
Int J Adv Manuf Technol (2001) 17:751–759
 2001 Springer-Verlag London Limited

Multivalued Fuzzy Sets in Cost/Time Estimation of Flat Plate
Processing

H. Jahan-Shahi, E. Shayan and S. H. Masood
Industrial Research Institute Swinburne (IRIS), Swinburne Unversity of Technology, Hawthorn, Melbourne, Australia 3122

Cost/time estimation in flat plate processing (FPP) is a complex
system of man–work–environment–organisation. As the share
and impact of physical, psychological, personal, and other
characteristics of humans (non-process factors) in this complex
system becomes larger, the state of FPP time estimation
changes from well-defined to ill-defined (uncertain). In this
paper, the effect of process and non-process factors on the
activity time variation are discussed and a multivalued fuzzy
set (MVFS) is used to model the uncertainty activity time/cost
estimation in FPP. Emphasis is placed on modelling of non-
random uncertainties using fuzzy sets.
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1. Introduction

The flat plate processing (FPP) industry uses high-technology
cutting machines with computer numerical control (CNC) and
CAD/CAM systems to provide a combination of different
processes such as profiling, drilling, and marking in a single
machine set-up, for processing sheets and plates in a wide
range of dimensions. In an activity-based costing system, these
processes are grouped under the headingactivities. These
activities are supported by a range of other activities including
drawing and programming, m/c set-up, material carrying and
loading, cutting, unloading the cut parts, unloading and
returning usable off-cuts, unloading the remaining skeleton,
packing the cut parts, loading the packed parts on to a truck,
and delivery to the customer. The cost of each activity is the
product of a pre-specified activity rate and the corresponding
variable activity time. Thus, the key to activity cost estimation
is accurate activity time estimation. There are two main groups
of variables influencing activity time in FPP, which are classi-
fied here as process variables and non-process variables. Pro-
cess variables such as cutting speed, plate thickness and dimen-
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sion, which are primary variables, are those directly related to
a process or activity. They are well-defined variables whose
values are set by the process-planning engineer. Non-process
variables such as operator conditions, nature of work, environ-
mental conditions, and management and organisational con-
ditions, on the other hand, are those factors affecting the
activity time which cannot be set in advance. They are con-
sidered to be the major sources of uncertainty in time/cost
estimation in flat plate processing. Therefore, to develop a
thorough and comprehensive model, the effects of a large
range of different combinations of man–work–environment–
management/organisation factors should be taken into account.
This complexity leads estimators to oversimplify the problem
by the use of conservative assumptions and of averages and
approximations resulting in over-estimates or under-estimates.
A comprehensive and reliable cost-estimation system, based on
detailed cost information for different activities, is becoming
an increasingly necessary competitive tool.

2. Background of Uncertainty Treatment
in Cost Estimation

The effect and impact of non-process variables on activity-
time is normally treated as allowance intervals [1–3]. The
majority of techniques used to assess these non-process vari-
ables and assign allowances are based primarily on the subjec-
tive evaluation and the judgement of the estimator. Allowances
are assigned for each factor deterministically using allowance
tables to generate an estimate. These estimates are not reliable
mainly owing to two types of uncertainty associated with this
method. The first one is fuzziness due to imprecise and subjec-
tive knowledge about the rate of the effect of these factors
and also due to the use of judgmental procedures. The second
one is randomness due to the probabilistic nature of some of
the non-process factors such as delays and also due to assigning
allowances for events which will happen in future but which
cannot be predicted and determined precisely and accurately
in advance.

Contemporary research techniques in human-centred systems,
such as FPP cost/time estimation, are based on the premise
that when uncertainty exists an approach to eliminate, rather
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than incorporate, as much of it as possible must be developed,
and then whatever uncertainty is left must be explained pre-
cisely. Such a premise is a consequence of adapting quantitative
methods of analysis directly from physical sciences [4].
According to Zadeh’s principle of compatibility [5], at a high
level of complexity, precision and significance (of the state-
ments about the system’s behaviour) become almost mutually
exclusive characteristics. Therefore, an attempt to make precise
yet significant statements about the complex relationship
between people, machines, and environments and organisation
may be an illusive task, and traditional methods have little
relevance here.

