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Reverse engineering refers to the process of obtaining a CAD
model from an existing physical part. Advances in laser scan-
ning technologies have facilitated this process by sampling
part surface data with speed and accuracy. With the help of
this technology, it is now possible to acquire the geometry of
a part having complex and freeform surfaces. However, it
creates the burden of large amounts of point data which must
be manipulated, therefore, data from a laser scan must be
significantly reduced to proceed with the computations and to
lower the storage requirement. Many point data reduction
methods for image processing have been developed in the past.
However, there is little published work on laser-scanned data,
and what exists focuses only on 2D point data.

This paper presents a data reduction method that reduces
the amount of 3D point data using part geometry information.
The method reduces the point data, based on normal values
of points using 3D grids. The method is applied to two sample
models and the results are discussed.

Keywords: Data reduction; Reverse engineering; Freeform sur-
faces; 3D grid

1. Introduction

Reverse engineering in this study refers to a technology that
allows a CAD model to be obtained from an existing physical
part. This is necessary when the CAD model for an existing
part is not available for various reasons, e.g.:

1. When a clay model is first built by a designer.
2. When a part has undergone many design changes.
3. When the drawing of a part is lost or no longer available.

In a reverse engineering process, a CAD model is created
based on the point data sampled from the surfaces of a part.
Initially, point data are generated by scanning or probing the
part surface. These point data generally require pre-processing
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operations, such as the arrangement of points or the removal
of spikes. The pre-processed point data are then segmented if
a surface model is required. A polygonised model, such as
one with a stereolithography (STL) format, can also be gener-
ated from the point data.

In capturing the surface data of a part, either a contact-type
measuring device or a non-contact-type device has been used.
The contact-type devices provide better accuracy, but these are
generally very slow for point data acquisition. Recent advances
in laser scanning technologies have provided a non-contact-
type measuring device that can scan parts with a very high
speed and with good accuracy. These machines enabled us to
capture the surface data of a part with complex and freeform
surfaces. Now, however, another problem has been created
because of the large amount of point data that is obtained in
the data acquisition step. These data require a large storage
space and increase computational time significantly.

Data reduction, therefore, has become an important issue in
reverse engineering. Many data reduction methods have been
proposed in the area of image processing, but they were mostly
designed for dealing with mesh point data. Only a few methods
were developed that could be applied directly to the point data
generated from measurement devices, but they were also lim-
ited to specific types, such as 2D or planar sets of point data.
The proposed 3D grid-based point data reduction method can
be applied to a 3D point cloud data. This paper first reviews
the existing point data reduction methods in Section 2. The
3D grid method is described in Section 3, and the proposed
method is applied to two sample models and the results are
discussed in Section 4.

2. Review of the Past Point Data
Reduction Methods

In visualising or analysing a scanned object, meshed models,
in particular those using triangular patches, have been used.
For these triangulated models, data reduction is performed by
reducing the number of triangles based on application-depen-
dent criteria; then, with the remaining nodes, triangulation is
performed repeatedly. The procedure of a conventional
reduction method is shown in Fig. 1. Data reduction methods
based on meshed models can be divided into two categories:
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Fig. 1. The procedure of a conventional reduction method based on
triangulated models.

manipulation of the triangulated point data and the use of
level-of-detail (LOD) methods.

Chen etal. [1] proposed a genetic algorithm for optimised
retriangulation, in which they presented an optimised STL file
generation method for reducing laser scanned data. Data
reduction was performed by decreasing the number of triangles
in an STL file, using the normal vectors of the triangles. After
removal of some of the triangles, retriangulation is performed.
Hamann [2] presented a new reduction method for triangulation
files based on an iterative triangle removal principle. As a
measure of reduction in the file size, each triangulation is
weighted according to the principal curvature estimates at its
vertices and according to the interior angles. Véron and Léon
[3] introduced an approach to reduce the number of points in
a polyhedral model using error zones assigned to each point
of the initial polyhedron, so that the simplified polyhedron
intersects with each error zone. Schroeder etal. [4] have
developed an algorithm that simplifies the mesh by removing
vertices. Vertices are identified through a distance-to-plane
criterion, where an average plane is formed through a vertex
and through its adjacent vertices. If the vertex is within a
specified distance of the average plane, the vertex is deleted.
Hoppe et al. [S] developed a data reduction scheme in terms
of a mesh optimisation problem, by ordering the edges accord-
ing to an energy minimisation function.

