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Hydroforming processing of sheet metal parts provides a num-
ber of advantages over conventional processes including the
reduction in the number of parts, and reduction in the tooling
and material costs. As a result, the technology has attracted
increasing attention in many industries. However, there is still
little experience available of both the process and its associated
stresses and deformation which limit the application of this
technique. The current study has been initiated to gain a better
understanding of the fundamentals of the hydroforming process
and the limitations on its applicability. The study outlines the
stress and deformation distributions when a circular plate is
processed by a hydrostatic transverse pressure that causes the
plate to deform in the axial direction. The collapse load
that leads to excessive and uncontrollable deformation is also
determined and a forming limit is established. Experimental
verification is also carried out to establish the validity of the
analytical results.
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1. Introduction

Owing to the many advantages of the hydroforming processes
over conventional forming processes, such as part reduction
and hence reduction in the associated tooling and material
costs, the technology has attracted increasing attention in the
industrial sector. The hydroforming process can form most
ferrous and non-ferrous geometric shapes in a single operation.
Stepped, irregular-shaped parts can be produced in a single
step, rather than in the series of steps that would be required
with other forming processes. This helps to minimise set-up
and changeover time and eliminates an intermediate annealing
process that is usually required with conventional forming oper-
ations.
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Several applications in the automotive industry, where parts
are processed by hydroforming, have been reported, such as
an engine cradle [1], a subframe [2], and an instrument panel
beam [3]. Other applications may include the production of
smooth, scratchfree surfaces (lighting reflectors), cooking and
serving products for the food industry and painted preformed
products [4]. However, hydroforming cannot, in general, per-
form punching or secondary operations. When the finished part
requires these operations, secondary tooling is required, or
other operations must be used.

In the hydroforming process (see Fig. 1), the metal blank
is placed on the forming die which can have a predetermined
profile or can be just an open cavity allowing the blank to
deform freely. The pressure chamber is lowered and when it
is in position, the diaphragm clamps the blank to the die. The
pressure chamber is then filled with hydraulic fluid and pressur-
ised to form the part. The required pressure depends on the
geometric shape, alloy type and grade, and the thickness of
the blank, and usually ranges from 30 to 500 bar. After the
part is formed, the chamber is decompressed, and raised, and
the formed part is removed from the die.

Fig. 1. Schematic view.
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In the hydroforming process, the shape of the finished part
is determined only by the configuration of the die and, unlike
the conventional forming processes, there is no corresponding
mating die. This helps to minimise the high local strains,
which result in blank thinout, and the possibility of failure,
either by wrinkling or rupture [5]. Therefore, the blank thick-
ness is nearly equal to the thickness of the finished part.
Moreover, tolerances can be held at a minimum, resulting in
an improvement of dimensional accuracy.

Nevertheless, hydroforming has some limitations, for
instance, it cannot handle high-volume production, and cannot
perform secondary operations efficiently without involving sec-
ondary tooling. Therefore, it is not suited for multistage for-
ming, nor is it appropriate for very deep drawing operations
when the depth to diameter ratio exceeds 3:1.

The present paper summarises the results of hydroforming
a circular plate supported at its periphery and subjected to a
uniformly increasing transverse hydrostatic pressure that tends
to deform the plate laterally. Both the stress and deformation
distributions, as well as the oil pressure at collapse, are determ-
ined. Experimental results obtained from the literature are
compared with those obtained in this study.

2. Analysis

As an initial approach, we consider first the behaviour of a
circular plate, radius a and thickness h, resting on a continuous
simple support around its edge and sustaining a uniformly
distributed transverse load of intensity p per unit area, as
shown in section in Fig. 2(a).

The plate is a 3D body, and the loading sets up a variety
of stresses within the body which, because of the symmetry
of the situation, may be classified broadly as follows:

1. Shearing stresses on concentric circular cylindrical “cuts”.
2. Compressive stresses in the direction of the axis of

rotational symmetry.
3. “In-plane” stresses, compressive at the upper surface and

tensile stresses at the lower surface of the plate.

Fig. 2. A simply supported circular plate carrying a uniformly distrib-
uted transverse load (P per unit area). (a) Plate parameters.
(b) Collapse mechanism.

