
Int J Adv Manuf Technol (2001) 17:549–557
 2001 Springer-Verlag London Limited

A Prototype Knowledge-Based System for Conceptual Synthesis
of the Design Process

W. Y. Zhang, S. B. Tor and G. A. Britton
Design Research Center, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore

This paper presents a knowledge-based system “KBCS”, the
“Knowledge-based conceptual synthesiser” that supports the
synthetic phase of conceptual design. It was developed using
an expert system shell called CLIPS. By using this knowledge,
physical behaviour can be derived from a desired function or
desired behaviour, and a functional model which represents
causal relationships among the functions and behaviours can
be created. In addition, complicated desired functions which
cannot be matched with the functional output of any behaviour
after searching the object-oriented behaviour base, will be
automatically decomposed into subfunctions by means of rel-
evant function decomposition rules. A case study for the con-
ceptual synthesis of an automatic assembly system provides
an application of this intelligent design environment, and a
demonstration of its methodology. In this paper we also
describe how two popular AI representation techniques, object-
oriented representation and production rule representation, can
be usefully integrated to solve the problem.

Keywords: Conceptual design; Conceptual synthesis; Expert
system; Knowledge-based; Object-oriented

1. Introduction

Conceptual design is the initial and most abstract stage of the
design process, starting with a desired specification and resulting
in concept variants (preliminary system configurations). Concep-
tual synthesis during conceptual design is different from con-
crete configuration design undertaken during detailed design.
The latter can be thought of as a process of generating
artifacts by assembling predefined components with detailed
information. However, conceptual design, being the early stage
of design, is characterised by information that is often impre-
cise, inadequate and unreliable. According to Pahl and Beitz
[1], conceptual design involves a great deal of time and

Correspondence and offprint requests to: Dr S. B. Tor, School of
Mechanical and Production Engineering, Nanyang Technological Uni-
versity, Nanyang Avenue, 639798 Singapore. E-mail: msbtorK
ntu.edu.sg

knowledge. More importantly, a poorly conceived design con-
cept can never be compensated for by a good detailed design.

Owing to recent advances in the field of artificial intelligence
(AI), knowledge-based systems have demonstrated their capa-
bilities by providing successful solutions in many application
areas. Knowledge-based systems represent an alternative to
conventional systems, particularly in the areas of symbolic
reasoning and advisory tasks. According to Green [2], com-
puters currently play two roles in the design process. One set
of tools provide aid in the final drafting of the specifications,
and the second provide aid in analysis. He coins the term
“knowledge-aided design” (KAD) to distinguish it from the
current computer-aided design (CAD) tools. Whereas CAD
tools are used only after the major design decisions have been
made, KAD systems operate at a much earlier phase in the
design process.

Knowledge-based expert systems for conceptual design have
been an active area of research for the past two decades. In
the conceptual synthesis domain, a knowledge-based system is
used to solve modelling and reasoning problems. The most
common forms of knowledge representation include rules,
frames, objects, and cases. The rule-based paradigm has been
adopted by Li et al.[3] to automate the computational synthesis
of the conceptual design of mechanisms. The design algorithm
employs the best-first heuristic searches in a library of mechan-
ical devices represented and classified qualitatively. Besides
rule representation, frame representation is also widely used.
Tong and Gomory [4] use a frame-based structure to model
parts of standard kitchen appliances. They use a goal driven
strategy. Arpaia et al. [5] made use of both data driven and
goal driven reasoning approaches for the automatic design of
measurement systems, in mapping from the logical attributes
to the physical components of the instrument. Moulianitis et al.
[6] presented a knowledge-based system for the conceptual
design of grippers for handling fabrics with its reasoning
strategy based upon a combination of a depth-first search
method and a heuristic method. The heuristic search method
obtains a final solution from a given set of feasible solutions
and can synthesise new solutions to accomplish the required
specifications. A refinement to the idea of a goal-directed
search is the distinction between constraints and objectives. A
constraint is a statement about a design, the truthfulness of

550 W. Y. Zhang et al.

which does not depend on any trade-offs with goals. Gelsey
et al. [7] presented a model constraints strategy for the commu-
tation of information about model assumption violation between
a simulator and an automated search procedure which is explor-
ing a space of candidate designs in the domain of the concep-
tual design of supersonic transport aircraft. An increasingly
popular modelling representation is the object-oriented rep-
resentation. According to Ringland [8], it has many advantages
over the traditional frame-based representation. Akagi and
Fujita [9] used object-oriented architecture for supporting a
functional design process. The model for the design process is
constructed using networks composed of knowledge elements
which are represented modularly in objects. This modelling
results in determining of design variables flexibly in the con-
ceptual design process. Mao et al. [10] used cases to support
a case prototype based design. Its case prototype is the class
of cases using the object-oriented approach. The structure of
the case prototype is used as an index structure for a case-
based scheme and for a case retrieval strategy.

