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This paper presents a knowledge-based system “KBCS”, th&nowledge. More importantly, a poorly conceived design con-
“Knowledge-based conceptual synthesiser” that supports thecept can never be compensated for by a good detailed design.
synthetic phase of conceptual design. It was developed using Owing to recent advances in the field of artificial intelligence
an expert system shell called CLIPS. By using this knowledggAl), knowledge-based systems have demonstrated their capa-
physical behaviour can be derived from a desired function orbilities by providing successful solutions in many application
desired behaviour, and a functional model which representsareas. Knowledge-based systems represent an alternative to
causal relationships among the functions and behaviours camonventional systems, particularly in the areas of symbolic
be created. In addition, complicated desired functions whichreasoning and advisory tasks. According to Green [2], com-
cannot be matched with the functional output of any behaviouputers currently play two roles in the design process. One set
after searching the object-oriented behaviour base, will beof tools provide aid in the final drafting of the specifications,
automatically decomposed into subfunctions by means of reland the second provide aid in analysis. He coins the term
evant function decomposition rules. A case study for the con*knowledge-aided design” (KAD) to distinguish it from the
ceptual synthesis of an automatic assembly system providesirrent computer-aided design (CAD) tools. Whereas CAD
an application of this intelligent design environment, and atools are used only after the major design decisions have been
demonstration of its methodology. In this paper we alsomade, KAD systems operate at a much earlier phase in the
describe how two popular Al representation techniques, objectdesign process.
oriented representation and production rule representation, can Knowledge-based expert systems for conceptual design have
be usefully integrated to solve the problem. been an active area of research for the past two decades. In
the conceptual synthesis domain, a knowledge-based system is
Keywords: Conceptual design; Conceptual synthesis; Expertused to solve modelling and reasoning problems. The most
system; Knowledge-based; Object-oriented common forms of knowledge representation include rules,
frames, objects, and cases. The rule-based paradigm has been
adopted by Li et al.[3] to automate the computational synthesis
. of the conceptual design of mechanisms. The design algorithm
1. Introduction employs the best-first heuristic searches in a library of mechan-
ical devices represented and classified qualitatively. Besides
Conceptual design is the initial and most abstract stage of thayle representation, frame representation is also widely used.
dESign process, Starting with a desired SpeCifiCﬂtion andir@u Tong and Gomory [4] use a frame-based structure to model
in concept variants (preliminary system configurations). Concepparts of standard kitchen appliances. They use a goal driven
tual synthesis during conceptual design is different from constrategy. Arpaia etal. [5] made use of both data driven and
crete configuration design undertaken during detailed designyoal driven reasoning approaches for the automatic design of
The latter can be thought of as a process of generatingheasurement systems, in mapping from the logical attributes
artifacts by assembling predefined components with detailegp the physical components of the instrument. Moulianitis et al.
information. However, Conceptual deSign, being the early Stag%] presented a know|edge_based system for the Conceptua|
of deSign, is characterised by information that is often impre-design of grippers for hand"ng fabrics with its reasoning
cise, inadequate and unreliable. According to Pahl and Beitétrategy based upon a combination of a depth_ﬁrst search
[1], conceptual design involves a great deal of time andmethod and a heuristic method. The heuristic search method
obtains a final solution from a given set of feasible solutions
. and can synthesise new solutions to accomplish the required
o o e e Tt ociont L Specifcations. A refinement o the idea of a goal-drected
versity, Nanyang Avenue, 639798 Singapore. E-mail: mebtor S€arch is the distinction between constraints and objectives. A
ntu.edu.sg constraint is a statement about a design, the truthfulness of
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which does not depend on any trade-offs with goals. Gelseyy the search for appropriate solution principles and their
et al. [7] presented a model constraints strategy for the commuzombinations, the basic solution path is established through
tation of information about model assumption violation betweenthe elaboration of a solution concept. Figure 1 shows the steps
a simulator and an automated search procedure which is explomnvolved. We believe that conceptual synthesis, as a process
ing a space of candidate designs in the domain of the concemf functional modelling and reasoning, should cover most of
tual design of supersonic transport aircraft. An increasinglythe above steps. Our work on knowledge-based conceptual
popular modelling representation is the object-oriented repsynthesis is based on the systematic methodology and the
resentation. According to Ringland [8], it has many advantageslevelopment of a distinct solution search strategy.
over the traditional frame-based representation. Akagi and To describe the conceptual synthesis process we need to
Fujita [9] used object-oriented architecture for supporting aexpress function, behaviour, structure, and their relationships.
functional design process. The model for the design process iEhe basis of of function—behaviour—structure is to carry out
constructed using networks composed of knowledge elemente transition from function to structure via the synthesis of
which are represented modularly in objects. This modellingphysical behaviour relating to the required function. Behaviour
results in determining of design variables flexibly in the con-characterises the implementation of a function. For example,
ceptual design process. Mao etal. [10] used cases to suppdfta function converting an action of force into the movement
a case prototype based design. Its case prototype is the clasé an objectis required, then possibly Hooke's law for the
of cases using the object-oriented approach. The structure dfehaviour of a spring is exploited. Here, the behaviour of a
the case prototype is used as an index structure for a casehysical structurespring bridges the gap between the required
based scheme and for a case retrieval strategy. function and the solution structure. We can see that behaviour
The objective of this research project is to develop an experis both of function and structure, thus forming the bridge
system for conceptual synthesis. The system is based on theetween them. Welch and Dixon [11] defined conceptual design
functional reasoning process. Physical behaviour can be inferregs the transition between three different information stages:
from a desired function or desired behaviour, and a modeh
which represents causal relationships among the functions and ) . .
behaviours can be created. The behaviour representation is thén A Set of behaviours that fulfil the functions.
used to select and arrange embodiments (abstractions of physl- A set of preliminary systems that produce the behaviours.