LOD construction algorithms can be applied to structured
or unstructured 3D meshes. Fischer and Park [6] generated
multilevel-of-detail models for design and manufacturing in
reverse engineering. The 3D meshes are represented by a 2D
structure: the quadtree structure. The proposed algorithm
extracts one level from the multilevel model according to a
given error tolerance [7,8]. Using this method, the reconstructed
geometric model is represented by hierarchical levels of detail.

For reducing the laser scanned data, conventional sampling
methods, such as uniform sampling, chordal deviation sampling,
and space sampling, have been used widely because of their
simplicity and fast computation time [9,10]. The uniform sam-
pling method reduces the number of points in a data set, with
the user-specified sampling rate. In this method, the point cloud
is sampled at every ith point, where i is the sampling rate.
This method requires the points in the scanned data to be
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Fig. 2. The procedure of the 3D grid method.

ordered in advance. The chordal deviation method selectively
extracts points from the point clouds, while preserving the
original point cloud to a specified accuracy. This operation is
performed defining two parameters: the maximum deviation
distance, and the maximum distance between points. The
maximum deviation distance guarantees that all removed points
are within the specified tolerance from the remaining ones.
The maximum distance between points guarantees that if the
distance to a considered point from the last retained point is
larger than the specified distance, the considered point is
retained. This method can preserve the points of high variation
and information to define shape variations in the data. It can
also be used to identify feature lines and edges. The space
sampling method extracts points with a defined 3D neighbour-
hood size. In this method, only points that are further away
than a specified distance from one another are kept. All these
sampling methods are dependent on the order of points in the
scan data.

The data reduction method proposed in this paper uses a
grid method and the related research is described below.

Scanpath  Sensorn

Scan line

Fig. 3. Laser scanning.
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Fig. 4. Triangulation of point data. (a) Point data measured by a line
laser scanner. (b) Triangulated point data.
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Fig. 6. Edge generation of two scan lines.

Martin etal. [11] proposed a data reduction method using
2D uniform grids in their EU Copernicus project. They used
uniform sized 2D grids with a “median filtering” approach,
which has been widely used in image processing. The pro-
cedure starts by choosing a grid structure, and input data points
are assigned to the corresponding grid. For the points assigned
to a given grid, a point in the median location is selected to
represent data points belonging to that grid. This approach
intends to overcome the problem of z-axis inaccuracies,
resulting from laser scanning, that are not resolved by averaging
or simple sampling methods. It, however, has drawbacks since
it uses only uniform grids without any consideration of the
part shape.

Lee etal. [12] and Suk [13] proposed improved 2D grid
methods that effectively reduce point data, using part geometry
information. They used two methods that can be applied to
different part shapes:

1. A simple part shape, such as quadrics.

2. A complicated shape with freeform surfaces.

The one-directional non-uniform grid method can be applied
to the former and the bidirectional non-uniform grid method

to the latter. The one-directional non-uniform grid method
extracts points where a significant curvature change occurs and
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Fig. 8. Normal calculation.

non-uniform grids are generated along a direction based upon
these points. If the length of a grid is too long, it is divided
into maximum allowable lengths defined by the user. After
generating the non-uniform grids, a representative point is
selected within each cell, based on median filtering.

The bidirectional non-uniform grid method uses point normal
values as part geometry information. A planar set of point
data is gridded in the same manner as for the uniform grid
method and each grid is subdivided based on its point normal
values. During subdivision of the grids, the quadtree is used,
that is, a grid is divided into four subgrids, if necessary.