Following traditional plate theory we seek ways of avoiding
analysis of a fully 3D situation. The key to the desired
simplification is the observation that for sufficiently thin plates
(i.e. thickness/diameter sufficiently small) stresses in classes
(1) and (2) are negligible compared to the in-plane stress (class
3). This enables us to assume that the bending strength of the
elements of the plate is unaffected by the small shear (1) and
pressure (2) effects, and, hence, to set up the problem as 2D
in terms of the variation of bending moments over a surface.

2.1 Yield Locus for an Element of the Plate

One of our preliminary tasks is to set up a “yield locus” in a
suitable bending-moment space. Figure 3 shows a typical
element of the plate (defined by radial and circumferential
cuts) and the resultant stresses which act upon it: those which
vanish by virtue of symmetry are not indicated. The bending
moments Mr and M� per unit length (which have the dimensions
of force) are, by symmetry, principal bending moments. The
shearing stress resultant Qr is necessary for equilibrium, but,
as we have argued, it does not affect the yield condition. In Fig.
3, all the resultant stresses are shown in their positive senses.

To establish the required yield locus in Mr, M� space we
investigate the strength of an element in pure biaxial bending,
as shown in Fig. 4(a). It is convenient for this purpose to
imagine the element slit into a number of parallel thin layers,
symmetrically disposed about the central surface. We can easily
achieve a state of full-plastic pure biaxial bending in a pair of
layers by setting the �r, �� stress points for the two layers at
diametrically opposite points on the relevant biaxial yield locus,
for example C and C� in Fig. 4(b). If the distance of the two
layers from the central surface is � z and the thickness of
the layers is �z, we have the following expressions for the
corresponding contributions of bending moment:

�Mr � 2 z �c
r �z

�M� � 2 z �c
� �z

� (1)

where �c
r, �c

� are the coordinates of point C.
If we now assign the stress state C to all layers above the

centre surface and state C� to all layers below the centre

Fig. 3. Equilibrium of a small element of the plate.
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Fig. 4. Biaxial plastic bending of an element of the plate.

Fig. 5. The bending moment and stress distribution at collapse of a
simply supported plate.

surface, we can integrate through the thickness to give the
following “safe” pure bending moments:

Mr � �c
r h2/4

M� � �c
� h2/4

� (2)

The locus in the Mr, M� space, shown in Fig. 4(c) is similar
to the yield locus in �r,�� space. The leading dimension is Mo:

Mo � Y h2/4 (3)

where Y represents the yield stress of the material in simple
tension (see Fig. 4(b)).

2.2 Equations of Equilibrium

We obtain the necessary equilibrium Eq. for the plate by
considering the equilibrium of the small element shown in Fig.
3. Two non-trivial relationships are found by taking moments
about a local circumferential axis and resolving in the direction
perpendicular to the plate, respectively:

d
dr

(rMr) � M� � rQr (4)

d
dr

(rQr) � pr (5)

In the present problem, Eq. (5) may be integrated to give

Qr � pr/2 (6)

This equation may also be obtained by considering the
equilibrium of a disk “cut out” at radius r. Substituting for Qr

in Eq. (4) (to eliminate the resultant stress which does not
appear in the yield condition) we obtain

d
dr

(rMr) � M� � pr2/2 (7)

2.3 Collapse Pressure in Simply Supported Plates

To find the collapse pressure pc, we must satisfy the equilibrium
equation (Eq. (7)) without violating the yield condition, Fig.
4(c), as well as the boundary condition corresponding to the
simple support which is,

Mr � 0 at r � a (8)

It seems clear, intuitively, in the present problem that both
M� and Mr will be positive throughout, and so we might guess
that the Mr, M� “trajectory” will lie on either PQ or PU in
Fig. 4(c). If we put Mr � Mo (corresponding to PU) in Eq.
(7), we find M� � Mo for positive values of p, which violates
the yield condition. We, therefore, try the alternative, M� �
Mo in Eq. (7) and integrate to give:

Mr � Mo �
pr2

6
	

C
r

(9)

C is a constant of integration. According to this equation, Mr

is infinite at the centre of the plate if C is finite; we conclude
from this that C must be zero, so

Mr � Mo �
pr2

6
(10)

Finally, using the boundary condition (8), we obtain

pc � 6Mo/a2 (11)

after checking that the Mr, M� trajectory does not extend
beyond the postulated segment PQ.