cal artifacts) to develop system_configurations, which are thel’hey explain that function is what a design is going to do,
end result of the conceptual design process. Interconnection Qfy o< behaviour is how it will do it. Deng etal. [12]

these behaviours is possible when there is compatibilityghioveq a behavioural scenario of the desired product, which
between the functional output of the one and the correspondingy: oy describes function, structure, and the behavioural
driving input of the next one. Of course, connectivity must ,.,cess of the product, but, also, explicitly describes its work-

satisfy all the constraints imposed in the problem domain. Ining environment. The approach addresses the problem from a
a knowledge-based conceptual synthesiser (KBCS), a distinct

solution search strategy is adopted. The inference engine always

A set of required functions.

scans the object-oriented behaviour base to search for the C Specification >__)
matching behaviour whose functional output matches the
desired function as the starting point. If no matching behaviour
can be found, the desired function will be automatically decom- lﬁ"w o identify the essential problem | Information
posed into subfunctions by means of a certain domain specific
function decomposition rule. This search strategy can prevent Establish function structures .
the domain problem being decomposed “too fine”, which will Overall function - Sub-functions Definition
cause a combinatorial explosion. l
KBCS is built entirely using an object-oriented representation Search for solution principles oY ion
scheme. All the necessary declarative and procedural knowl- to fulfil the sub-functions
edge is embedded in objects. A behaviour base is developed l
on the basis of an object-oriented representation scheme. In Combine solution principles
addition, the production rules, which are bearers of heuristic to fulfil the overall function
knowledge, are combined with the scheme via a unified pro- l
gramming enVironment. l Select suitable combinations |
A case study for the conceptual synthesis of an automatic J,
assembly system for manufacturing electronic connectors is | Firm up into concept variants y
used to demonstrate the methodology and application of KBCS. L
Evaluate concept variants against Evaluation
technical and economic criteria check
2. Conceptual Synthesis Process | l
Q Concept ) Decision
Conceptual design [1] is that part of the design process in l l

which, by the identification of the essential problem through
abstraction, by the establishment of function structures, and Fig. 1. Steps of conceptual design [1].
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system viewpoint — not just considering the product itself, butation within a reasonable amount of time. Though the synthesis

the product system. They represent behaviour by a drivingrocess is guided by a knowledge-based expert system, most

input (the intended input action), a functional output (theof the combinations may prove totally useless in terms of the

intended output action), and also harmful inputs and thedesired function.

side-effects. With the above search strategy, a knowledge-based concep-
Umeda etal. [13] developed a function—behaviour—statdual synthesis reasoning strategy will be introduced in next sec-

(FBS) modeller using a function prototype to represent functiortion.

