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A comprehensive, 3D mathematical model of desired/optimai. |ntroduction
cutting force for end milling of freeform surfaces is proposed
in this paper. A closed-form predictive model is developed, . .
based on a perceptive cutting approach, resulting in a cuttingO"€ ©f the most common metal removal operations used in

force model having a comprehensive set of essential cuttin

g‘ldustry is the milling process. The current practice of milling
parameters. In particular, the normal rake angle, usually miss- culptured surface parts is to choose overly conservative cutting
ing in most existing models of the same sort, is included

irconditions so that excessive cutting forces or deflection of the
the developed model. The model also permits quantitativEUtter do not occur [1]. However, as a high material removal

analyses of the effect of any parameters on the cutting perforn{-ate_ is maan';\ted, the preferable way _is to generz_;\te OP“ma'
ance of the tool, providing a guideline to improving the tool cutting conditions before actual machining. To realise this, a

performance. Since the axial depth of cut varies with timecomprehensive mathematical model for surface milling is
when milling sculptured surface parts, an innovative axial required. Since cutting force is Fhe most important output
depth of cut estimation scheme is proposed for the generatioHaramet?r of end milling tha_t has direct |nf|uence_ on the quality
of 3D cutting forces. This estimation scheme improves on th@ machined parts, developing an accurate cutting-force model
practicality of most existing predictive cutting-force models foriS €ssential. - _ _

milling, in which the major attention has been focused on Prediction of end-milling forces is not a new area in manu-
planar milling surface generation. In addition, the proposed facturing industry. However,_mo_st of the I|ter§ture focuses on
model takes the rake surface on the flute of mills as areD cases where the contribution of the axial force to the
osculating plane to yield 3D cutting force expressions in onlydynamic behaviour of the cutter is missing. Although a few
two steps. This approach greatly reduces the time-consumingD cutting-force models have been developed recently, they
mathematical work normally required for obtaining the cutting- Nave inherent shortcomings which merit further research in
force expressions. A series of milling simulations for machiningthe area. _ _
freeform parts under specific cutting conditions have been In this paper, a more accurate and comprehensive 3D cutting-
performed to verify the effectiveness of the proposed cuttingforce model for end milling, including sculptured surface cut-
force model. The simulation results demonstrate the accuratéing, is proposed. The physical shape of the end milling cutter,
estimating capability of the proposed method for axial depthas in most other similar work, is assumed to be a cylinder
of cut estimation. The cutting force responses from the simulWwith helical flutes wound around its surface. However, the
ation exhibit the same trends as can be obtained using th@roposed model takes the rake surface of a flute to be an
empirical mechanic’'s model referenced in the literature. 0sculating plane, as opposed to viewing it as a ruled surface
Finally, from the simulation results it is also shown that & in most existing models. With this new approach, the
designing a tool with a combination of different helix angles, €xpressions of the unit vectors of a local right-handed ortho-
having cutting force signatures similar to those of the singlenormal curvilinear coordinate system become simple, compact,

helix angle counterparts, is particularly advantageous. and well defined. Consequently, the unit tangent vector always
points in the direction of increasing spread angle, the unit
Keywords: Cutting force; Machining; Sculptured surface principal normal is directed toward the origin of the cutter,

and the direction of the unit bi-normal always points outward
and is perpendicular to the rake surface. The direct benefit of
this proposed approach is that the loading distribution on a
flute owing to the pressure of the chip on each elemental
Correspondence and offprint requests ®r Y. J. Lin, Department cutting edge can be simplified to be a single resultant force.

of Mechanical Engineering, University of Akron, Akron, OH 44325- Also, the location of the line of action of the force can be
3903, USA. E-mail: yiwuakron. edu determined by applying the principle of moments. Thus, the