From Eqs (3) and (11), we have
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Fig. 6. Radial distribution of bending moments and stresses at collapse
of a clamped-edge plate (plate radius b � 1.37a).

Fig. 7. Collapse pressure vs. plate thickness ratio.

pc

Y
�

3
2 � h

a �2

(12)

which determines the collapse pressure pc as a function of the
yield strength in simple tension, and the thickness to radius
ratio of the plate.

2.4 Collapse Pressure in a Clamped Circular Plate

It is relatively simple to extend the analysis above to deal
with a circular plate which is supported by a fully clamped
edge. It is intuitively obvious that Mr will be negative at and
near the clamped edge, so the Mr, M� trajectory PQ, Fig. 4(c),
will be inadequate by itself. Now, Mr must be a continuous
function of r, and so there must exist a radius within the
clamped plate at which Mr � 0. Within this radius, conditions
are exactly the same as for a simply supported plate of a
smaller radius. Our best strategy, therefore, is to build on our
previous work, using the value of p given by Eq. (11) and
regarding a as the radius at which the Mr, M� trajectory changes
from one edge of the yield locus to another. We shall seek a
larger radius b for the clamped edge, and having found it, we
shall be able to express the safe pressure to avoid collapse in
terms of this radius.

Substituting for p from Eq. (11), the equilibrium equation
(Eq. (7)) becomes:

d
dr

(rMr) � M� �
3Mor2

a2 (13)

It seems clear that, for r � a, we shall be in the second
quadrant of Mr, M� space, for which the equation of the yield
condition is (Fig. 4(c))

M� � Mr � Mo (14)

To solve these two Eq. simultaneously, we first differentiate
the product in Eq. (13) and obtain

dMr

dr
�

M� � Mr

r
�

3M0r
a2 (15)

Using Eq. (14) and integrating, we have:

Mr � Mo ln r �
3
2

Mor2

a2 	 C (16)

The constant of integration, C, is determined by the fact that
Mr � 0 at r � a; this gives us

Mr � Mo � ln (r/a) � 3/2 Mo � � r
a �2

� 1 � (17)

This Eq. is valid only if the Mr, M� trajectory is on QR, Fig.
4(c). It is not possible to extend the trajectory into RS, and
so point R must correspond to the clamped edge, r � b. From
Eq. (17), we find that the clamped edge is reached at b/a �
1.37. As the pressure p � 6Mo/a2 is a safe pressure for a
clamped plate of radius b, we obtain, finally,

pc � 11.3 Mo/b2

pc

Y
� 3 � h

a �2 � (18)

from Eq. (3). Comparing Eqs (11) and (18) we see that by
clamping the edge of a uniform circular plate we almost double
its collapse pressure or simply its load-carrying capacity.
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Fig. 8. Lateral deformation of simply supported plates.

2.5 Modes of Deformation

In plastic collapse analysis, we will assume that deflections
are small, even in the plastic collapse mode, and the material
is perfectly elastic-plastic. With these assumptions, we ignore
the possible strain hardening of the material and the possible
effect of membrane stresses due to large deflections. For
circular plates, a possible collapse mechanism is shown in Fig.
2(b). This “conical mode” is a virtual displacement that appears
after the collapse load is reached.

The lateral deflection w of the circular plate during the early
stages of deformation is determined non-dimensionally from
the following two expressions [6]:

� w
h � � � 1 � � r

a �2 �2 � a
h �4 3P(1 � 
2 )

16E

for clamped edge case (19)

� w
h � �

3P(1 � 
2

16E � a
h �4 � 1 � � r

a �2 �
� � 5 	 


1 	 
 � � � r
a �2 � (20)

for simply supported case

where E and 
 are the Young’s modulus of elasticity and
Poisson’s ratio, respectively. If lateral deflection is not small,
it becomes necessary to account for the effect of midsurface
stretching, which we have thus far ignored in the derivation
of Eqs (19) and (20). The effect introduces nonlinearities, so
that lateral deflection is not directly proportional to lateral
load. Details of analysis appear in other publications [7–9].
For a uniformly loaded circular plate whose edge is simply
supported, an approximate expression for the central deflection
wo(r � 0) is given in [9] for 
 � 0.3 as:
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Fig. 9. Lateral deformation of clamped-edge plates.