decomposition knowledge, and used physical features to rep-

resent knowledge of physical phenomena. Both physical state

transition and physical phenomena are used to represent ttf& Architecture of KBCS

behavioural process. The FBS modeller regards functional

decomposition as of two types: causal decomposition; and 1 Overview of KBCS

task decomposition. With this distinction, they show that the

decomposition knowledge in the function prototype includeskBCS was developed using an expert system shell, CLIPS (C

only the task decomposition, and the function-behavioun anguage Integrated Production System). It was developed by

relationship in the function prototype stores a description ofthe Software Technology Branch, NASA/Lyndon B. Johnson

the physical features, which consists of physical componentgpace Center. CLIPS was designed to facilitate the develop-

and physical phenomena occurring on the components. Causglent of software to model human knowledge or expertise. In

decompOSition of function is used in deriving candidates foraddition to the one mode of know|edge representation’ ie.

additional physical features that Satisfy the conditions for thQ'u|eS’ know|edge representation is also available through

physical features identified from the function—behaviouropjects using COOL (CLIPS Object Oriented Language) and

relationship. Deng et al. [12] argued that causal decompositiomeffunctions (CLIPS Functions).

of function should be more appropriately extended by the Figure 2 shows the main modules that make up KBCS. It

behavioural process generation task. This is because the procqgscomposed of the following modules: user interface; working

requires the designer to view from the behavioural ScenariQnemory; know|edge_base editor; know|edge base; and infer-
viewpoint, not just from the functional viewpoint. Only a ence engine.

behavioural scenario can provide the designer with the complete . ) .
information to develop the causal structure of the requiredl- The user interacts with KBCS through a user interface,
behavioural process. Hence, Deng etal. suggest a dual-step Which employs question-and-answer, menu-driven, and
modelling procedure — initial function decomposition and causal GU! styles.

behavioural process generation, where the causal behavioural Working memory refers to the case-specific data: the facts,
process generation can be of several levels. conclusions, and other considerations. This includes the data

The conceptual synthesis methodology in this paper is based
on the above function decomposition and causal behavioural
process, but differs in the following ways:

1. For the desired function, KBCS always searches for behav3:

iour whose functional output matches the desired function
as a starting point and that also satisfies the operational

constraints. When no direct match exists, the representatiofi-

scheme allows for automatic decomposition of the desired
function into subfunctions to facilitate further behavioural

synthesis. Here, behaviour is represented in terms of driving
input, behaviour actor (structure), functional output, and

side effect. 5.

2. We build a hybrid knowledge base integrating object-
oriented representation and production rule representation to
realise functional modelling and behavioural reasoning.

The architecture of the knowledge-based expert system in-
cluding its representation and inference will be discussed in
Section 3.

Let us illustrate the significance of searching for the match-
ing behaviour whose functional output matches the desired
function as a starting point, instead of decomposing the desired
function into subfunctions as a starting point. For example, if
the desired function is not very complicated and there is
already matching behaviour which can solve the domain prob-
lem efficiently, decomposing the desired function as a starting
point will cause a combinatorial explosion and prevent evalu-

given in the problem instance, partial conclusions, and dead
ends in the search process. This information is separate
from the general knowledge base.

The knowledge-base editor can assist in the addition of new
knowledge, help to maintain correct rule syntax, and perform
consistency checks on the updated knowledge base.

The heart of KBCS is a hybrid knowledge base which
integrates a rule base and an object-oriented behaviour base
effectively. Rules can be used to express causal knowledge
involving several objects, and an object can also encapsu-
late rules.

The inference engine applies the knowledge in the knowl-
edge base to the case-specific data to arrive at some solution
or conclusion. It is the interpreter for the knowledge base.

Knowledge-base
editor

User interface
employs:
Question-and
answer,
menu-driven,
and GUI styles

Knowledge base

Rule
base

Behavior
base

>

Inference engine

[

‘Working memory

User

Fig. 2. Architecture of KBCS.