In an activity-time estimation problem, the assessment and
evaluation of activity-time influencing factors using qualitative
linguistic terms is quite common and meaningful to estimators.
A linguistic variable differs from a numerical variable in that
its values are not numbers, but words or sentences in a natural
or artificial language. Since words, in general, are less precise
than numbers, the concept of linguistic variables serves the
purpose of providing a means of approximate characterisation
of phenomena which are too complex or too ill-defined to be
amenable to description in conventional quantitative terms [6].
In an activity-time estimation model, the values of these
linguistic variables may be defined as fuzzy sets. For instance,
an operator’s skill is a linguistics fuzzy variable and its values
are super-skill, excellent, good, average, poor, and so on. Fuzzy
set theory makes it possible to consider all uncertainty factors
because it does not require a precise mathematical relationship
between uncertainty factors and total cost [7–11].

Using ordinary fuzzy sets, it is not always possible to assign
precisely a point (numerical value) as the degree of membership
in the interval [0,1] to each element of a fuzzy variable
(estimator’s perception) without loss of at least some part of
the information. Furthermore, the output result of a model
based on ordinary fuzzy sets is a crisp value, i.e. a point
estimate, which is not reliable for an uncertain situation. To
overcome these drawbacks, this paper describes the application
of multivalued fuzzy sets (MVFS) for developing a model for
time/cost estimation in FPP considering the uncertainty due to
non-process factors. The effects of process and non-process
factors on the activity time variation are discussed in detail.
The model is illustrated with an example from FPP and
analysed using the Monte Carlo simulation technique.

3. Effect of Process Variables on
Activity-Time Variation

To investigate the pattern of the activity-time variation, a time
study was conducted for a set of activities in FPP. As an
example, the result of time study of the plate carrying and
loading activity is shown in Figs 1 and 2, demonstrating a
great deal of variability. In order to understand and control
this pattern, it is necessary to investigate the cause(s) for this
wide range of activity time variation. Plate size (PS) is a
primary process variable in the plate carrying and loading
activity in FPP. As the size of a plate increases, the number
of clamps necessary to hold the plate increases, crane speed
decreases, and positioning time increases accordingly. Thus,

Fig. 1.Plate size (PS) versus plate carrying and loading time (PCLT).

Fig. 2. Histogram of PCLT.

plate carrying and loading time (PCLT) must increase as PS
increases. However, as can be seen from Fig. 1, eight different
plate sizes ranging from 2 to 28 m2 have all taken 4 min to
be carried and loaded.

Another interesting point is that carrying the same plate
size, i.e. 15 m2, has taken different times ranging from 3 to
13 min in different trials. Further analysis of the collected data
consisting of 60 observations, as shown in Fig. 2, reveals that
average PCLT time isTPCL = 7.2 with a standard deviation
sPCL = 2.97. The correlation coefficient between PS as the
independent variable and PCLT as the dependent variable is
r = 0.2, and the coefficient of determination,r2 = 0.04. This
implies that the proportion of the total variation of the depen-
dent variable PCLT that can be accounted for or explained by
a linear relationship with the values of independent variable
PS is 4%. The pattern of PCLT variation, as depicted in Fig. 1,
does not suggest any type of specific nonlinear relationship
between PCLT and PS. Therefore, the activity-time estimation
cannot be modelled and solved accurately and reliably by
considering only process variables. Thus, the question is raised:
what factors are responsible for these PCLT variations? It is
suggested that, in addition to the process variables, there
exist some other factors including non-process variables, which
strongly influence activity-time.

