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A Novel Artificial Neural Networks Force Model for End Milling
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The physical process of multipoint metal cutting depends on a
large number of parameters that are strongly interlinked. A
number of empirical and semimechanistic models are described
in the literature. This paper uses the artificial neural networks
(ANNs) approach to evolve a comprehensive model for critical
process parameters, such as cutting force, based on a set of
input machining conditions. A set of eight input variables is
chosen to represent the machining conditions, and process
parameters (such as maximum force and mean force) are
predicted. Exhaustive experimentation is conducted to develop
the model and to validate it. The model is tested for a typical
machining scenario found in industry, namely pocket-milling.
Excellent agreement between the simulated and experimental
forces is found.
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1. Literature Review

Liu and Wang [1] aptly sum up the scenario. As the machining
process is nonlinear and time-dependent, it is difficult for the
traditional identification methods to provide an accurate model.
Compared to traditional computing methods, the artificial neural
networks (ANNs) are robust and global. ANNs have the charac-
teristics of universal approximation, parallel distributed pro-
cessing, hardware implementation, learning and adaptation, and
multivariable systems. Because of this, ANNs are widely used
for system modelling, function optimising, image processing,
and intelligent control. ANNs give an implicit relationship
between the input(s) and output(s) by learning from a data set
that represents the behaviour of a system [2].

Lazaro et al. [3], in their ANN implementations, evolve
knowledge of the machining environment by training these
networks on run-time data. This is done every time a new part
is encountered. A tape-tuning module has been presented
which, for obvious reasons, finds use in the optimisation of
mass-produced machined parts. It is, however, the efficient use
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of the limited available knowledge of the process that makes
this approach interesting [3–7]. The weights are calibrated by
training the algorithm on cutting-test results, which represent
turning a work material with specified cutting tools. Tool wear
is measured for each case, and weights are identified using the
iterative learning process of back-propagation (BP). This is the
most widely used optimisation procedure based on gradient
descent that adjusts the weights to reduce the system error or
cost function which is estimated by the total error for all
patterns. This mean square error cost function is defined as E,

E �
1
p�

p

p�1

Ep (1)

where Ep � squared error function for each pattern p.
Liu and Wang [1] also propose a modified BP ANN which

adjusts its learning rate and adds a dynamic factor in the
learning process for the on-line modelling of the milling system.
Further, another modified (Levenberg–Marquardt, ALM) neural
network is proposed for the real-time optimal control of the
milling process. However, this study has severe limitations, the
most important being the use of only one machining parameter
as the input. All other parameters affecting the process have
apparently been kept constant. This leads to the conjecture that
the model evolved by their ANN is not generic enough to
represent the milling process plant function. In this work, we
propose to develop a generic end-milling process model using
ALM neural networks. A much larger set of input machining
parameters is considered than in other work reported so far.

2. Experimental Data

As a first step, a typical range of machining parameters is
selected and experimental data over this whole range is conduc-
ted and identified as training and testing data sets for the
neural network. The three components of the cutting force are
measured by a Kistler 9257B dynamometer. These were
sampled at 2500 Hz for 10 s each, and have been stored in
files in spreadsheet format. The machine tool used for all the
experiments in this work is a TRIAC 3-axis CNC milling
machine by Denford. It is equipped with a proprietary controller
PNC3. Travel limits in the various axes are: X-travel �
290 mm, Y-travel � 170 mm, Z-travel � 200 mm.
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Fig. 1. (a) Radial depth of cut. (b) Axial depth of cut.

Fig. 2. Dependence of cutting force on spindle speed.

The spindle adapter has an R8 taper, which accommodates
tools only with a 8” shank. The spindle is powered by a 1 hp
variable speed d.c. motor, programmable for 150–2500 r.p.m.
Positioning resolution on the machine is 0.005 mm.
The experiments were carried out for all combinations of the
chosen parameters, which are radial depth of cut, feedrate, and
spindle speed.

2.1 Radial Depth of Cut

This parameter signifies the immersion (as a percentage of
cutter diameter) of the milling tool in the workpiece, and is
illustrated in Fig. 1(a) (Fig. 1(b) shows the definition of the
axial depth of cut). The shaded rectangle is the workpiece as
seen in plan view. The circle is the milling cutter, while the
overlap along the Y-axis is the radial depth of cut (which can
vary from 0% to 100% of the cutter diameter).

Four values over the possible range have been selected for
use in the experiments:

c1 � 25% of the cutter diameter
c2 � 50% of the cutter diameter
c3 � 75% of the cutter diameter
c4 � 100% of the cutter diameter

Fig. 3. Dependence of cutting force on feedrate.

Fig. 4. Dependence of cutting force on radial depth of cut.