552  W. Y. Zhang et al.

3.2 Knowledge Base Representation — /ot /KBLS, Bohavior a ] (s} £
Fle [Edit Select Draw Modify Snap Jools Comp Phenom Help

3.2.1 Object-Oriented Knowledge Representation and
Object-Oriented Behaviour Base ]

An increasingly popular knowledge representation is the object-
oriented representation. Object-orientation is usually both a
language feature and a design methodology [14]. An object is
an entity that combines its data structure and its methods into Housing locating device (precise) ‘ Housing clamping device (fast)
one object. The characteristics of object-oriented representation
are: abstraction (focus on what it does before deciding how to - _______ S
implement it); encapsulation (information hiding, that is, the T
object hides its internal structure from its surroundings); poly- Terminal holding device
morphism (the sender of a stimulus does not need to know
the receiving instance’s class); and inheritance (of both data
structure and methods which allow sharing without
redundancy). Employing the object-oriented approach affords
several benefits compared to traditional methods [15-17]. 5
Kaindl [18] claimed that object-oriented modelling should be  Houinglocating device (rough) Gear device Cam device p
a foundation for knowledge system development, as it is al i =
foundation for software engineering development. Pulhdown meny Draue 1o iraw or Bt o edt S
KBCS is built entirely using an object-oriented representation
scheme. Object-oriented techniques provide the modelling
flexibility needed for conceptual design. The parameters and
properties of behaviours in the behaviour base can be regnvoke the ruleAnti_Loopwhen this behaviour object is found.
resented as objects and their slots. This ability to mix andRule Anti_Loop is an anti-looping rule and will be introduced
combine different objects allows us to generate many desigin Section 3.2.2. Metho®earch Branch End ( ) will invoke
alternatives quickly. the rule Search Branch_End when this behaviour object is
A behaviour base is developed as an object-oriented knowlretrieved to working memory. Rul&earch Branch_End is
edge base. The most generic behaviours can be representedig®d to end the search branch and will be introduced in
the top-most generic class object. This class of object is definegection 3.2.2.
as follows: The other kind of behaviour class which includes the
Side Effect slot can be represented as the child class object
of the generic clas®ehaviour It can inherit the latter’s slots

Fig. 3. Schematic geometry of some behaviour actors (structures).

Class Behaviour {

Slolzllame' and_ methods, an(_j can also_ add specific slots _and _methods

Structﬁre' pertinent to the child class object. For example, this child class
L N can be represented as:

Driving_Input:
Functional Output: Class BehaviourWith_Side Effect {
...... Inherit: Behaviour

method: slot:
Input_Data ( ); Side_Effect:
Output Data (); L
Anti_Loop ( ); method:
Search Branch_End ( ); Prevent Side_Effect ( );

} }

Here, the generic clas8ehaviour encapsulates some slots Here, the slotSide Effectdefines the side effect of the defined
and methods. The sloName Structure Driving_Input and  behaviour. The methodPrevent Side Effect ( ) can prevent
Functional Output shown in the above pseudo-code are,this side effect by searching for and retrieving other behaviour
respectively, the name, structure, driving input, and functionabbjects whose functional output can prevent the former behav-
output of defined behaviour. Note that the s&itucturedoes iour’s side effect.

not mean that only the structure name can be incorporated. In Both the above behaviour objects are represented by a class.
fact, it is the schematic geometric structure. Figure 3 shows\ class is only a template for the structure of objects (including
the schematic geometric structure of some behaviours in alots and methods). They only encapsulate slots and methods,
case-specific domain. Methddput_Data ( ) will facilitate the  not concrete data. We can represent the concrete behaviours
user to input the required concrete values to the slots. Methotly applying instances to these classes. An example instance
Output_Data( ) will return the relevant slot values to the which uses the above clagehaviour With_Side Effectas a
working memory of the KBCS. Method\nti_Loop ( ) will represented class is listed below:
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Instance Terminallnsert Device { for designing an automatic assembly system for manufacturing
Class BehaviourWith_Side Effect electronic connectors. In this application domain, examples of
slot: the domain specific rules are formulated as follows:

Name=“Terminal inserting device”
Structure= Schematic geometry
Driving_Input=“Provide translational motion”
Funtional Output=“Insert terminal”
Side_Effect="Terminal moves too much”
...... Rule Specific Decompose2

Rule Specific Decomposel
IF a desired function idnsert terminal into housing
THEN decompose it intcClamp housing after locating it
AND Insert terminal after holding it

method: IF a desired function i€Clamp housing after locating it
Input_Data( ); THEN decompose it intd.ocate housing
Output_Data( ); AND Clamp housing
Anti_Loop( );