774 T.S. Lee and Y. J. Lin

magnitude of the resultant force is equal to the sum of all theangential force, and further assumed that radial force is related
elemental forces acting on the flute at that instant of cut.  to the tangential force by a constant coefficient. Kline et al.
The second consideration is of sculptured surface machining13] and DeVor etal. [14] developed a discrete mechanistic
It is found that, so far, cutting force modelling for sculptured force model in which the chip along each flute of the cutter
surface milling has not attracted much attention. Since, alongs divided into a series of discrete thin disks. Similar to the
a path of cut for generating a sculptured surface, the axiamodel used by Tlusty and MacNeil, the elemental cutting
depth of cut varies, the cutting-force determination is, thereforeforces contributed by each disk can be calculated. The total
based mainly on the updated axial depth of cut estimation. Focutting forces are then obtained by summing all these elemental
this purpose, an innovative method for varying axial depths ofcutting forces numerically. Based on this force model, Kline
cut estimation has been proposed in this paper. and DeVor [15] examined the effects of the cutter runout on
Lastly, it has been reported that helix angle is one ofthe cutting forces. Sutherland and DeVor [16] took a step
the most important parameters in influencing the cutting-forcefurther. In addition to the cutter runout, they also incorporated
dynamics of a milling cutter [2]. Within the proposed cutting- static deflection of the cutter into their cutting force model.
force model, the total cutting-force equations derived are aimed.ater, Sutherland [17] improved the cutting force model
at being more versatile, because the model allows various heligresented in [16] by taking the dynamic nature of the cutter
angles of the flutes to be incorporated in the cutting-forcedeflection into consideration. The main drawback of this dis-
equations. Therefore, the proposed model can be used to assisete mechanistic force method is that, at each instant of time,
the design of an optimal milling cutter which is composed of new discrete chip disks must be obtained from the new cutting
flutes with different helix angles for special needs. region. This requires that the cutting forces be recalculated
numerically. Therefore, it is a computationally intensive
method. It can be found that all the models discussed above
2. Related Works were 2D force models, which are unable to predict cutting
force in the axial direction. This motivated the development
Cutting-force modelling of end milling has been investigatedof the first 3D mechanistic force model, proposed by Bouzakis
extensively; [3-8] are some recent representative works. Howet al. [18] in 1985. Their model was also formulated in a discrete
ever, these investigations resulted in either prediction only foform. Therefore, it can be expected that the model inherited the
static cutting forces which induce errors in realistic machining,same drawbacks as those of the 2D discrete models.
or models leading to less accurate cutting-force prediction Other researchers such as Armarego and Deshpande [19]
owing to a lack of physical comprehension. For example,used the mechanics of the cutting approach to predict milling
Smith and Tlusty [3] developed a model called the averageutter forces. They began with partitioning the cutting edge of
rigid force model in which the average power required for aeach tooth into a series of differential elements. By viewing
cut was assumed to be proportional to the metal removal rateeach of these differential cutting edges as an oblique cutting
The force model is inaccurate because it does not include th®ol, they used the cutting force equations derived by Armarego
influence of the cutter geometry and cutting conditions. and Brown [20]. However, the accuracy of the predicted cutting
In 1994, Bayoumi etal. [4,5] developed a 3D mechanisticforces by this method relies entirely on the quality of the input
force model. They used the ruled surface method to describdata including such parameters as shear stress and normal
the rake surfaces of the flutes of the cutter. As a result, theshear angle, etc. Unfortunately, this parameter information is
expressions for the unit vectors of the moving trihedron of thegenerally not available in the literature.
flutes become complicated and the directions of the vectors
are not well defined. In addition, to emulate cutting forces . . .
accurately, each differential helical cutting-edge segment of thg" Threg-Dlmen5|onaI Cutting Force
flute is viewed as an oblique tool with an inclination angle Formulation
equal to the helix angle. The approach resulted in cumbersome . ) . )
mathematical expressions for the cutting forces which not onl;}n this sec_tpn, a compre_henswe 3D cutting force model_for
depend on the geometry of the cutter, normal rake angle, anfit® end-milling process is proposed. The model is derived

helix angle, but also on the process-dependent parameters sugSed on the assumption that the formation of the chip is of
as chip load (feed) and angular position of the chip. a continuous type. In addition, the model assumes that the tool