2.2 Feedrate

This parameter shows the rate at which material is being
removed in the process. Three values over the permissible
range have been selected:

f1 � 100 mm min�1

f2 � 120 mm min�1

f3 � 150 mm min�1

2.3 Spindle Speed

This parameter signifies the spindle rotation speed. It may also
be presented as the cutting velocity, �c,

�c � �DN (2)

where D � cutter diameter (mm) and N � spindle speed
(r.p.m.).
Five values over the possible range have been selected:

s1 � 450r.p.m. (corresponds to �c � 8.98 m min�1)
s2 � 600r.p.m. (corresponds to �c � 11.97 m min�1)
s3 � 750r.p.m. (corresponds to �c � 14.96 m min�1)
s4 � 900r.p.m. (corresponds to �c � 17.95 m min�1)
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Fig. 5. Predictive force model network topology.

s5 � 1000r.p.m. (corresponds to �c � 19.95 m min�1)

Note that another measure often quoted is the “feed per tooth”,
this is indicative of both the feedrate and the spindle speed.

Feed/tooth �
F

N � Z
(3)

The first set of 48 experiments is conducted using a 2-flute,
HSS, Do-All end mill. The tool geometry parameters are rake
angle � 14°, primary clearance angle � 16°, and the helix
angle � 37.5°. This is a tool designed specifically for non-
ferrous metals such as aluminium and has a higher rake. In
this first set of experiments, the values vary from
0.05 mm tooth�1 (for F � 100 mm min�1 and N � 1000 r.p.m.)
to 0.125 mm tooth�1 (for F � 150 mm min�1 and N � 600
r.p.m.). A second set of experiments is conducted using a 4-
flute, HSS, Do-All end mill. The tool geometry parameters
are rake angle � 10°, primary clearance angle � 12°, and the
helix angle � 30°. A third set of experiments is conducted
using a 2-flute, HSS, Do-All end mill. The tool geometry

Table 1. Pre-processing of experimental data.

Experiment Fx Fy Fz Resultant
conditions 1

2-flute, HSS Maximum 0.0440 0.0732 0.0928 2.1841
Rake � 14 Minimum �1.6309 �1.4600 �0.5713 0.0000
Clr. angle � 16 Mean �0.7501 �0.6012 �0.2231 1.0016
Radial � 25% Skew 0.1558 �0.0176 �0.0235 �0.0906
Feed � 100 mm min�1 Standard 0.5641 0.4827 0.1884 0.7467
Spindle speed � 600 r.p.m. deviation

Experiment
conditions 2

2-flute, HSS Maximum 0.0440 0.0928 0.2100 1.9576
Rake � 14 Minimum �1.4941 �1.2500 �0.4981 0.0000
Clr. angle � 16 Mean �0.6974 �0.5018 �0.1919 0.8958
Radial � 25% Skew 0.1782 �0.0375 �0.0041 �0.1094
Feed � 100 mm min�1 Standard 0.5172 0.4008 0.1584 0.6525
Spindle speed � 750 r.p.m. deviation

parameters are rake angle � 10°, primary clearance angle �
12°, and the helix angle � 30°.

Plots of the maximum resultant force versus machining
parameters observed in the first set of experiments (with tool
1) are presented in Figs 2, 3, and 4 (ci is the ith value of the
radial cut depth, fi is the ith value of the feedrate, si is the ith
value of the spindle speed used), and demonstrate the general
trend of dependence on each of these parameters separately.
This summarises all we know about the machining process.

We can safely infer from those graphs that the cutting forces
are inversely proportional to the spindle speed and directly
proportional to the feedrate and radial depth of cut. This
information will be needed when evaluating the simulation and
optimisation empirically.

3. Current Approach

A feed forward neural network is designed with one to two
hidden layers and sigmoid activation functions. To predict the
maximum force, mean force, and other relevant conditions, it
is important to describe the ALM method before proceeding
to the details of the development.

Back propagation (BP) is the training method of choice.
Standard BP is a gradient descent algorithm and the name BP
refers to the manner in which the gradient is computed for a
nonlinear multilayer ANN. One of the main attractions of using
BP networks is that they tend to give reasonable results when
presented with inputs that they have never seen. Typically, a
new input will lead to an output similar to the correct output
for input vectors used in the training that are similar to the
new input being presented. This generalisation property makes
it possible to train a network on a representative set of
input/target pairs and obtain good results without training the
network on all possible input/output pairs, which is generally
impossible in situations such as ours. Also, with this method,
the order in which the patterns are presented to the network
does not influence the training. This is also because adaptation
is done only at the end of each epoch.
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3.1 Back Propagation Algorithm

The simplest implementation of BP updates the network
weights and biases in the direction in which the performance
function decreases most rapidly (i.e. the negative of the
gradient). These corrections may be made incrementally (after
each pattern presentation) or in batch mode. In the latter case,
the weights are updated only after the entire training pattern
set has been applied to the network. Before the update can be
evaluated it is important to define the error signal on each of
the PEs [8,9].