The objective of this research project is to develop an expert
system for conceptual synthesis. The system is based on the
functional reasoning process. Physical behaviour can be inferred
from a desired function or desired behaviour, and a model
which represents causal relationships among the functions and
behaviours can be created. The behaviour representation is then
used to select and arrange embodiments (abstractions of physi-
cal artifacts) to develop system configurations, which are the
end result of the conceptual design process. Interconnection of
these behaviours is possible when there is compatibility
between the functional output of the one and the corresponding
driving input of the next one. Of course, connectivity must
satisfy all the constraints imposed in the problem domain. In
a knowledge-based conceptual synthesiser (KBCS), a distinct
solution search strategy is adopted. The inference engine always
scans the object-oriented behaviour base to search for the
matching behaviour whose functional output matches the
desired function as the starting point. If no matching behaviour
can be found, the desired function will be automatically decom-
posed into subfunctions by means of a certain domain specific
function decomposition rule. This search strategy can prevent
the domain problem being decomposed “too fine”, which will
cause a combinatorial explosion.

KBCS is built entirely using an object-oriented representation
scheme. All the necessary declarative and procedural knowl-
edge is embedded in objects. A behaviour base is developed
on the basis of an object-oriented representation scheme. In
addition, the production rules, which are bearers of heuristic
knowledge, are combined with the scheme via a unified pro-
gramming environment.

A case study for the conceptual synthesis of an automatic
assembly system for manufacturing electronic connectors is
used to demonstrate the methodology and application of KBCS.

2. Conceptual Synthesis Process

Conceptual design [1] is that part of the design process in
which, by the identification of the essential problem through
abstraction, by the establishment of function structures, and

by the search for appropriate solution principles and their
combinations, the basic solution path is established through
the elaboration of a solution concept. Figure 1 shows the steps
involved. We believe that conceptual synthesis, as a process
of functional modelling and reasoning, should cover most of
the above steps. Our work on knowledge-based conceptual
synthesis is based on the systematic methodology and the
development of a distinct solution search strategy.

To describe the conceptual synthesis process we need to
express function, behaviour, structure, and their relationships.
The basis of of function–behaviour–structure is to carry out
the transition from function to structure via the synthesis of
physical behaviour relating to the required function. Behaviour
characterises the implementation of a function. For example,
if a function converting an action of force into the movement
of an object is required, then possibly Hooke’s law for the
behaviour of a spring is exploited. Here, the behaviour of a
physical structurespring bridges the gap between the required
function and the solution structure. We can see that behaviour
is both of function and structure, thus forming the bridge
between them. Welch and Dixon [11] defined conceptual design
as the transition between three different information stages:

1. A set of required functions.
2. A set of behaviours that fulfil the functions.
3. A set of preliminary systems that produce the behaviours.

They explain that function is what a design is going to do,
whereas behaviour is how it will do it. Deng et al. [12]
employed a behavioural scenario of the desired product, which
not only describes function, structure, and the behavioural
process of the product, but, also, explicitly describes its work-
ing environment. The approach addresses the problem from a

Fig. 1. Steps of conceptual design [1].

Conceptual Synthesis of the Design Process 551

system viewpoint – not just considering the product itself, but
the product system. They represent behaviour by a driving
input (the intended input action), a functional output (the
intended output action), and also harmful inputs and the
side-effects.

Umeda et al. [13] developed a function–behaviour–state
(FBS) modeller using a function prototype to represent function
decomposition knowledge, and used physical features to rep-
resent knowledge of physical phenomena. Both physical state
transition and physical phenomena are used to represent the
behavioural process. The FBS modeller regards functional
decomposition as of two types: causal decomposition; and
task decomposition. With this distinction, they show that the
decomposition knowledge in the function prototype includes
only the task decomposition, and the function–behaviour
relationship in the function prototype stores a description of
the physical features, which consists of physical components
and physical phenomena occurring on the components. Causal
decomposition of function is used in deriving candidates for
additional physical features that satisfy the conditions for the
physical features identified from the function–behaviour
relationship. Deng et al. [12] argued that causal decomposition
of function should be more appropriately extended by the
behavioural process generation task. This is because the process
requires the designer to view from the behavioural scenario
viewpoint, not just from the functional viewpoint. Only a
behavioural scenario can provide the designer with the complete
information to develop the causal structure of the required
behavioural process. Hence, Deng et al. suggest a dual-step
modelling procedure – initial function decomposition and causal
behavioural process generation, where the causal behavioural
process generation can be of several levels.