Rule Specific Decompose3
IF a desired function idnsert terminal after holding it
THEN decompose it intdHold terminal
AND Insert terminal

Search Branch_End( );
Prevent Side_Effect( );

The first and second lines above are used to define an instan?ﬁ the case that the desired domain specific function is too
g:ecfsses dBfohﬁganV\g;rgst'g&SE?se%r ;i?ivg?gsmt:;toézn?g: thicomplicated to find a matching behaviour directly, after search-
instance. Thus ?he class obiect is fully represented b aﬁ‘lg the behaviour base, the desired function should be broken

' ' J y Tep Y @own into less complex subfunctions by means of some domain

instance object. e ! .
: . . . fic function m n rul h h -
The relationships between two above-mentioned behaviougPoorc M ction decomposition rules such as the above

class objects and an instance object are illustrated in Fig. 4. mentioned rulesSpecific Decomposel Specific Decompose2

: . . and Specific Decompose3o facilitate the subsequent search
In Fig. 4, a class at a lower level inherits some slots of the - -

. - for causal matching behaviour.
class at the higher level. Each instance can access these slots

from the higher level by inheritance. When new behaviour 153222 General Rules. General rules refer to a set of rules

added to the behaviour base, it is compared with the objectﬁ1at are used to solve general problems. KBCS can be applied

that are already in the behaviour base. If it is the same as g, 55, application domains after changing the domain-
class that already exists, it can be represented as an instance

of that class. If it is similar to a class, but has different parts specific behavpur base and the domain specific rules. Some
it is necessa.ry to build a new object. in this case, the differen’fgeneraI production rules are formulated as follows:

parts are described in the new class, whereas the similar pariule Not_Decompose

are derived from the class of the higher level by inheritance. IF a function is matched with a behaviour in behaviour base
Thus, object-oriented representation is very convenient for the OR is matched with an environment element

maintenance and modification of the behaviour base. THEN do not decompose it

Rule Decompose

IF a function is not matched with a behaviour in behav-
Though an object-oriented system provides convenient ways tour base
represent complex data structures, the rule-based system inOR is not matched with an environment element
KBCS allows intuitive expression of relationships among data THEN decompose it
items (through rules) and facilitates symbolic processing o
those rules to determine what conclusions may be drawn fro
the data. Rules in KBCS include domain specific and genera
production rules which are presented next. Rule Anti_Loop

IF last behaviour object found belongs to a previous selec-

3.2.2.1 Domain Specific Rules. Domain specific rules refer ted list
to a set of rules that are used to solve domain dependent THEN terminate search

problems. In KBCS, we will use the proposed methodologyrhis js an anti-looping rule without which some behaviour
objects may be called recursively, so this rule is applied every

s time a behaviour object is found.
inherit

3.2.2 Rule-Based Representation

The above rulesNot_Decomposeand Decomposeare used to
ecide when to decompose a function.

Rule Search Branch_End
class | Behaior. With S de_Effﬂ _ IF a_1|| driving inputs of behaviour objects are available
in environment
AND side effects of behaviour objects are successfully pre-
instance ' Terminal_Insert_Device l vented

THEN terminate branch
Fig. 4. Hierarchy of behaviour objects. AND start searching next branch

l instance of
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found after scanning the whole behaviour base. Then the
inference engine scans the rule base to search for the problem-
solving production rules. Because the premiefunction is
/\ not matched with a behaviour in behaviour basesatisfied,

B

AND/OR clause representation

Graphical Literal

AORB the general ruleDecomposés fired to make theDecompose

it decision. Now it is supposed the premise of one domain

specific function decomposition rule is satisfied by goal func-

tion F1, then this rule will be fired and its conclusion puts

functions F11 and F12 in the working memory as subgoal

functions. Here, the search strategy for function decomposition

employs the data-driven control regime.