�kj � zkj(1 � zkj)(bkj � zkj) (4)

where,

�kj � error signal for the jth PE on the kth pattern
zkj � response on the jth PE (activation function)
zkj (1� zkj) � first derivative of the activation function
bkj � target value for the jth PE

The gradients calculated at each pattern step are now added
together to determine the change. Further, a momentum factor
is built into this evaluation to avoid the problem of being
caught in local optima.

wnew
ji � wold

ji � ��
k

�kjyki � 	
wold
ji (5)

where,

� � learning coefficient
	 � momentum coefficient
yki � activation function for the ith PE

wji

old � previous weight update for the ith PE
wji

new � corrected weight for the ith PE, from the jth
PE in the previous layer
wji

old � previous weight for the ith PE from the jth PE
in the previous layer

Note that the above methods are essentially gradient descent
methods [10]. Use of second-order Newton methods have also

Fig. 6. Development of error performance.

been reported and the update rules applicable are as follows,

wnew � wold � H(bki,zki)�1gki (6)

where,

H � Hessian matrix of the mean square error
(performance function)
gki � gradient with respect to current weights and biases

A variation of the standard BP technique for adjusting the
network weights is the Levenberg–Marquardt technique [11].
This algorithm which is similar to quasi-Newton methods,
approaches second-order training speed without much added
computational expense. It works on the premise that since
most of the performance functions have the form of the sum
of squares, the Hessian matrix (second derivatives), H, can be
approximated as

H � JTJ (7)

hence, the gradient may be computed as

g � JT� (8)

where J is the Jacobian matrix containing the first derivatives
of the network errors with respect to network weights and �
is the error for ith pattern.

The update rule is a Newton-like expression,

wnew
i � wold � [JT·J � �·I]�1JT·� (9)

Note that when the scalar � is zero, this is the second-order
Newton’s method, which is faster and more accurate near the
error minimum, whereas when � is large, it becomes a gradient
descent with a small step size [11].

3.2 Predictive Force Modelling

A feed forward ALM network is designed and studied for
effectiveness in learning the nonlinear map between the input
machining parameters and the output conditions. The ANN
designed for this application is presented in Fig. 5.

3.3 Data Pre-Processing

Before the ANN can be trained and the mapping learnt, it
is important to process the experimental data into patterns.
Training/testing pattern vectors are formed. Each pattern is
formed with an input condition vector, Pi,

Pi �










RadialCutDepth

FeedRate

SpindleSpeed

CutterDiameter

#offlutes

AxialCutDepth

RakeAngle

ClearanceAngle 







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Fig. 7. (a) Simulation versus experimental data. (b) Regression analysis of network response.

and the corresponding target vector,

Ti � �
Max.Force

Min.Force

MeanForce

Std.Deviation
�

Samples of pre-processed data are shown in Table 1. The force
here refers to the resultant cutting force, F � �(F2

x � F2
y �

F2
z).
Since only a limited number of experiments are representa-

tive of the feasible parameter space, it is important that the
ANN realises each set fully [2]. This is achieved by normalising
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Fig. 8. Force map over two-machining condition space.

the data as follows,

X � (XR � Xmin)
XN max � XN min

Xmax � Xmin
� XN min (10)

here XR is the real value of the variable before normalisation.
Xmin and Xmax are the minimum and maximum values of the
variable X. These are normalised to values XNmin, XNmax such
that 0 � XN min � XN max � 1. For example, spindle speed is
varied from 450 to 1000 r.p.m. in our experiments. Thus, Xmin

� 450 and Xmax � 1000. Then we choose XNmin to be 0.1 and
XNmax to be 1. In this way the range 450–1000 is now mapped
to 0.1–1. So when XR � 600 r.p.m., X � 0.345.

3.4 Network Topology

As a first step, only one hidden layer is designed and the
number of PEs is varied. According to White’s theorem (1989)
[8], one layer with nonlinear activation functions is sufficient
to map any nonlinear functional relationship with a reasonable

Fig. 9. Design model and tool path on workpiece.

level of accuracy. The configuration of the first layer is chosen
to be 6. This is a reasonable choice, as the error beyond that
number does not reduce drastically. Further, we do not want
to have a larger than required network because:

1. The generalisation characteristics of the network suffer
owing to hard coding of the training data in the increased
number of connections.

2. Computational expense increases with increase in size.

Again, a similar exercise is conducted with a second hidden
layer. Here, the number of PEs is varied between 1 and 6. As
the first hidden layer is successful in reducing/compressing the
dimensionality of the data, it is customary to have fewer PEs
in subsequent layers.