The conceptual synthesis methodology in this paper is based
on the above function decomposition and causal behavioural
process, but differs in the following ways:

1. For the desired function, KBCS always searches for behav-
iour whose functional output matches the desired function
as a starting point and that also satisfies the operational
constraints. When no direct match exists, the representation
scheme allows for automatic decomposition of the desired
function into subfunctions to facilitate further behavioural
synthesis. Here, behaviour is represented in terms of driving
input, behaviour actor (structure), functional output, and
side effect.

2. We build a hybrid knowledge base integrating object-
oriented representation and production rule representation to
realise functional modelling and behavioural reasoning.

The architecture of the knowledge-based expert system in-
cluding its representation and inference will be discussed in
Section 3.

Let us illustrate the significance of searching for the match-
ing behaviour whose functional output matches the desired
function as a starting point, instead of decomposing the desired
function into subfunctions as a starting point. For example, if
the desired function is not very complicated and there is
already matching behaviour which can solve the domain prob-
lem efficiently, decomposing the desired function as a starting
point will cause a combinatorial explosion and prevent evalu-

ation within a reasonable amount of time. Though the synthesis
process is guided by a knowledge-based expert system, most
of the combinations may prove totally useless in terms of the
desired function.

With the above search strategy, a knowledge-based concep-
tual synthesis reasoning strategy will be introduced in next sec-
tion.

3. Architecture of KBCS

3.1 Overview of KBCS

KBCS was developed using an expert system shell, CLIPS (C
Language Integrated Production System). It was developed by
the Software Technology Branch, NASA/Lyndon B. Johnson
Space Center. CLIPS was designed to facilitate the develop-
ment of software to model human knowledge or expertise. In
addition to the one mode of knowledge representation, i.e.
rules, knowledge representation is also available through
objects using COOL (CLIPS Object Oriented Language) and
Deffunctions (CLIPS Functions).

Figure 2 shows the main modules that make up KBCS. It
is composed of the following modules: user interface; working
memory; knowledge-base editor; knowledge base; and infer-
ence engine.

1. The user interacts with KBCS through a user interface,
which employs question-and-answer, menu-driven, and
GUI styles.

2. Working memory refers to the case-specific data: the facts,
conclusions, and other considerations. This includes the data
given in the problem instance, partial conclusions, and dead
ends in the search process. This information is separate
from the general knowledge base.

3. The knowledge-base editor can assist in the addition of new
knowledge, help to maintain correct rule syntax, and perform
consistency checks on the updated knowledge base.

4. The heart of KBCS is a hybrid knowledge base which
integrates a rule base and an object-oriented behaviour base
effectively. Rules can be used to express causal knowledge
involving several objects, and an object can also encapsu-
late rules.

5. The inference engine applies the knowledge in the knowl-
edge base to the case-specific data to arrive at some solution
or conclusion. It is the interpreter for the knowledge base.

Fig. 2.Architecture of KBCS.

552 W. Y. Zhang et al.

3.2 Knowledge Base Representation

3.2.1 Object-Oriented Knowledge Representation and
Object-Oriented Behaviour Base

An increasingly popular knowledge representation is the object-
oriented representation. Object-orientation is usually both a
language feature and a design methodology [14]. An object is
an entity that combines its data structure and its methods into
one object. The characteristics of object-oriented representation
are: abstraction (focus on what it does before deciding how to
implement it); encapsulation (information hiding, that is, the
object hides its internal structure from its surroundings); poly-
morphism (the sender of a stimulus does not need to know
the receiving instance’s class); and inheritance (of both data
structure and methods which allow sharing without
redundancy). Employing the object-oriented approach affords
several benefits compared to traditional methods [15–17].
Kaindl [18] claimed that object-oriented modelling should be
a foundation for knowledge system development, as it is a
foundation for software engineering development.

KBCS is built entirely using an object-oriented representation
scheme. Object-oriented techniques provide the modelling
flexibility needed for conceptual design. The parameters and
properties of behaviours in the behaviour base can be rep-
resented as objects and their slots. This ability to mix and
combine different objects allows us to generate many design
alternatives quickly.