With the non-uniform grids generated after subdivision, a
representative point is extracted from each grid. These 2D grid
methods, however, work only for data acquired with one
scanning direction and they require the merging of point data
after data reduction if a complete 3D point data model is need-
ed.

In this paper, a 3D grid method that can overcome the
limitations of the previous methods is proposed. This method
deals directly with the entire 3D point data constructed by the
registration and integration of multiple scanned data sets and
does not require merging of points in advance.

3. The 3D Grid Method

The 3D grid method can handle the entire surface of a 3D
object, whether it is a single point cloud or consists of multiple
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Fig. 9. Octree structure. (a) Cube having octants after subdividing. (b) Octree.

point clouds. However, where an object consists of multiple
point clouds, they must be registered under a single coordinate
system. The proposed method uses point normal values on the
surface of the part, from which 3D non-uniform grids are
generated using the standard deviation of the normal values.
Data reduction is performed by selecting one representative
point and discarding other points from each grid. The procedure
of the 3D grid method is shown in Fig. 2, and the details are
described in the following subsections.

3.1 Normal Estimation

To obtain information about the surface geometry of a part,
various curvature values, such as Gaussian, mean, and principal
curvatures, have been used. Since it is difficult to extract this
information about the surface of the part directly from point
data, the model is usually triangulated; so that, the curvature
data or normal values of the triangles are obtained. In the
proposed method, the normal values of points, the so-called
point normals, are used instead to extract the geometric infor-
mation of the part.

Depending on the scanning devices or scanning methods,
point data can be classified as structured or unstructured. The
point data obtained by laser scanners or Moiré scanners are
listed as structured data whereas the point data obtained by
portable coordinate measuring machines (CMMs) or handheld
scanners are unstructured. In estimating point normals, Delau-
nay triangulation is usually used, regardless of point data types.
For unstructured point data, point normals are calculated after
Delaunay triangulation. For structured point data, however,
different normal estimation methods can be used, considering
the pattern of the point data. In this paper, a quick and simple
normal estimation algorithm is developed for the point data
obtained by a laser scanner.

Point data generated by a laser scanner with a stripe type
light source has an inherent order. Since a scan path is defined
as a series of line segments as shown in Fig. 3, each line in
the path is ordered, as are the points in each scan line.
The normal estimation values can be calculated quickly using
this pattern.

In the scanning operation of non-contact devices such as
laser and Moiré scanners, an object surface must be measured
from one direction or from multiple directions. When a single

direction is used, the part surface can be scanned at once at
one orientation. When multiple directions are required, the part
must be scanned several times at different orientations. In
general, because of model complexity and measurement limi-
tations, multiple digitised data sets scanned with different
orientations are required to cover the entire surface of a 3D
object. Upon completion of scanning all surfaces, the point
clouds from different views should be registered together to
construct a complete 3D model [14].

The 2D Delaunay triangulation can be used for normal
estimation of the point data obtained from a single direction.
Delaunay triangulation can be applied directly to the given set
of points, and this method has been used widely for generating
the triangular mesh from scattered point data. A Delaunay
triangle has the property that its circumscribing circle does not
contain any other point [15]. Two-dimensional algorithms can
be used for constructing the triangles from the single-view
scan data set. However, 2D Delaunay triangulation contains
unnecessary operations and it takes a long time for the struc-
tured point data acquired by the laser scanner. The point
normal estimation algorithm used in this paper is described
below. After triangulation, point normals are calculated from
the circumscribed triangles.