3.5 Training and Validation

As noted earlier, each experiment conducted amounts to one
pattern vector. The complete set was divided in the ratio 3:1
uniformly to constitute two data sets. Whereas the larger set
(75% of available data) was used for learning the mapping,
the remainder was reserved for use in testing and validation
of the functional relationship produced by the ANN.

Network weights were initialised one layer at a time using
the Nguyen–Widrow algorithm [12]. This reduces training time
by setting the initial weights of the hidden PEs so that each
is assigned its own interval over the input space. Thus, the
active regions of the layer’s neurons will be distributed roughly
evenly over the input space. The advantage of this over
completely random initialisation is that once the training starts,
the weight movements are smaller and settle quickly, since the
majority of weight movements were eliminated by the method
of initialisation [12].

Results of training and testing conducted on 96 experimental
data sets are presented. Error in simulation recall is extremely
small (�0.0003) for both interpolative and extrapolative recall
(Fig. 6). Figure 7(a) shows the comparison of experimental
and simulated data for the maximum force output component.
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Fig. 10. (a) Simulated force variation (b) Experimentally acquired
force variation.

Next, a linear regression between the network response and
the target outputs is perfomed. The results are presented separ-
ately for the four output parameters (see Fig. 7(b)). The
network is seen to map each of the four outputs very well.
The correlation coefficients are also given.
Further, force values for a common range of values have been
computed to enable us to understand better the dependence of
cutting force on the machining conditions of feedrate and
spindle speed. The force map evolved (over commonly used
machining space) is presented in Fig. 8. This is a unique way
of presenting the results, in the sense that, to our knowledge,
no mathematical models reported so far have presented such
a comprehensive map of the process.

Other machining parameters in the map above are cutter
diameter � 0.25in, number of flutes � 2, radial cut depth �
0.75D (where D is the diameter of the cutter), axial depth of

cut � 1.0D, rake angle � 10°, and primary clearance angle
� 12°.

4. Test Case

We shall now demonstrate the application of our research and
further validate it for a very common machining situation,
namely, pocket milling. We must machine the workpiece to
create the rectangular pocket on the top face of the component
(see Fig. 9).

Four different immersion levels are found in the tool path.
The conditions are analysed using the predictive model
developed and the results are presented in Table 2.

Note that our machine tool has a small 0.2–0.4 s delay
between different segments of the cutter path. This has been
manually incorporated into the simulated force variation graph
(Fig. 10(a)). The above machining operation was conducted,
and the actual cutting force data acquired, using the set-up
described above. The measured forces are shown in Fig. 10(b).

The simulated and experimental forces compare very well
(within 5% difference). The difference of peaking can be
attributed to:

1. Inaccuracies in the computation of the immersion geometry
as it varies during cornering.

2. The wear condition of the tool which leads to an increase
in the cutting force.

5. Conclusions and Future Work

Artificial neural networks have been used successfully for
predictive force modelling of the flat-end milling process. An
effort is made to include as many different machining con-
ditions as possible that influence the cutting process. Exhaustive
experimentation is conducted and presented here. This forms
the basis of the model developed. Further, the model is tested
on the commonly encountered operation of pocket milling,
yielding very good results.

While the results of the current work are encouraging, it is
important to note its limitations, and thus chart a future course
for the research. In the current work, all simulation-related
experimentation were conducted using flat-end milling cutters.
This limits the application of the predictive force model to
similar cutters. A more general treatment would require the
use of a variety of tool shapes such as ball- and taper-end
mills. Further, because of machine tool limitations, only a 1 in

Table 2. Various immersions and associated machining parameters.

Immersion Feed/speed Maximum
conditions force

(N)

1 100/800 481
2 100/800 401
. 100/800 347
1 100/800 195.7



700 V. Tandon and H. El-Mounayri

diameter end mill could be used. Whereas this is sufficient to
demonstrate the potential of the concept, it is important to
extend its capabilities to model meaningful industrial
implementations. This would also require conducting more
experiments, such as machining with different tool shapes and
types. While the essential structure of the ANN model will
remain the same, suitable parameters representing the immer-
sion conditions may have to be formulated. For example, in
the case of flat-end mills, radial and axial depths of cut are
sufficient to describe the uncut chip thickness (load). However,
for a more general tool shape, this uncut chip thickness may
have to be represented using a different set of parameters.
These will then replace the depths of cut in the ANN input
vector.

This work is also limited in terms of the workpiece material
(here aluminium) and the tool material (here HSS). Other
workpiece/tool combinations must be considered in sub-
sequent developments.

Also, future work should involve extending the predictive
force model to include the dynamic effects of the process in
order to predict other process parameters (such as surface finish
and chatter). This would also help in identifying and avoiding
machining conditions prone to chatter. This extension will also
require exhaustive experimentation on the dynamics of the
cutter–workpiece system.
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