A behaviour base is developed as an object-oriented knowl-
edge base. The most generic behaviours can be represented as
the top-most generic class object. This class of object is defined
as follows:

Class Behaviour {
slot:

Name:
Structure:
Driving Input:
Functional Output:
.

method:
Input Data ();
Output Data ();
Anti Loop ();
Search Branch End ();
.

}

Here, the generic classBehaviour encapsulates some slots
and methods. The slotName, Structure, Driving Input, and
Functional Output shown in the above pseudo-code are,
respectively, the name, structure, driving input, and functional
output of defined behaviour. Note that the slotStructuredoes
not mean that only the structure name can be incorporated. In
fact, it is the schematic geometric structure. Figure 3 shows
the schematic geometric structure of some behaviours in a
case-specific domain. MethodInput Data () will facilitate the
user to input the required concrete values to the slots. Method
Output Data() will return the relevant slot values to the
working memory of the KBCS. MethodAnti Loop () will

Fig. 3.Schematic geometry of some behaviour actors (structures).

invoke the ruleAnti Loop when this behaviour object is found.
Rule Anti Loop is an anti-looping rule and will be introduced
in Section 3.2.2. MethodSearch Branch End () will invoke
the rule Search Branch End when this behaviour object is
retrieved to working memory. RuleSearch Branch End is
used to end the search branch and will be introduced in
Section 3.2.2.

The other kind of behaviour class which includes the
Side Effect slot can be represented as the child class object
of the generic classBehaviour. It can inherit the latter’s slots
and methods, and can also add specific slots and methods
pertinent to the child class object. For example, this child class
can be represented as:

Class BehaviourWith Side Effect {
Inherit: Behaviour

slot:
Side Effect:
.

method:
Prevent Side Effect ();
.

}

Here, the slotSide Effectdefines the side effect of the defined
behaviour. The methodPrevent Side Effect () can prevent
this side effect by searching for and retrieving other behaviour
objects whose functional output can prevent the former behav-
iour’s side effect.

Both the above behaviour objects are represented by a class.
A class is only a template for the structure of objects (including
slots and methods). They only encapsulate slots and methods,
not concrete data. We can represent the concrete behaviours
by applying instances to these classes. An example instance
which uses the above classBehaviour With Side Effect as a
represented class is listed below:

Conceptual Synthesis of the Design Process 553

Instance TerminalInsert Device {
Class BehaviourWith Side Effect
slot:

Name= “Terminal inserting device”
Structure= Schematic geometry
Driving Input = “Provide translational motion”
Funtional Output= “Insert terminal”
Side Effect = “Terminal moves too much”
.

method:
Input Data();
Output Data();
Anti Loop();
Search Branch End();
Prevent Side Effect();
.

The first and second lines above are used to define an instance
of class Behaviour With Side Effect. The lines that follow
are used to assign data to slots or activate methods for this
instance. Thus, the class object is fully represented by an
instance object.

The relationships between two above-mentioned behaviour
class objects and an instance object are illustrated in Fig. 4.

In Fig. 4, a class at a lower level inherits some slots of the
class at the higher level. Each instance can access these slots
from the higher level by inheritance. When new behaviour is
added to the behaviour base, it is compared with the objects
that are already in the behaviour base. If it is the same as a
class that already exists, it can be represented as an instance
of that class. If it is similar to a class, but has different parts,
it is necessary to build a new object. In this case, the different
parts are described in the new class, whereas the similar parts
are derived from the class of the higher level by inheritance.
Thus, object-oriented representation is very convenient for the
maintenance and modification of the behaviour base.

3.2.2 Rule-Based Representation

Though an object-oriented system provides convenient ways to
represent complex data structures, the rule-based system in
KBCS allows intuitive expression of relationships among data
items (through rules) and facilitates symbolic processing of
those rules to determine what conclusions may be drawn from
the data. Rules in KBCS include domain specific and general
production rules which are presented next.