AANDB ORC For functionF11, the starting point of the inferencing strat-

A B C egy is to scan the behaviour base to search for one behaviour

whose functional output can match this desired subfunction
F11 It is supposed that functional output of either behaviours

/JD\ A AND B OR B AND C B111 and Bll_3 can matchF11 _Then, behavioursBll_l an_d_

A B C B113 are retrieved to the working memory, and their driving

inputs are taken to be the new design goals. Suppose behaviour
B111 has two driving inputs:Driving_Inputl and Driving_

/4\ AAND B AND C Input2 BecauseDriving_Inputlis available in the environment

A B C E1, the general ruleSsearch Branch_End is fired to terminate

this branch. Suppose the functional output of behaviBlii2

Fig. 5. Graphical and literal representation of AND/OR clauses [19]. can match theDriving_Input2 of behaviour B111 when the

inference engine scans the behaviour base, beha@adP is

This rule is used to terminate a branch and results in feasiblEetrieved to the working memory. Because the driving input

concept variants. This rule is applied every time a behaviouPf behaviourB112is available in environmenk?2, the general
object |S retrieved to the Working memory_ I’u|e Seal‘CﬁBl’anCi’LEnd IS f|red to terminate thls bl’anCh. ThIS

search strategy for the causal behavioural process employs a
goal-driven control regime. The strategy retriev@$11 and
B112 to achieveF11. Similarly, alternative behaviour8113

- . ) and B114 are found to achieve subfunctidfll.
The distinct search strategy of KBCS includes data driven and g4 f,nction F12, the starting point of the inferencing strat-

goal driven approaches. The procedures that implement thgy, s 15 scan the behaviour base to seek the behaviour whose
control cycle are separated from the knowledge base. Beforﬁmctional output can match this desired subfunctici®. It is
the analysis of the distinct search strategy of KBCS, we adop

h o . S . %upposed that the behavioB123 is retrieved to achieve
itzesr?:vtve;?ci)rrl] :ige%'f'ed by Kusiak and Szczerbicki [19], Wh'ChsubfunctionsF12 and its driving input is now taken to be the

According to this notation. Fia. 6 shows an illustrative new design goal. The inference engine continues to scan the
examole ofgsearch strateqv of ,KBCgS. Recall from Section 3.2 i)ehaviour base to seek the behaviour whose functional output
P gy e “~*tan match the driving input of behavio®123 It is supposed

that there are some domain specific rules and general rules f

knowledge representation, and these production rules will b?ﬁat no matching is found after scanning the whole behaviour

quoted here. The starting point of inferencing strategy is tO'%ase. Then, the inference engine terminates and discards this

put the goal functiorF1 in the working memory and scan the searching br_anch, and returns to functiérl2 to scan the .
: LRroblem solving production rule base to search for a matching

can match functionF1l. It is supposed that no matching is _rule._ Suppose one dom"?“” s_pecific funcFion decomposition rule

is fired, and its premise iF12 and its conclusions are
subfunctions F121 and F122The process continues, and
behaviour B1211 and B1221 which, respectively, achieve
subfunctionF121 and F122, are developed.

During the above exhaustive search strategy, after every
search step, the inference engine will check constraints and
the environment to decide whether to terminate the processing
search branch and check if there are any unexplored branches.
If all search branches have been explored, the run is terminated.
The concept variants produced by the run will be listed.
Behaviours in a pair of parentheses can achieve a certain goal
function or subfunction with their end driving inputs satisfied
by the environment. The resulting variants for the example
Fig. 6. Search tree of KBCS. above are shown below:

A ANDB

3.3 Inference Engine and Search Strategy




Variant 1— (B111+ B112)+ (B1211)+ (B1221) 1.
Variant 2— (B113+ B114)+ (B1211)+ (B1221)

4. Case Study

KBCS has been used successfully for designing the automatic
assembly system for manufacturing electronic connectors. The
automatic assembly system for manufacturing connectors com-
prises of a vibrator bowl feeding unit, a housing singulator, a
walking beam unit, a terminal inserting unit, a terminal cutting
unit, a terminal bending unit, a carrier removing unit, an HY-
pot test unit, a contact continuity test unit, a reject station,
and an automatic offloading unit. Among them, the terminal
inserting unit is the main and most complicated unit, so this
case study will be focused on the conceptual synthesis for the
terminal inserting unit of this automatic assembly system.

4.1 Problem Description

Suppose the following specification is given:

1. Design the terminal inserting unit whose overall function is
Insert terminal into housing

2. The environment can provide the following functional 3.
outputs:

El's functional output:Provide pneumatic air
E2s functional output:Provide electric power
E3's functional output:Fix the device.