4. Effect of Non-Process Variables on
Activity-Time Variation

In a CNC environment with high-precision machining, it is
reasonable to assume that variations of process factors are so
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predictable that it puts them into a deterministic category.
Therefore, it suffices to concentrate more on non-process fac-
tors as the main source of variability. As mentioned in Section
1 and illustrated in Fig. 3, each of these four main categories
of non-process variables can be further broken down into
several activity-time influencing elements. In the following
section, the influence of each of these elements on activity
time will be discussed.

4.1 Operator Conditions

Differences in output of different operators working under
identical conditions can be attributed to skill and effort. Skill
is defined as “proficiency at following a given method”, and
effort is defined as “demonstration of the will to work effec-
tively”. In other words, effort is representative of the speed
with which skill is applied and can be controlled to a high
degree by the operator [12].

Fig. 3. Factors influencing activity-time variability.

4.2 Nature of Work

The effect of the nature of work on activity-time can be
explained by the amount of stress imposed on the operator
while performing that activity. This stress causes strain and
fatigue in the operator, which, in turn, affects the performance
rate. Those aspects of the work which cause fatigue in the
operator can be listed as applied force, posture,
concentration/anxiety, short-cycle repetitive work elements,
monotony, vibration, and restrictive clothing. Whether fatigue
is physical or psychological, the result is the same: “there is
lessening in the will to work” [3].

4.3 Environmental Conditions

The environmental and atmospheric conditions including tem-
perature, humidity, light, noise, ventilation, fumes, dust, and
dirt have a significant impact on an operator’s performance
[2,13,14]. Under extremes of hot and/or humid environments,
blood flow to the skin increases to dissipate the body heat.
This reduces the blood flow (venous return) to the heart, and
therefore, cardiac output per beat decreases. These conditions
may lead to muscle fatigue, leg swelling, abdominal upsets
(nausea), loss of consciousness, severe headache, visual disturb-
ance, fainting, giddiness, and possible cardiac failure. Good
visibility of the equipment, the product and data involved in
the work process is an essential factor in accelerating pro-
duction, reducing the number of defective objects, cutting down
waste and preventing visual fatigue and headaches among the
workers. All types of noise including constant, intermittent, or
loud and pitched sounds tend to excite workers emotionally
and are conducive to worker fatigue, resulting in loss of
temper and difficulty in doing a precision job. The nature and
concentration of fumes can be injurious to health by irritating
eyes, nose, throat, and skin or they can be toxic or have a
disagreeable odour and can cause mental fatigue. Since the
cubic volume of working premises can never be large enough
to make ventilation unnecessary, ventilation should be looked
upon as another important factor in maintaining the worker’s
health and productivity.

4.4 Management and Organisational Conditions

The other major reasons for the occurrence of delays in
FPP are interruptions, machine interference, and material and
equipment irregularities. Interruption delays can be due to a
wide range of reasons such as supervisors giving instructions
or clarifying written information, inspectors pointing out the
reasons for defective work, or by fellow workers, planners,
expediters, and others. Material irregularity delays can also be
due to a wide range of reasons such as material being in the
wrong location, or the process running too slowly or too
quickly, or excessive stock, equipment breakdown, and so
forth. Machine interference delays are mainly due to assigning
more than one machine to an operator. Although these delays
cannot be eliminated, they can be reduced drastically by provid-
ing an well-organised and engineering-minded production man-
agement system.
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Fig. 4.Histogram of cutting machine stoppage time due to delays.

The time study for the cutting activity illustrated in Fig. 4
shows that a 95% confidence interval of cutting machine
stoppage time in the cutting activity is [0.44, 53.36]. Based on
these results, up to an 18% stoppage or delay allowance has
been used for each of these main factors which are listed in
Table 1. Many factors can be considered as grounds for these
delays, but the main factors responsible are interruptions, inter-
ference, and irregularities [3]. Although these factors seem to
be random by nature, they can, to some extent, be controlled
and reduced under a well-developed production management
system and engineering minded organisation.