3.2.2.1 Domain Specific Rules. Domain specific rules refer
to a set of rules that are used to solve domain dependent
problems. In KBCS, we will use the proposed methodology

Fig. 4.Hierarchy of behaviour objects.

for designing an automatic assembly system for manufacturing
electronic connectors. In this application domain, examples of
the domain specific rules are formulated as follows:

Rule Specific Decompose1
IF a desired function isInsert terminal into housing
THEN decompose it intoClamp housing after locating it
AND Insert terminal after holding it

Rule Specific Decompose2
IF a desired function isClamp housing after locating it
THEN decompose it intoLocate housing
AND Clamp housing

Rule Specific Decompose3
IF a desired function isInsert terminal after holding it
THEN decompose it intoHold terminal
AND Insert terminal

In the case that the desired domain specific function is too
complicated to find a matching behaviour directly, after search-
ing the behaviour base, the desired function should be broken
down into less complex subfunctions by means of some domain
specific function decomposition rules such as the above-
mentioned rulesSpecific Decompose1, Specific Decompose2,
and Specific Decompose3to facilitate the subsequent search
for causal matching behaviour.

3.2.2.2 General Rules. General rules refer to a set of rules
that are used to solve general problems. KBCS can be applied
to various application domains after changing the domain-
specific behaviour base and the domain specific rules. Some
general production rules are formulated as follows:

Rule Not Decompose
IF a function is matched with a behaviour in behaviour base
OR is matched with an environment element
THEN do not decompose it

Rule Decompose
IF a function is not matched with a behaviour in behav-

iour base
OR is not matched with an environment element
THEN decompose it

The above rulesNot Decomposeand Decomposeare used to
decide when to decompose a function.

Rule Anti Loop
IF last behaviour object found belongs to a previous selec-

ted list
THEN terminate search

This is an anti-looping rule without which some behaviour
objects may be called recursively, so this rule is applied every
time a behaviour object is found.

Rule Search Branch End
IF all driving inputs of behaviour objects are available

in environment
AND side effects of behaviour objects are successfully pre-

vented
THEN terminate branch
AND start searching next branch

554 W. Y. Zhang et al.

Fig. 5.Graphical and literal representation of AND/OR clauses [19].

This rule is used to terminate a branch and results in feasible
concept variants. This rule is applied every time a behaviour
object is retrieved to the working memory.

3.3 Inference Engine and Search Strategy

The distinct search strategy of KBCS includes data driven and
goal driven approaches. The procedures that implement the
control cycle are separated from the knowledge base. Before
the analysis of the distinct search strategy of KBCS, we adopt
the notation specified by Kusiak and Szczerbicki [19], which
is shown in Fig. 5.

According to this notation, Fig. 6 shows an illustrative
example of search strategy of KBCS. Recall from Section 3.2.2
that there are some domain specific rules and general rules for
knowledge representation, and these production rules will be
quoted here. The starting point of inferencing strategy is to
put the goal functionF1 in the working memory and scan the
behaviour base to seek the behaviour whose functional output
can match functionF1. It is supposed that no matching is

Fig. 6. Search tree of KBCS.

found after scanning the whole behaviour base. Then the
inference engine scans the rule base to search for the problem-
solving production rules. Because the premisea function is
not matched with a behaviour in behaviour baseis satisfied,
the general ruleDecomposeis fired to make theDecompose
it decision. Now it is supposed the premise of one domain
specific function decomposition rule is satisfied by goal func-
tion F1, then this rule will be fired and its conclusion puts
functions F11 and F12 in the working memory as subgoal
functions. Here, the search strategy for function decomposition
employs the data-driven control regime.

For functionF11, the starting point of the inferencing strat-
egy is to scan the behaviour base to search for one behaviour
whose functional output can match this desired subfunction
F11. It is supposed that functional output of either behaviours
B111 and B113 can matchF11. Then, behavioursB111 and
B113 are retrieved to the working memory, and their driving
inputs are taken to be the new design goals. Suppose behaviour
B111 has two driving inputs:Driving Input1 and Driving
Input2. BecauseDriving Input1 is available in the environment
E1, the general ruleSearch Branch End is fired to terminate
this branch. Suppose the functional output of behaviourB112
can match theDriving Input2 of behaviour B111 when the
inference engine scans the behaviour base, behaviourB112 is
retrieved to the working memory. Because the driving input
of behaviourB112 is available in environmentE2, the general
rule Search Branch End is fired to terminate this branch. This
search strategy for the causal behavioural process employs a
goal-driven control regime. The strategy retrievesB111 and
B112 to achieveF11. Similarly, alternative behavioursB113
and B114 are found to achieve subfunctionF11.