3. The following constraint applies:
The inserting position tolerance 0.1 mm (which means
High precision location is needgd

4.2 Problem Solving Strategy

Recall from Section 3.2.2 that there are some domain specific
and general rules for knowledge representation. These production
rules will be quoted in this case study. Referring to Fig. 7, the
logical steps of the inference engine are the following:

Fig. 7.Search tree of KBCS in case study.
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The starting point of inferencing strategy is to put the goal
function F1 in the working memory and scan the behaviour
base to seek the behaviour whose functional output can
match function F1. Because no matching is found after
scanning the whole behaviour base, the inference engine
starts to scan the rule base to search for the problem-solving
rules. Because the premise function is not matched with

a behaviour in behaviour basis satisfied, the general rule
Decomposeis fired to make theDecompose itdecision.
Then, with its premise desired functidfl satisfied, domain
specific rule Specific Decomposelis fired to decompose
function F1 into subfunctionsF11 and F12.

Where:

F1: Insert terminal into housing
F11: Clamp housing after locating.it
F12: Insert terminal after holding it

. Similarly, F11 is decomposed intd=111 and F112 with

rule Specific Decompose2ctivated.
Where:

F111 Locate housing
F112 Clamp housing

For F111, the starting point of the inferencing strategy is
to scan the behaviour base to search for one behaviour
whose functional output can match the desired subfunction
F111 It is found that either functional outputs of behaviours
B1111 and B1116 can matchF111 Then, the behaviour
B1111 and B1116 are retrieved to the working memory,
and their driving inputs are, respectively, taken to be the
new design goals. Similarly, the behaviolB1112 is
developed with its functional outpu®rovide translational
motion matching the behaviouB1111s driving input Pro-
vide translational motionNow, the behaviouB1112s driv-

ing input Provide pneumatic airbecomes the new goal.
Because the environmefil can satisfyProvide pneumatic
air, the general rulésearch Branch_End is fired, and this
searching branch is terminated and put in the configuration
list.

Where:

B1111 Housing locating device (precise)
B1112 Cylinder device
B1118 Housing locating device (rough).

. Similarly, B1111s driving input can be matched Hy1113s

functional output Provide translational motion B1113s
driving input Provide low speed rotary motiortan be
satisfied byB1114s functional outputProvide low speed
rotary motion B1114s driving input Provide high speed
rotary motioncan be satisfied bj1118s functional output
Provide high speed rotary motiprand B1118s driving
input Provide electric powecan be satisfied by environment
E2. This search branch is terminated and put in the con-
figuration list.

Where:

B1113 Cam device
B1114 Gear pair device
B1115 Motor device
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5. Though behaviourB1118s functional output can match

F111, it is rejected because it does not meet the constraint
requirement:High precision location is needed
Now the causal behavioural searching process for realising

function F111: Locate housings finished with two feasible g.

branches being developed. Figure 8 shows a detailed pro-
cess representation.

. The causal behavioural branches Fdrl2 can be developed

by means of scanning the behaviour base and retrieving the
matching behaviours.

Where:

B112% Housing clamping device (fast)

B1121s driving input: Provide translational motion
B1121s functional output:Clamp housing fast

B1122 Cylinder device

B1122s driving input: Provide pneumatic air

B1122s functional output:Provide translational motion
B1123 Cam device

B1123s driving input: Provide low speed rotary motion
B1123s functional output:Provide translational motion
B1124 Gear pair device

B1124s driving input: Provide high speed rotary motion
B1124s functional output:Provide low speed rotary motion
B1125 Motor device

B1128s driving input: Provide electric power
B1123s functional output: Provide high speed
motion

B1126 Housing clamping device (slow)

B1128s driving input: Fix the device

B1126s functional output:Clamp housing slowly

rotary

. F12 can be decomposed int6121 and F122 with rule 9.

Specific Decompose3ctivated.

F111:
Locate housing

BIIl:
Housing locating
device (precise)

Provide translational
motion

Provide translational
motion

Bil112:
Cylinder device

BI1113:
Cam device

Provide low speed
rotary motion

Provide
Ppneumatic air

I_Tj

Bll14:
Gear pair device

Provide high speed
rotary motion

BI1115:
Motor device

Provide
electric power

E

Fig. 8. Partial detailed causal behavioural searching process.

Where:

F121 Hold terminal
F122 Insert terminal

The causal behavioural branches Fdr21 and F122 can be
developed by means of scanning the behaviour base and
retrieving the matching behaviours.