Table 1.Allowances for activity–time influencing factors.

Major variable Activity time variables Allowances
classes

Performance
allowance:

Operator conditions 1. Skill level [−15,22]
2. Effort level [−13,17]

Relaxation
allowance:

3. Use of force [0,130]
4. Posture [0,16]
5. Short cycle [0–10]

Nature of work 6. Concentration [0–16]
7. Monotony [0–10]
8. Vibration [0–15]
9. Restrictive clothing [0,20]

Relaxation
allowance:

10. Temperature [0,18]
11. Noise [0,10]
12. Light [0,10]

Environmental 13. Ventilation [0,15]
conditions 14. Fume [0,12]

15. Dust [0,12]
16. Dirt [0,10]
17. Humidity [0,18]

Delay allowance:
Management 18. Interruptions [0,18]
organisation 19. Interferences [0,18]
conditions 20. Irregularities [0,18]

5. Effects of Non-Process Variables as
Allowance Figures

Consideration of Sections 4.1 to 4.4 leads to the identification
and characterisation of 20 different activity-time influencing
factors, as illustrated in Fig. 3. Because so many inter-related
factors are involved in activity time, it is too complicated,
time-consuming, and expensive to model these factors in a
universally accepted activity-time/cost estimation system using
mathematical or even analytical–experimental approaches. For
instance, many attempts such as physical, chemical, and
psychological tests have been made to measure fatigue, none
of which have been completely successful [14]. Current practice
considers these influences as different allowances including
performance allowance, fatigue allowance, and delay allowance
[1], as illustrated in Table 1. The allowances as percentage of
normal activity time are added to the normal time. Empirically
established allowances are set out as tables, and have been
satisfactory for work involving normal or moderately intensive
effort [15–17].

As these factors exist in a real manufacturing cycle, ignoring
them will result in distorted and inaccurate estimates. For
example, the activity time will be increased by non-process
variables including force, temperature, and humidity, under
pessimistic conditions, up to 130%, 18%, and 18% of normal
activity time, respectively. As another example, if a super-
skilled operator working very hard is employed, the activity
time will be reduced by up to 28%, but if a very poor operator
is employed, the activity time will be increased by up to 39%.
The total accumulated variation of activity time caused by only
these five factors (force, temperature, humidity, operator skill,
and operator effort) out of the twenty major factors, is
[−28, 205], i.e. up to 28% less than normal time in an optimistic
condition, and up to 205% more than normal time in a
pessimistic condition. Activity total time,Tti, for the ith activity,
i = 1,2,3,. . .,n, in performing a job order can be represented as:

Tti = Tn 11 +

ATb + Om
j=1

ATij

100 2 (1)

WhereTn is activity normal time,ATb is fixed basic allowance
time including personal allowance and basic fatigue allowance,
ATij is variable allowance time caused by non-process variables
(uncertain factors) for each activity, and,i,j = 1,2,3, . . .,m
denotes different non-process uncertainty factors. Activity nor-
mal time can be determined by using only process variables.
The key issue is how to deal with the variable allowance,ATij

in Eq. (1). As mentioned in Section 2,ATij has been treated
deterministically, and is a combination of twenty different
uncertain factors (non-process variables). There are two types
of uncertainty to be considered. The first one is fuzziness due
to imprecise and subjective knowledge about the rate of effect
of these factors, and also due to use of judgemental procedures.
The second one is randomness due to the probabilistic nature
of some of the non-process factors such as delays, and also
due to assigning allowances for events which will happen in the
future but which cannot be predicted precisely and accurately.
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Table 2.Cost of different activities in FFP.