For functionF12, the starting point of the inferencing strat-
egy is to scan the behaviour base to seek the behaviour whose
functional output can match this desired subfunctionF12. It is
supposed that the behaviourB123 is retrieved to achieve
subfunctionsF12 and its driving input is now taken to be the
new design goal. The inference engine continues to scan the
behaviour base to seek the behaviour whose functional output
can match the driving input of behaviourB123. It is supposed
that no matching is found after scanning the whole behaviour
base. Then, the inference engine terminates and discards this
searching branch, and returns to functionF12 to scan the
problem solving production rule base to search for a matching
rule. Suppose one domain specific function decomposition rule
is fired, and its premise isF12 and its conclusions are
subfunctions F121 and F122. The process continues, and
behaviour B1211 and B1221, which, respectively, achieve
subfunctionF121 and F122, are developed.

During the above exhaustive search strategy, after every
search step, the inference engine will check constraints and
the environment to decide whether to terminate the processing
search branch and check if there are any unexplored branches.
If all search branches have been explored, the run is terminated.
The concept variants produced by the run will be listed.
Behaviours in a pair of parentheses can achieve a certain goal
function or subfunction with their end driving inputs satisfied
by the environment. The resulting variants for the example
above are shown below:

Conceptual Synthesis of the Design Process 555

Variant 1→ (B111+ B112)+ (B1211)+ (B1221)
Variant 2→ (B113+ B114)+ (B1211)+ (B1221)

4. Case Study

KBCS has been used successfully for designing the automatic
assembly system for manufacturing electronic connectors. The
automatic assembly system for manufacturing connectors com-
prises of a vibrator bowl feeding unit, a housing singulator, a
walking beam unit, a terminal inserting unit, a terminal cutting
unit, a terminal bending unit, a carrier removing unit, an HY-
pot test unit, a contact continuity test unit, a reject station,
and an automatic offloading unit. Among them, the terminal
inserting unit is the main and most complicated unit, so this
case study will be focused on the conceptual synthesis for the
terminal inserting unit of this automatic assembly system.

4.1 Problem Description

Suppose the following specification is given:

1. Design the terminal inserting unit whose overall function is
Insert terminal into housing.

2. The environment can provide the following functional
outputs:

E1’s functional output:Provide pneumatic air.
E2’s functional output:Provide electric power.
E3’s functional output:Fix the device.

3. The following constraint applies:
The inserting position tolerance, 0.1 mm. (which means
High precision location is needed).

4.2 Problem Solving Strategy

Recall from Section 3.2.2 that there are some domain specific
and general rules for knowledge representation. These production
rules will be quoted in this case study. Referring to Fig. 7, the
logical steps of the inference engine are the following:

Fig. 7.Search tree of KBCS in case study.

1. The starting point of inferencing strategy is to put the goal
function F1 in the working memory and scan the behaviour
base to seek the behaviour whose functional output can
match function F1. Because no matching is found after
scanning the whole behaviour base, the inference engine
starts to scan the rule base to search for the problem-solving
rules. Because the premisea function is not matched with
a behaviour in behaviour baseis satisfied, the general rule
Decomposeis fired to make theDecompose itdecision.
Then, with its premise desired functionF1 satisfied, domain
specific rule Specific Decompose1is fired to decompose
function F1 into subfunctionsF11 and F12.
Where:

F1: Insert terminal into housing.
F11: Clamp housing after locating it.
F12: Insert terminal after holding it.

2. Similarly, F11 is decomposed intoF111 and F112 with
rule Specific Decompose2activated.
Where:

F111: Locate housing.
F112: Clamp housing.

3. For F111, the starting point of the inferencing strategy is
to scan the behaviour base to search for one behaviour
whose functional output can match the desired subfunction
F111. It is found that either functional outputs of behaviours
B1111 and B1116 can matchF111. Then, the behaviour
B1111 and B1116 are retrieved to the working memory,
and their driving inputs are, respectively, taken to be the
new design goals. Similarly, the behaviourB1112 is
developed with its functional outputProvide translational
motion matching the behaviourB1111’s driving input Pro-
vide translational motion. Now, the behaviourB1112’s driv-
ing input Provide pneumatic airbecomes the new goal.
Because the environmentE1 can satisfyProvide pneumatic
air, the general ruleSearch Branch End is fired, and this
searching branch is terminated and put in the configuration
list.
Where:

B1111: Housing locating device (precise).
B1112: Cylinder device.
B1116: Housing locating device (rough).

4. Similarly, B1111’s driving input can be matched byB1113’s
functional output Provide translational motion; B1113’s
driving input Provide low speed rotary motioncan be
satisfied byB1114’s functional outputProvide low speed
rotary motion; B1114’s driving input Provide high speed
rotary motioncan be satisfied byB1115’s functional output
Provide high speed rotary motion; and B1115’s driving
input Provide electric powercan be satisfied by environment
E2. This search branch is terminated and put in the con-
figuration list.
Where:

B1113: Cam device.
B1114: Gear pair device.
B1115: Motor device.