� wo

h � 	 0.262� wo

h �3

�
3P(1 � 
2)

4E � a
h �4

(21)

When the load, dimensions, and elastic properties are pre-
scribed, wo/h is obtained from the equation.

3. Results and Discussion

A detailed analysis of a hydroformed circular plate processed
by the effect of lateral steadily increasing static pressure is
carried out in this study. Both the simply supported and
clamped edge cases are investigated. It is intended to determine
the distribution of bending moments as well as the stresses
throughout the plate, and consequently the location of a critical
zone where the plate may fail owing to excessive thinning
and/or rupture is expected to take place, resulting in limiting
the application of the hydroforming technique. Lateral plate

deformation is also determined and an upper limit on its
magnitude is established.

3.1 Bending Moment and Stress Distribution

3.1.1 Simply Supported Plates

The bending moment distribution in the radial direction at the
onset of yielding Mr for a simply supported plate is determined
from Eqs (10) and (11) as

Mr

Mo

� 1 � � r
a �2 (22)

The bending moment in the tangential direction is, however,
constant throughout the plate and is equal to the upper limit
Mo, i.e.

M�

Mo

� 1 (23)
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Fig. 10. Lateral deformation vs. applied pressure for simply supported plates.

The radial and tangential stresses �r and ��, respectively,
were determined from Eqs (2) and (3) and found to be similar
to their bending moment counter values, i.e.

�r

Y
� 1 � � r

a �2

��

Y
� 1

� (24)

Equations (22) to (24) are plotted in Fig. 5 and maximum
(critical) values are found to take place at the centre of the
plate, as shown.

3.1.2 Clamped Edge Plates

The bending moment distribution is determined using the
results of the simply supported plate case for positive values
of Mr, and Eqs (14) and (17) for negative values of Mr. The

results are presented in Fig. 6 where Mr reaches zero at
r � a.

Both Mr and M� decrease in value as r/a increases beyond
unity. At the plate edge (r/a � 1.37) the magnitude of Mr/Mo

becomes negative and M�/Mo diminishes. Both stresses �r and
�� follow the trend of their counterparts Mr and M�, as shown
in Fig. 6.

3.2 Collapse Pressure

The collapse pressure for simply supported plates is determined
from Eq. (12), and from Eq. (18) for clamped-edge plates. It
is presented in Fig. 7 for various thickness to radius ratios.
The figure indicates that increasing the thickness to radius ratio
tends to increase the collapse pressure and the relationship
is parabolic.
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Fig. 11. Lateral deformation vs. applied pressure for clamped-edge plates.

3.3 Lateral Deformation

Lateral deformation of plates is obtainable from Eq. (19) for
the clamped-edge case, and from Eq. (20) for the simply
supported case. The deformation, in general, is dependent on
the applied pressure, plate geometry (h,a) and material elastic
properties (E,
). The deformation, as given in Eqs (19) and
(20), increases with increasing applied pressure until collapse is
reached. The collapse pressure which limits the plate deformation
can be determined non-dimensionally from Eqs (12) and (18) as:

Pc

E
�

3
2 � Y

E � � h
a �2

for simply supported plates (25a)

Pc

E
� 3 � Y

E � � h
b �2

for clamped-edge plates (25b)

where the righthand sides of Eqs (25a) and (25b) are constant
for a given thickness to radius ratio and known plate material.
The Y/E ratio is a material constant which is approximately
equal to 3 � 10�3 for most engineering materials. This value
is adopted in this study.

The variation of lateral deformation throughout the plate,
i.e. from centre to edge, is plotted in Figs 8 and 9 for
increasing pressures and a given thickness to radius ratio. The
curve at collapse is shown by hatching in each figure.