MVFS output results

CCR ORG DCI FD

Different activities in FPP

OP 38.59 39.26 40.6
DP ML 40.59 42.6 43.09 43.4

PE 45.2 47.53 48.7

OP 285.95 296.91 313.14
Set-up ML 327.79 350.76 362.75 369.71

PE 395.28 429.05 458.84

OP 47.3 48.56 50.95
PCL ML 55.79 60.49 63.59 66.69

PE 72.78 78.97 86.28

OP 2998.35 3192.81 3251.09
Cutting ML 3088.08 3307.97 3375.5 3631.22

PE 3782.34 4004.02 4313.92

OP 132.22 136.25 141.82
UCP ML 154.91 166.37 173.13 189.2

PE 192.63 208.32 228.49

OP 119 122.62 127.64
USK ML 139.42 149.73 155.82 162.01

PE 173.37 187.48 205.64

OP 17.19 17.71 18.44
Packing ML 20.14 21.63 22.51 23.47

PE 25.04 27.08 29.7

OP 132.33 135.72 140.45
LCP ML 150.09 159.76 164.56 172.62

PE 182.83 197.06 213.18

Therefore, a hybrid system of probability and fuzzy set theory
can be used as a promising tool for modelling of cost/time
estimation.

6. Ordinary Fuzzy Sets

A fuzzy set, which is a set of objects without clear or
sharp boundaries, is especially useful for the representation of
imprecise knowledge [18]. A fuzzy set can be seen as predi-
cates whose truth values are drawn from unit interval,I = [0,1]
rather than the set of {0,1} as in the case of an ordinary set.
By definition, a fuzzy set,A, defined on a universe of discourse,
X, (the domain of fuzzy variable) is characterised by a member-
ship function, which takes on values in the closed interval,I.
Formally, a fuzzy set can be represented as follows:

A = {( x,mA(x)) u x P X, mA(x) P [0,1]} (2)

As explained earlier, input values (non-process variables) of
the fuzzy model cannot be measured objectively or assigned
precisely. They are assigned through subjective evaluation and
judgement of the estimator using allowance tables. There is a
possibility of an over-estimate,xo,c, or an under-estimate,xu,c,
as shown in Fig. 5. The membership function of ordinary fuzzy

Fig. 5.Membership function of ordinary fuzzy set for average in fuzzy
variable SKILL.

sets assign precisely a point (numerical value) as a membership
value mA(xi) in the interval [0,1] to each element of fuzzy
variablex P X (estimator’s perception). The mechanics underly-
ing ordinary fuzzy sets cannot solve the problem of over/under
estimation so at least some part of the information will be
lost. Another limitation of ordinary fuzzy sets is that they
generate crisp outputs, which are not reliable in the presence
of uncertainty. This problem can be overcome by using multi-
valued fuzzy sets.
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7. Multi-valued Fuzzy Sets (MVFS)

If fuzzy sets are designed in such a way that for each element,
xi, of the universal set, e.g. operator’s skillX, an interval of
membership grade could be provided, then the uncertainty
would be captured and reduced to an interval. Thus, to deal
with this problem, a reasonable way is to include this uncer-
tainty in the definition of the membership functions of the
fuzzy variable by modifying them through identifying the
original (ORG), concentration-contrast relaxation (CCR) and
dilution-contrast intensification (DCI) membership function, as
illustrated in Fig. 6. A membership function defined on the
basis of this concept does not assign only one real number as
a membership value to each element of its universal set, but
a closed interval of real numbers obtained from the identified
upper and lower bound membership functions. Therefore, the
problem of generating a crisp output as a point estimate,
discussed in Section 6 and shown in Fig. 5, can be solved.
There are different procedures for designing these types of
membership functions. One is using hedges to intensify and
dilute the region of a fuzzy set [19–21]. Hedges play the same
role in a fuzzy modelling system as adverbs and adjectives do
in English. They modify the nature of a fuzzy set. Zadeh’s
original definitions for concentrator hedge “very” and dilutor
hedge “somewhat” are squaring and taking the square root of
the base membership function, respectively [21]. There is no
justification for representing hedges in this way and the conven-
tions used in the literature are, in general, subjective. Therefore,
the hedges can be defined in different shapes and formats. The
triangular ORG membership function of the fuzzy set average
of the fuzzy variable SKILL can be written as:

mORG (x) =










0 for x # a

x−a
b−a

for a , x # b

d−x
d−b

for b , x # d

0 for d # x

(3)