The mechanistic force modelling method has also beeS Perfectly sharp and _rigid, and chattering, toql _breakage, and
investigated by several researchers. Sabberwal [9] suggest¥ffar do not occur during the course of machining. _
that the cutting force on the flute of a cutter is mainly due to The model is derived in four sequential steps and their
the tangential part of the force, and the force is proportionapmceOIlJreS are.
to the undeformed chip area removed by that flute froml. Define unit vectors for a curvilinear coordinate system at
the region of engagement between the cutter and workpiece. any specified point of a flute. In differential geometry, the
Martellotti [10] found that the contour generated by a cutting coordinate system at that specific point is called the tri-
flute can be considered to be circular. He then formulated the hedron or triad. However, as the point changes, the coordi-
chip load asf « sing, wheref is the feed of the cut and is nate system moves along the flute. In this case, the system
the angular position of the cutter. It has become the most is known as the moving trihedron. The main function of
frequently employed expression for the chip load. Tlusty and this coordinate system is to describe the directions in which
MacNeil [11], and King [12] adopted a similar expression for  the cutting forces are exerted on the flute.
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2. Derive expressions for the pressure and friction componentthis angle, thex-axis is established in such a way that it
of the cutting forces. The first component in the force modelpasses through the leading point on the cutting edge of the
is due to the cutting chip pressing on the rake surface oflute. From the geometry of the cutter as shown in Fig. 1, the
the flute, and is known as the pressure component. Theosition vectorr; for a point on the flutei that corresponds
other part, called the friction component, is due to theto the spread anglés; is obtained as
shdmg_motlon gf the ghlp (.)n.the surface. . f, = Rcoshe, + Rsinle, + he, 1)

3. Establish the integration limits so that the cutting force
equations can be formulated in a closed form format. ~ Where e, e, and e, are the unit vectors pointed in the

4. Develop a methodology for estimating the ever-changingliréctions of thex-, yi- and z-axes, respectively, and, is

depth of cut through machining of parts having sculpturedused to indic_ate the elevation of a point on the fI'u_tBecau_se
surfaces. the geometric shape of the flute of the cutter is a circular

helix, the elevation of a point on the flute is proportional to
These four sequential steps will be elaborated in the followthe circumferential movemen®Ry; of the cutter. Hence, the

ing subsections. elevation of a point on the fluteat a spread anglés; can be
written as
3.1 Unit Vector Representation of a Helical Flute h. = Ry; cota, 2

The geometric shape of a flat-end milling cutter is a rightWherea is the helix angle of the flutg i.e. the angle between
circular cylinder with the flutes of the cutter winding around the unit tangentT. of the helical flute and thez-axis. In

the cylinder. The geometric shape of a flute is a circular helix.2ddition, to form a local righthanded rectangular coordinate
Figure 1 shows a typical flat-end milling cutter with flule SyStém at each point of the flute, there are two other unit
lying on the surface of the cutter. The cutter has a radtus Vectors required, namely, the unit normil and bi-normal
and is rotated at a constant angular velodity In order to vector B.. _Thls coordlnat(_e system is used to describe cutting
describe instantaneous orientation and the position of a poidPTces acting on the cutting edges of the flute. _
on the flute, two sets of coordinate systems, namely, a fixed AS can be seen in Egs (1) and (2), the position vector is a
and a rotational coordinate system are required. Referring tfinction of the spread anglé;. However, using the relation
Fig. 1, the coordinate systemyoz, is the fixed coordinate S= J|dri/ds|chis, the position vector of the flute can then be
system andkyz is the rotational coordinate system. The main fransformed into a function in which the arc lengshis a
purpose of the rotational coordinate system is for describing/@riable. Therefore, applying the chain rule with the definition
the position of a point on a flute. For example, the instan-Of unit tangent,T. = dr; /ds, and the relation that relates the
taneous rotational orientation of a flute such as flyteas derivative of arclengths to that of position vector,
shown in Fig. 1, can be described by the anfle which is A5/t = |dr/djs|, the unit tangent can be expressed in terms

the angle between the-axis of the rotational coordinate system ©f ¥i as

XYz and thexs,-axis of the fixed coordinate system. In defining dar. dr ds dr dr.
°:ds:d¢i/d¢i:d¢i/duh
Z, Zi
= —siny;;Sina;e;, + cosl;Sina;e, + Cosy;e; 3)

As in the case of a unit tangent, the unit normal along the
helical flute is also defined in terms of arclengthHowever,
using the chain rule and the relatiorsg/dly; = |dr/dys|, this
quantity can also be expressed in termsyef Therefore, the
expression of the unit normal is given by

dT. /|dT.
Ne =g /

ds
Equation (3) indicates thafl. is tangent to the flute and
pointed in the direction of increasing;. On the other hand,
Eq. (4) implies that the vectoN. points toward the origin of
the xy;z coordinate system and is parallel to thg.-plane.

