
rough cut
Ramax@, maximum surface roughness of 10n
finish cut
Praw Maximum allowable power of the 5 kW
machine
Fmax Maximum allowable cutting force 900 N
Omax, Maximum allowable temperature of 5@
tool-workpiece interface
Qocmingy, Minimum allowable depth of cut 2.0 mm
(rough)
Jocmaxy, Maximum allowable depth of cut 5.0 mm
(rough)
Gocmingy: Minimum allowable depth of cut 0.6 mm
(finish)
Jocmax@, Maximum allowable depth of cut 1.5 mm
(finish)
constants used in tool life equation al 0.29
a, 0.35
as 0.25
K 193.3
tes tool change time 0.5 min edgé
tr, Quick return time 0.13 min pass
t,, loading and unloading time 1.5 min piece
C,, operating cost $0.08 min
C,, tool cost per cutting edge $0.4 edge
Binary Coding (for V)
Number Code Decode V
1 0000000000 0 30
2 11111111211 1023 203.91
3 1001000110 582 128.94
Binary Coding (for f)
Number Code Decode f
1 000000000 0 0.254
2 111111111 511 0.765
3 100100011 266 0.520
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Optimisation Results

Number oc \% f Tu

1 2.0 118.91 0.764 2.85
2 2.5 114.15 0.644 3.02
3 3.0 114.49 0.665 3.13
4 35 120.61 0.531 3.46
5 4.0 106.16 0.565 3.51
6 4.5 104.80 0.454 3.96
7 5.0 110.58 0.435 4.14

Ty, total production time (min piecé).
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grinding downfeed (mm pas$

cross-feedrate (mm pas$

total thickness of cut (mm)

initial percentage of wear flat area (%)
length of workpiece (mm)

empty length of workpiece (mm)

empty width of grinding (mm)

width of wheel (mm)

width of workpiece (mm)

diameter of wheel (mm)

grinding ratio

positive definite approximation of the Hessian
lead of dressing (mm rev)

depth of dressing (mm)

cost of dresser ($)

cost of wheel per mi($ mm 3)

total production cost ($ pé)

expected production cost limitation ($ P9
grain size (mm)

cost per hour labour and administration ($*h
total number of pieces to be ground between two dress-
ings (pc)

batch size of workpieces (pc)

total number of workpieces to be ground during the life
of dresser(pc)

number of workpieces loaded on table (pc)
surface finish jm)

surface finish limitation during rough grindingin)
workpiece hardness (Rockwell hardness number)
cutting stiffness (N mm?)

static machine stiffness (N mrf)

wheel wear stiffness (N mnt)

wear constant (mm)

constant dependent on coolant and wheel grain size
dynamic machine characteristics

distance of wheel idling (mm)

number of spark out grinding passes (pass)

time for adjusting machine tool (min)

time for loading and unloading workpiece (min)
average chip thickness during grindingng)
specific grinding energy (J mr)
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critical specific grinding energy (J mnd)
speed of wheel idling (mm mirt)

wheel speed (m mirt)

workpiece speed (m mid)

wheel bond percentage (%)

workpiece removal parameter (fimin—N—1)

WRP*
WWP
Wi, W,
COF
NOF
FFN

workpiece removal parameter limitation (fimin—N—1)
wheel wear parameter (Mirmin—N—%)

weighting factors, 0= W, W, = 1 W, + W, = 1)
combined objective function

new objective function

fitness function