The CCR membership function which is defined through the
concentration and contrast-relaxation of the ORG membership
function, can be written as:

Fig. 6. Membership function of MVFS for average in fuzzy variable
SKILL.

mCCR (x) =










0 for x # a

Sx−a
b−aD3

for a , x # b

1 − 0.5946S1 −
d−x
d−bD0.25

for b , x # c

0.5946Sx−a
b−aD0.25

for c , x # d

0 for d , x
(4)

The DCI membership function which is defined through the
dilution and contrast-intensification of the ORG membership
function, can be written as:

mDCI (x) =










0 for x # a

Sx−a
b−aD0.33

for a , x # b

1 − 8S1 −
d−x
d−bD4

for b , x # c

8Sx−a
b−aD4

for c , x # d

0 for d , x
(5)

8. MVFS Algorithm

The twenty non-process variables mentioned in Section 3, are
used as inputs to the MVFS model to generate the output
showing the total allowance time for each activity in the FPP.
The optimistic (OP), most likely (ML), and pessimistic (PE)
concepts are considered in the MVFS model for inputs under
the optimistic, most likely, and pessimistic conditions. The
procedure for calculating the output of the proposed rule-based
MVFS model, which is illustrated in Fig. 7 as a block diagram,
is based on the following ten steps:

1. Fuzzify the twenty different input variables for the ML con-
dition.

2. Make the inference, which consists of two processes: fuzzy
implication and rule aggregation. The Mamdani method is
used for inferring the rule output [6].

3. Carry out defuzzification, which generates three crisp out-
puts from ORG, CCR, and DCI fuzzy sets obtained from
aggregation process for each input variable. The centre of
area method [19] is used for defuzzification.

4. Calculate total ORG, CCR, and DCI allowance time under
ML condition:

ORGML = O20

j=1

ORGj (6)

CCRML = O20

j=1

CCRj (7)
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Fig. 7. A block diagram of the MFVS. OP, optimistic; ML, most likely; PE, pessimistic.

DCIML = O20

j=1

DCIj (8)

5. Calculate total ORG, CCR, and DCI activity time under
ML condition using Eq. (1).

6. Repeat steps 1 to 5 twice more to generate allowance time
estimates under OP and PE operator–work–environment–
organisation conditions in a similar way. Up to this stage,
nine different estimates of activity time includingORGML,
CCRML, DCIML, ORGOP, CCROP, DCIOP, ORGPE, CCRPE,
DCIPE are generated. Thus, the interval estimate of activity
time can be presented as: [CCROP, DCIPE].

7. Define three new triangular fuzzy sets for ML, OP, and PE
input variable conditions based on the corresponding nine
different estimates of step 6.

8. Aggregate the three newly defined triangular fuzzy sets of
step 7.

9. Defuzzify (DF) the aggregated fuzzy set of step 8 to provide
the most possible activity time.

10. Calculate the cost of each activity based on the correspond-
ing estimated activity time using the following relationship:

Ci = Ri × Tti (9)
Where Ri and Tti are the rate ($/h) and total time ofith
activity, respectively.

The output of this fuzzy model will be an interval estimate of
activity cost, which contains the point estimate of the most
possible activity cost, based on probabilistically assigned fuzzy
information. The MVFS model is repeated for all activities
necessary to complete a job order in FPP. The uncertainties
of each activity cost/time are captured and reduced into an
interval. The analysis of the output results and its representation
in a more understandable form is the subject of the next section.