3.1.1 The proposed normal estimation method

A part is usually scanned several times at different orientations
and for every scan, a single-view point cloud is obtained. For
these point clouds, 2D triangulation can be used for calculating
the normal estimates. Figure 4(a) shows a set of point data
viewed from the laser probe. In order to estimate point normals,

Fig. 10. Bounding box and initial grids.
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Fig. 11. Procedure of grid subdivision.

the data set from each scan shown in Fig. 3 must be triangu-
lated. On the data arranged in this way, triangulation can be
performed based on two neighbouring scan lines. Figure 4(b)
shows an example of triangulation between the scan lines.
Three vertices of a triangle cannot be in one scan line; that
is, when two vertices are in one scan line, the last one must
be in the other. Therefore, two edges are used for calculation
since they are sufficient to obtain the normal value of a
triangle, as shown in Fig. 5. Using the cross-product of the
two edges, the normal value of a triangle is calculated and it
is normalised as shown in Eq. (1).

op X oq
lop X oq|

It is assumed that the origin of each two-edge stays on the
second line, as shown in Fig. 6. Since this method is based
on 2D triangulation and the x-coordinate values of each scan
line are the same, the distance along the y-axis is the criterion
for deciding edges. With the given two scan lines, the first
edge for the first two-edge runs from the first point, 0,, of the
second line to the first point, p,, of the first line. Once the
first edge is decided, the destination of the second edge must
be the next closest point to the origin. When the destination
vertex, g;, of the second edge is selected from the first line,

N= D
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the second edge, Tq[, becomes the first edge, 0i+1Pi+1, of the
next two-edge (see Fig. 7(a)). When the destination vertex, g;,
is selected from the second line, a new edge, 0;+1Pi+1, that
starts from the destination vertex, g;, of the second edge to
the destination point, p;, of the first two-edge is generated for
the first edge, 0i+1Pi+1, of the next two-edge so that the origin,
0;, moves to the destination point, ¢;,, of the second edge
(see Fig. 7(b)). By determining the edges with this strategy,
the normal orientations of triangles are arranged.

After calculation of normal value estimates for all two-
edges, point normals are determined. As an example, for point
P shown in Fig. 8, a group of two-edges that has P as one
of their vertices is found. To determine the point normal
estimate at the point, the normal values of the group are
averaged and normalised using the following equation:

m m
2 |2
i=1 i=1

ﬁrmrmu[ = = (2)
m

m

where n is the number of two-edges.

3.2 3D Grid Subdivision Using an Octree

Spatial decomposition methods based on octree structures have
been proposed for use as approximate representations of geo-
metric objects [16,17]. The basic concept of the octree represen-
tation is of placing the object of interest in a parallelepiped,
typically a cube, which totally encloses it. As shown by Fig.
9, this parallelepiped is then subdivided into its 8 octants,
which are then recursively subdivided a number of times based
on the criteria defined by the application. In approximating a
geometric object, the octants completely inside or outside the
object are not subdivided further, while those octants which
contain a portion of the object’s boundary continue to be
subdivided to the required level. The concept of octrees is
used here for data reduction. The criterion used for subdividing
a cube is the standard deviation of point normal values.

3.3 Grid Generation and Subdivision

After calculating the point normals, the normal values are
stored using a point data structure, which has x-, y-, and z-
coordinates and x-, y-, and z-normal components. Then, all
the point clouds belonging to an object must go through a
registration process.

After the registration is completed, a bounding box is created
and then the initial grid is generated. According to the shape
of the scanned parts, the number of initial cells should be
specified. The shortest axis of the bounding box among the
x-, y-, and z-axes, is selected to decide this number, which is
determined by dividing the shortest axis of the bounding box
with the interactive input-value by the user.

Figure 10(a) shows a bounding box encasing a part that has
a sloped surface, and Fig. 10(b) shows its initial grid and
cells. Among these cells, unnecessary ones that do not contain
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Fig. 12. Example of a human vertebra. (a) Scanned point data. (b) Point data with normal. (c) Complete model with the bounding box.

Initial grids. (e) Non-uniform 3D grids. (f) Reduced point data.
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Fig. 13. The CAD model of the phone.

any points are eliminated. Then each cell is subdivided using
octree decomposition and empty cells are again eliminated. For
subdivision, the standard deviation of point normals within
each initial cell is calculated. When the standard deviation is
larger than the user-defined tolerance, the cell is divided into
8 cells. This subdivision process continues until the divided
cells meet the termination conditions. The termination con-
ditions are met when the standard deviation of point normals
within a cell is smaller than the given tolerance, or a cell

(@)
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contains only one point. Figure 11 shows the subdivision
process using a flowchart.