Where:

B1211 Terminal holding device
B1212 Cylinder device

B1213 Cam device

B1214 Gear pair device
B1215 Motor device

B1221 Terminal inserting device
B1222 Cylinder device

B1223 Cam device

B1224 Gear pair device
B1225 Motor device

B1226 Stopper

The explanation for the side effe§E Terminal moves
too muchis noted below:

The behaviouB1221is developed to match the function
F122 but the behaviouB1221simultaneously produces the
side effect SE1 which should be prevented. So KBCS
automatically scans the behaviour base to search for the
behaviour whose functional output can prevent the behaviour
B1221s side effectSE1 Then, behaviouB1226is retrieved
with its functional output beingPrevent terminal moving
too much and the behaviourB12268s driving input is
available in environmenE3.

Check if there are any unexplored branches. If there are
none, terminate the run. A list of 24 theoretically feasible
concept variants produced by the above run are shown below:

CONCEPT VARIANTS ARE

Variant 1 — (Housing locating device (precise) Cylinder
device) + (Housing clamping device (slow) ¥ (Terminal
holding device+ Cylinder device)+ (Terminal inserting
device + Cylinder device+ Stopper)

Variant 2— (Housing locating device (precise&) Cylinder
device) + (Housing clamping device (slow) } (Terminal
holding device + Cylinder device)+ (Terminal inserting
device + Cam device+ Gear pair devicet Motor device
+ Stopper)

Variant 3— (Housing locating device (precise) Cylinder
device) + (Housing clamping device (fast} Cylinder
device) + (Terminal holding device+ Cylinder device)+
(Terminal inserting device- Cylinder device+ Stopper)
Variant 4 — (Housing locating device (precis&) Cylinder
device) + (Housing clamping device (fast} Cylinder
device) + (Terminal holding devicet+ Cylinder device)+
(Terminal inserting device Cam devicet+ Gear pair device
+ Motor device+ Stopper)

Total of 24 variants generated

10. According to Pahl and Beitz [1], we will evaluate all the

resulting concept variants to narrow the choice. This final
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Terminal holding device
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approaches which are used in searching for causal behaviours
and decomposing complex functions respectively. For the desired
function, an inference engine always searches for matching causal
behaviours as a starting point. This distinct searching strategy
can prevent a domain problem being decomposed “too fine”,
which will cause a combinatorial explosion.

This knowledge-based conceptual synthesiser “KBCS” was
developed using CLIPS, a declarative programming language.
This prototype system also illustrates the potential of developing
similar knowledge-based expert systems for practical applications.

Cy{nder device

Housing'locating device (precise)}

|- i -
Pull down menu Draw to draw

1.

Fig. 9. Graphical representation of concept variant 3 for terminal
|nsert|ng unit.

3.
decision-making phase is the phase of concept evaluation
and selection where all the concept variants generated are
evaluated with respect to each other, and the highest4'
scoring variants are selected in order of value. The values
by which the concept variants are evaluated and decideds.
upon are generated here by conducting a concept evaluation
based on technical and economic criteria which are selected
based on the requirements of the automatic assembly sysy
tem. Variants 3 and 4 are eventually chosen as the two
best concept variants. Figures 9 and 10 shows a graphical

representation of Variants 3 and 4. .

5. Conclusion 8.

This paper describes a knowledge-based approach to conceptugr
synthesis in the conceptual design phase. The hybrid knowledge

base developed includes an object-oriented behaviour base amd.

a production rule base, which can deal with the function de-
composition and the behaviour reasoning problem, cooperatively.
An inference engine employs both goal driven and data driven

12.

W Schematic Geometty -~ D:/Funchonal design sutosatinn/Variant Sgens & 1

Fie Edt  Select Draw Modify Spap Jools Comp  Phenom

Housing clamping device (fast)
Terminal holding device Cylinder device Cam device 13.
Ay e _ T/, 14.

ol
. 15.
! €4
b ) 16.
Terminal inserting device Gear pair device
17.
Cylinder device Housing locating device (precise)
¢ ¢ P Motor device
/

18.

i~ { pe
Pull down menu Draw to draw

19.

Fig. 10.Graphical representation of concept variant 4 for terminal
inserting unit.
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