9. Uncertainty Analysis Using the Monte
Carlo Simulation Technique

To this point, the uncertainties in activity cost estimation in
FPP have been captured and reduced to an interval. This
estimate consists of the minimum or lower bound of optimistic
(CCROP), most likely, or final defuzzification (DF) of the
MVFS model, and the maximum or upper bound of the
pessimistic activity costs (DCIPE). These three estimates,

reflecting the inherent uncertainties, are converted into a tri-
angular probability distribution. To combine and analyse uncer-
tainties, the Monte Carlo simulation technique [22], is used to
generate each activity cost, based on the corresponding triangu-
lar probability distribution. A flowchart of the uncertainty
analysis procedure is illustrated in Fig. 8. The total cost of the
order is equal to the algebraic sum of the cost of the activities
of the critical path in the sequence network of activities as:

Ct = On
i=1

Ci (10)

10. Experimentation

Suppose an FPP company receives an order from a customer
to cut 100 pieces of the shape shown in Fig. 9 from a mild
steel plate of 20 mm thickness. The customer requested a
maximum of 4 finished parts in each bundle. The engineering
department provides the following information: total cutting
length for each part is 10 982 mm, cutting speed is
1700 mm min−1, plate dimension is 9000× 3000 mm2, and time-
values of the plasma cutting machine, material handling
machines, and computer (software–hardware) cost 100, 15,

Fig. 8.Flowchart of uncertainty analysis procedure.
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Fig. 9. The order to be cut from steel plate.

Fig. 10.Cumulative probabilities of order cost.

15 $ h−1, respectively. The output results of the MVFS model
are shown in Table 2. The abbreviations DP, PCL, UCP, USK
and LCP in Table 2 stand for drawing/programming, plate
carrying/loading, unloading cut parts, unloading skeleton and
loading cut parts for delivery, respectively.

Figure 10 shows the result of the Monte Carlo simulation.
The total cost of the order is represented by a probability
distribution indicating the estimated range of costs and the
likelihood of costs within the range. As illustrated in Table 2
and Fig. 10, point and interval estimates of the cost/time for
each activity and also for the job order are provided. This
methodology provides traceable cost/time estimates by generat-
ing cost/time estimates for all individual activities in FPP. The
uncertainty analysis process can be used to provide more
detailed information and different useful measures of cost/time
for each activity, which are necessary and essential for
decision-making on quotation, process selection, productivity
improvement, and so on. For example, if the customer is not
a one-off and is a very important one or the manufacturing
market is very competitive, then optimistic cost (lower cost)
should be considered for producing quotes, otherwise pessi-
mistic cost (higher cost) should be considered.

11. Conclusion

In flat plate processing the activity-time variation is attributed
to process and non-process variables. Process variables such
as cutting speed, plate thickness, plate dimension, crane speed,
and so on are deterministic and predictable with certainty. On
the other hand, non-process variables characterised by four
main categories of time-influencing factors, namely, operator,
nature of work, environmental, and organisation, are not deter-
ministic and cannot be predicted with certainty. The time study
carried out indicates that only a minor section of variation in

activity time can be captured and explained by process vari-
ables, whereas non-process factors are responsible for a major
section of this variation. Therefore, uncertainty is a significant
feature in FPP time/cost estimation. A model using a new
configuration of fuzzy sets called multivalued fuzzy sets
(MVFS) was developed to capture these uncertainties and
reduce them to an interval containing optimistic, most likely,
and pessimistic activity-time estimates. Then, these uncer-
tainties are analysed by defining triangular probability distri-
butions for each activity and using the Monte Carlo simulation
technique. Using this methodology, different qualified values
of order cost/time in FPP in the form of confidence intervals
and the chances of the final cost being less than a particular
value are provided. The developed model can be adapted and
matched to different operator–work–environment–organisation
conditions by recalibrating the model simply and quickly
through shifting its membership functions to provide more
flexibility for cost/time estimators.
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