556 W. Y. Zhang et al.

5. Though behaviourB1116’s functional output can match
F111, it is rejected because it does not meet the constraint
requirement:High precision location is needed.

Now the causal behavioural searching process for realising
function F111: Locate housingis finished with two feasible
branches being developed. Figure 8 shows a detailed pro-
cess representation.

6. The causal behavioural branches forF112 can be developed
by means of scanning the behaviour base and retrieving the
matching behaviours.
Where:

B1121: Housing clamping device (fast).
B1121’s driving input: Provide translational motion.
B1121’s functional output:Clamp housing fast.
B1122: Cylinder device.
B1122’s driving input: Provide pneumatic air.
B1122’s functional output:Provide translational motion.
B1123: Cam device.
B1123’s driving input: Provide low speed rotary motion.
B1123’s functional output:Provide translational motion.
B1124: Gear pair device.
B1124’s driving input: Provide high speed rotary motion.
B1124’s functional output:Provide low speed rotary motion.
B1125: Motor device.
B1125’s driving input: Provide electric power.
B1125’s functional output: Provide high speed rotary
motion.
B1126: Housing clamping device (slow).
B1126’s driving input: Fix the device.
B1126’s functional output:Clamp housing slowly.

7. F12 can be decomposed intoF121 and F122 with rule
Specific Decompose3activated.

Fig. 8.Partial detailed causal behavioural searching process.

Where:

F121: Hold terminal.
F122: Insert terminal.

8. The causal behavioural branches forF121 and F122 can be
developed by means of scanning the behaviour base and
retrieving the matching behaviours.
Where:

B1211: Terminal holding device.
B1212: Cylinder device.
B1213: Cam device.
B1214: Gear pair device.
B1215: Motor device.
B1221: Terminal inserting device.
B1222: Cylinder device.
B1223: Cam device.
B1224: Gear pair device.
B1225: Motor device.
B1226: Stopper.

The explanation for the side effectSE1: Terminal moves
too muchis noted below:

The behaviourB1221 is developed to match the function
F122, but the behaviourB1221simultaneously produces the
side effect SE1 which should be prevented. So KBCS
automatically scans the behaviour base to search for the
behaviour whose functional output can prevent the behaviour
B1221’s side effectSE1. Then, behaviourB1226is retrieved
with its functional output beingPrevent terminal moving
too much, and the behaviourB1226’s driving input is
available in environmentE3.

9. Check if there are any unexplored branches. If there are
none, terminate the run. A list of 24 theoretically feasible
concept variants produced by the above run are shown below:

CONCEPT VARIANTS ARE

Variant 1 → (Housing locating device (precise)+ Cylinder
device) + (Housing clamping device (slow))+ (Terminal
holding device + Cylinder device) + (Terminal inserting
device + Cylinder device+ Stopper)
Variant 2 → (Housing locating device (precise)+ Cylinder
device) + (Housing clamping device (slow))+ (Terminal
holding device + Cylinder device) + (Terminal inserting
device + Cam device+ Gear pair device+ Motor device
+ Stopper)
Variant 3 → (Housing locating device (precise)+ Cylinder
device) + (Housing clamping device (fast)+ Cylinder
device) + (Terminal holding device+ Cylinder device)+
(Terminal inserting device+ Cylinder device+ Stopper)
Variant 4 → (Housing locating device (precise)+ Cylinder
device) + (Housing clamping device (fast)+ Cylinder
device) + (Terminal holding device+ Cylinder device)+
(Terminal inserting device+ Cam device+ Gear pair device
+ Motor device+ Stopper)

Total of 24 variants generated

10. According to Pahl and Beitz [1], we will evaluate all the
resulting concept variants to narrow the choice. This final

Conceptual Synthesis of the Design Process 557

Fig. 9. Graphical representation of concept variant 3 for terminal
inserting unit.

decision-making phase is the phase of concept evaluation
and selection where all the concept variants generated are
evaluated with respect to each other, and the highest
scoring variants are selected in order of value. The values
by which the concept variants are evaluated and decided
upon are generated here by conducting a concept evaluation
based on technical and economic criteria which are selected
based on the requirements of the automatic assembly sys-
tem. Variants 3 and 4 are eventually chosen as the two
best concept variants. Figures 9 and 10 shows a graphical
representation of Variants 3 and 4.