3.4 Extraction of Points

As a result of cell subdivision, many cells are generated where
the part geometry changes greatly, whereas a few grids appear
where the part geometry shows little change. From these cells,
the points that can represent part geometry are extracted. In
selecting a point that represents the points within a given cell,
the average of the normal values is used. Therefore, a point
whose normal value is closest to the average of the points
within the cell is chosen, and the selected point is regarded
as the most representative point among the points within
that cell.

In this method, the level of data reduction is determined by
two factors: the number of initial cells, and the size of the
user-defined tolerance. For surface fitting of a plane, as an
example, the data points must appear within a certain interval
so that a surface fitting operation can be performed. In this
case, the size of the initial cells is determined by these
intervals, after which the number is decided accordingly.

(b)

Fig. 14. Reduced point data of the phone. (¢) 3D grid method. (b) Uniform sampling. (¢) Space sampling. (d) Chordal deviation sampling.
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Fig. 15. Quarter section of the phone model. (a) Quarter section of the model. (b) Five surface patches. (c¢) Segmented point data.

In the developed program, the number of initial cells is
determined before the tolerance. The tolerance is the main
factor in data reduction; the smaller the tolerance the greater
the number of points that remain, and vice versa. In order to
fit a surface to the reduced point data, the data should be
distributed evenly. The distance between reduced points is
dependent on the size of the initial cells, which may affect
the accuracy of the model. If the user wants the remaining
points to be distributed evenly to maintain accuracy, a great
number of initial grids must be used. If the user wants a lower
number of points while still maintaining the accuracy, the
reduction process should start with a lower number of initial
cells and a higher tolerance.

4. Application Examples
The proposed grid methods were applied to sample parts and

the results are discussed for two models. In implementing the
data reduction methods, a commercial laser scanner, Surveyor

1200 from Laser Design was used to acquire the point data
and a commercial CMM, Bright Apex-204 from Mitutoyo was
used to measure planar surfaces. A reverse engineering software
package, Surfacer 7.01, was used for the sampling of data
points, surface fitting, and error estimation. The algorithm for
the 3D grid method was developed and written in C++, MFC
(Microsoft Fundamental Classes), and OpenGL. The program
for the 3D grid method was run on a Pentium II 350 PC.

4.1 Human Vertebra Model

The data reduction methods were tested using point data from
a section of a human spine. Figure 12 shows the point data
of a human vertebra during implementation of the 3D grid
method. To obtain a full 3D model, the spine section was
scanned at four orientations, as shown in Fig. 12(a). The point
normals were then calculated for each set of point data, as
shown in Fig. 12(b). After calculating the point normals, the
point clouds from different orientations were registered in a
single coordinate system to make a full 3D model. In order



Table 1. Comparison result for the 3D grid method.

Ratio Number of Maximum Average
points deviation (mm) deviation (mm)
Original
86 448
Three-dimensional grid method
1/3 29120 0.16275 0.00975
1/5 17 736 0.18698 0.01398
1/10 8900 0.26807 0.01599
1/15 6975 0.57787 0.03605
1/50 1730 1.06150 0.11289
Uniform sampling
1/3 28 816 0.21641 0.01612
1/5 17 300 0.36726 0.02003
1/10 8645 0.34369 0.04270
1/15 6650 1.03837 0.05203
1/50 1729 2.70593 0.26496
Space sampling
1/3 29 156 0.26130 0.01697
1/5 17 754 0.43019 0.01826
1/10 8987 0.54235 0.02827
1/15 6981 1.30583 0.04716
1/50 1746 2.05261 0.26764
Chordal deviation sampling

1/3 29 124 0.24843 0.01231
1/5 17 736 0.36557 0.01705
1/10 8920 0.30546 0.03169
1/15 6962 0.95479 0.07427
1/50 1741 2.49202 0.36324

to make 3D non-uniform cells, a bounding box that encases
the full 3D model was created, as shown in Fig. 12(c). Based
on the bounding box, the initial cells were generated. Figure
12(d) shows the initial cells after the elimination of unnecessary
ones. Then, with the given tolerance, recursive octree-based
subdivision was performed. The non-uniform 3D cells as the
result of subdivision are shown in Fig. 12(e). After subdivision,
points were extracted from each cell and are shown in Fig.