The lateral deformation versus applied pressure is also
presented throughout the plate, and the results are presented
in Fig. 10 for simply supported plates and in Fig. 11 for
clamped-edge plates. The collapse pressure is also shown on
both figures.

For excessive deformation, Eq. (21) should be used instead
of Eq. (20) for calculating the lateral deformation at the vicinity
of the plate centre (r/a � 0). The results are presented in Fig.
12 where the collapse pressure trajectory is shown for each
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Fig. 12. Excessive central deformation of simply supported plates.

a/h value, which agrees well with the collapse pressure results
in Fig. 10. However, the difference in results between the
magnitudes of deformation given in Fig. 10 and those given
in Fig. 12 is due to the fact that the results obtained in Fig.
10 are based on elastic analysis whereas those obtained in Fig.
12 are approximate and measured only at the onset of collapse,
where the deformation keeps on increasing without or with
little increase in the applied pressure.

4. Experimental Verification of Analytical
Results

The criterion outlined in this study was verified using the
experimental results given in [10] in which a total of 19 edge-
clamped circular plates made of aluminium alloys, stainless
steel and a magnesium alloy were tested under increasing
normal hydraulic pressure. The centre deflection of the plates
was measured in each case and plotted against the applied
pressure. All tested plates were 127 mm (5 in) in diameter and
had thicknesses ranging from 0.378 to 1.842 mm. For verifi-
cation, it was decided to quote the experiments carried out on
the three 24S – RT alclad aluminium plates (A, B and C) and
compare the results given in [10] with those outlined in this
study under similar loading conditions. The alclad aluminium
alloy has a Young’s modulus of elasticity of 71.66 GPa (10.4
� 106 p.s.i.), an average yield strength of 380.3 MPa (55.2
kips/in2) and a Poisson’s ratio of 0.3.

The superposition of the experimental and analytical results
is shown in Fig. 13, which indicates a good correlation between
them, with no more than a 12% deviation from the beginning
of loading until the onset of collapse, for the three tested
plates. Beyond collapse, the plates deform plastically and the
analytical results begin to be greater than the experimental

Fig. 13. Experimental and analytical results of 24S-RT alclad alu-
minium clamped plates subjected to normal pressure.

ones. This is mainly due to the fact that the plates become
strain hardened during plastic deformation. The effect of strain
hardening is not accounted for in the procedure of this study,
which if accounted for could lead to even better correlation
of the results. A study of this effect is planned. Nevertheless,
we can say that the analytical and experimental results follow
the same trend, and the procedure outlined in this study can
be safely adopted for hydroforming applications that involve
thin plates processed by lateral pressure.

5. Conclusions

The analysis carried out in this study helps to determine the
bending moment, stress, and deformation distributions in a
circular plate when processed by hydroforming. Collapse press-
ure, at which the plate material starts to undergo excessive
deformation with little or no additional applied pressure, is
also determined. The material is assumed to be elastic-perfectly
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plastic with a negligible strain-hardening effect. The following
conclusions are obtained from the results presented in the study.

1. The distributions of bending moments, stresses, and defor-
mation, together with zones where these values reach max-
ima, are obtained using the principles of strength of
materials. These maximum values occur near the centre of
the plate, and, consequently, it is anticipated that maximum
reduction of plate thickness that leads to rupture will also
occur near the centre.

2. Clamping the plate during hydroforming helps to limit the
lateral deflection and increase the pressure at collapse.

3. Collapse pressure was found to depend mainly on the plate
edge conditions, its thickness to radius ratio and the material
elastic properties. The collapse pressure is defined in this
study as the pressure at which excessive deformation is
obtained with or without little increase in the applied press-
ure.

4. Plate deformation increases with increasing applied pressure,
but is restricted by collapse and tends to be less if the
edges are clamped.
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Nomenclature

a circular plate radius
E Young’s modulus of elasticity
h plate thickness
Mo bending moment upper limit
Mr bending moment in radial direction per unit length
M� bending moment in tangential direction per unit length
p transverse load per unit area of plate
pc collapse pressure
Qr shearing stress
r,� polar coordinates
Y yield strength of material in simple tension
�r radial stress
�� tangential stress

 Poisson’s ratio
w plate lateral deflection
wo plate lateral deflection at its centre