5. Conclusion

This paper describes a knowledge-based approach to conceptual
synthesis in the conceptual design phase. The hybrid knowledge
base developed includes an object-oriented behaviour base and
a production rule base, which can deal with the function de-
composition and the behaviour reasoning problem, cooperatively.
An inference engine employs both goal driven and data driven

Fig. 10.Graphical representation of concept variant 4 for terminal
inserting unit.

approaches which are used in searching for causal behaviours
and decomposing complex functions respectively. For the desired
function, an inference engine always searches for matching causal
behaviours as a starting point. This distinct searching strategy
can prevent a domain problem being decomposed “too fine”,
which will cause a combinatorial explosion.

This knowledge-based conceptual synthesiser “KBCS” was
developed using CLIPS, a declarative programming language.
This prototype system also illustrates the potential of developing
similar knowledge-based expert systems for practical applications.

References

1. G. Pahl and W. Beitz, in K. Wallace (ed.), Engineering Design –
A Systematic Approach, London, Springer-Verlag, 1988.

2. M. Green, “Conceptions and misconceptions of knowledge aided
design”, Knowledge-Based Systems, 10, pp. 1–24, 1992.

3. C. L. Li, S. T. Tan and K. W. Chan, “A qualitative and heuristic
approach to the conceptual design of mechanisms”, Engineering
Application of Artificial Intelligence, 9(1), pp. 17–31, 1996.

4. C. Tong and A. Gomory, “A knowledge based computer environ-
ment for the conceptual design of small electromechanical
appliances”, Computers, 26(1), pp. 69–71, 1993.

5. P. Arpaia, G. Betta, A. Langella and M. Vanacore, “Expert
system for the optimum design of measurement systems”, IEEE
Proceedings on Science, Measurement and Technology, 142,
pp. 330–336, 1995.

6. V. C. Moulianitis, A. J. Dentsoras and N. A. Aspragathos, “A
knowledge-based system for the conceptual design of grippers for
handling fabrics”, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 13, pp. 13–25, 1999.

7. A. Gelsey, M. Schwabacher and D. Smith, “Using modeling
knowledge to guide design space search”, Artificial Intelligence,
101, pp. 35–62, 1998.

8. G. A. Ringland, in D. A. Duce (ed.), Approaches to Knowledge
Representation: An Introduction, John Wiley, New York, 1988.

9. S. Akagi and K. Fujita, “Building an expert system for engineering
design based on the object-oriented knowledge representation con-
cept”, Journal of Mechanical Design, 112, pp. 215–222, 1990.

10. Q. Mao, J. Qin, X. Zhang and J. Zhou, “Case prototype based
design: philosophy and implementation”, Computers in Engineer-
ing, 1, pp. 369–374, 1994.

11. R. V. Welch and J. R. Dixon, “Representing function, behaviour
and structure during conceptual design”, Design Theory and Meth-
odology, 14, pp. 11–18, 1992.

12. Y.–M. Deng, S. B. Tor and G. A. Britton, “A computerized design
environment for functional modeling of mechanical products”, 5th
ACM Symposium on Solid Modeling, Ann Arbor, Michigan, USA,
pp. 1–12, 1999.

13. Y. Umeda, M. Ishii, M. Yoshioka, Y. Shimomura and T. Tomi-
yama, “Supporting conceptual design based on the function-
behaviour-state modeler”, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 10, pp. 275–288, 1996.

14. B. Meyer, Object-Oriented Software Construction, Prentice-Hall,
1988.

15. J. Rumbaugh, M. Blaha, W. Premeriani, F. Eddy and W. Lorensen,
Object-Oriented Modeling and Design, Prentice-Hall, 1991.

16. G. Booch, Object-Oriented Analysis and Design with Applications,
2nd edn, Benjamin Cummings, 1994.

17. B. Meyer, Object Success: A Manager’s Guide to Object Orien-
tation, its Impact on the Corporation, and its Use for Reengineering
the Software Process, Prentice-Hall, 1995.

18. H. Kaindl, “Object-oriented approaches in software engineering
and artificial intelligence”, Journal of Object-Oriented Program-
ming, 6(8), pp. 38–45, 1994.

19. A. Kusiak and E. Szczerbicki, “A formal approach to design
specifications”, in B. Ravani (ed.), Advances in Design Auto-
mation, ASME, pp. 311–316, 1990.