12(p.

4.2 A Phone Model

The CAD model of a phone (Fig. 13), was also used to
evaluate the performance of the 3D grid method. In this case,
the point data is simulated by converting a surface model into
an STL model with a small tolerance. The nodes of the STL
model are regarded as measured points and no noise was added
to the point data, so they can be considered as point data that
already had noise filtering.

Figure 14 shows the phone model data for different methods
using a data reduction of 90%. The phone model shown in
Fig. 14(a) by the 3D grid method shows more points distributed
at the edges compared to those shown in Figs 14(b) and 14(c),
corresponding to the uniform and space sampling methods,
respectively. For the point data reduced by chordal deviation
sampling, the edges were preserved fairly well, as shown in
Fig. 14(d), however, the remaining point data does not perform
well for later surface fitting. When using the same number of
points, the phone model generated by the 3D grid method
maintains better detail at the edges.
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Fig. 16. Error analysis of the 3D grid method. (¢) Maximum deviation.
(b) Average deviation.

The phone model is symmetric with respect to both x- and
y-axes, therefore, a quarter of the full model, shown in Fig.
15(a), was used to compare the performances between data
reduction methods. This quarter section consists of five surface
patches, as shown in Fig. 15(b), and they are used as reference
surfaces for comparison. The results of the 3D grid method
were compared with those from three conventional sampling
methods: uniform sampling, space sampling, and chordal devi-
ation sampling. The data reduction ratio for each method varied
from 1/3 up to 1/50.

To compare the errors between the point clouds generated
by the different reduction methods, each point cloud was
segmented, as shown by Fig. 15(c), based on the reference
surface patches from the CAD model. Then, each segmented
point cloud was fitted to a surface using the “fit-free-form”
command in Surfacer 9.0. The difference between the reference
surface patch and the surface fitted by the point data for each
reduction method is summarised in Table 1. Figure 16(a)
shows the maximum error of each method, whereas Fig. 16(b)
shows the average error. These graphs show that the point
data reduced using the 3D grid method maintain a better
accuracy than those reduced by the other methods. As the
reduction ratio increases, error increases greatly in the other
methods.
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5. Conclusions

A point data reduction method using 3D grids is proposed in
this paper. The method extracts points necessary for rep-
resenting a part geometry by eliminating redundant or unnecess-
ary points. When compared to conventional sampling methods,
such as uniform, space, and chordal deviation sampling, the
proposed method shows better performance in terms of accu-
racy when considering the same number of points.

Since 3D grids are generated while reducing point data, they
can be used not only for data reduction, but also for other
applications. Triangulation can be performed by the marching
cube algorithm using 3D grids, because the cells of the 3D
grids are nearly cubes. The resulting cells are similar to voxels
in terms of their shapes and, therefore, they can also be used
for volumetric representations. The cross-sectional slice data
that is required for fabricating rapid prototyping (RP) parts
can also be generated efficiently from the 3D grid based model.
For example, if a part shape changes quickly at a certain
height of the part, many small-sized cells will be distributed
in that area. By setting the slice thickness to be the same as
the grid size, the fine features of a part can be fabricated. It
is assumed that the RP machine supports adaptive slicing in
this case.

For further research, in the normal estimation algorithm, the
lengths of edges should be considered in determining the
normal values as the areas of triangles are considered in
Gaussian and mean curvatures. Though noise filtering was
beyond the scope of this research, effective noise filtering is
essential for the quality of point data since the 3D grid method
is noise-sensitive.
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