The plane that contains vectorB, and N, is called an
osculating plane. However, in metal cutting terms it is equival-
ent to the rake surface of the cutter. In fact, this is the surface
from which the chip will be removed by the cutting operation.

With T, andN, defined, the unit bi-normal vectd@, required
to complete the triplet of the local coordinate system can be
obtained by applying the cross-product. Thus, it is perpendicu-
Fig. 1. Geometric description for a point on a flute. lar to the osculating plane, or can be expressed in ternis a$

= —cosle, — sinfs;e, 4)

z,
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B, = T, x N, the flutei and ¢ being the instantaneous position of the cutter
owing to the cutter rotation rate. If the cutter has more than
one flute with the pitch between any two flutes being constant,

After having defined the curvilinear coordinate system suf-then the angular position of the leading point can be shown
ficiently, a closed-form mechanistic cutting-force model canto bep; = B, +(i — 1)(2w/N;), wherep, is the angular position
then be developed. of the leading edge point of the referenced flute andiries
from1toN,i=12...Ns

Figure 3 shows an elemental cutting edge of fliteThe

axial depth of cut by this elemental cutting edged. The
fcutting force acting between this elemental cutting edge and
the work piece isdz. The cutting force acting between this
elemental cutting edge and the workpiece can be resolved into
two components: a pressure and a friction component. The
pressure component acts in the direction perpendicular to the
Irake surface of the flute. This component provides a measure
of the compressive action which the chip applies to the surface
of the flute. However, the friction component is applied parallel
the surface owing to the sliding movement of the chip on
e surface of the flute. Since the chip slides up the surface
without any restraint on its movement, it is expected that the
riction force would act in the direction of the chip movement.

For a flute with zero helix angle, the chip slides on the rake
h, = f cosy; (6) surface along the direction dfl.. However, when the helix
angle of the flute is greater than zero, the chip will take a
path that makes an anghlg with N.. Referring to Fig. 3 as
well as to Egs (3) and (4), the unit vector defining the direction
of the chip movement on the rake surface of the flute can be
Ben = Sin{d/R) — 1] (7)  found to be

By cross-referencing Fig. 1 with Fig. 2, it can be seen that Q. = cos;N, + simm;T.

= sin; cosye; — Ccosl;cosye, + Sina;e; (5)

3.2 Closed-Form Mechanistic Cutting Force Model

Figure 2 shows a flat-end milling cutter in the process o
machining a slot in a workpiece. The cutter is fed in the
direction of x, with a feedrate off.. The axial and radial

depths of cut arel, and d,, respectively. As the cutter rotates
with an angular velocitys, a point on flute will start engaging

with the workpiece at an angular position equal to the cutte
entry angle6., and will leave the cut at an angular position
equal tof,, the cutter exit angle. As depicted in Fig. 2, the
instantaneous angular position of such a point with referencéﬁ
to the fixed coordinate systergy,z, can be described by angle t
vi- The corresponding chip thickneks of the point is determ-
ined by the radial difference between paths 1 and 2 as followst.

wheref is the feed of the cutter.
As shown in Fig. 2, the cutter entry angle for a given radial
depth of cut can be determined by

the instantaneous angular positignof the point on the flute = —(cosncos); + sinm;sin;sing)e, (8)
can now be written asy; = B; + ¢; — ¢ with B; being the + (sim;cos);Siny; — cogn;Sings;)e,
angular position of the leading point on the cutting edge of + simm;cosy;e;

where; is called the chip flow angle. However, in the case
when the information regarding this angle is not available,
then as an approximation it is generally assumed to be equal
to the helix angle of the flutey; = ;. In metal cutting, it is
known as the Stabler’'s flow rule.

" The dimensions of the chip which are required for calculating
%‘ cutting forces are obtained from the projection of the elemental

)
A

o Y, axial depth of cutdz and the undeformed chip thicknebs
d G‘-‘AJ > x in the direction of chip flow on the plane of the rake surface.

As shown in Fig. 3, the geometry of the chip movement
shows the trianglesADF and AFE do not lie on the same
plane. TriangleADF is in the plane normal to the cutting
edge, while triangléAFE lies on the plane of the rake surface.
However, these two triangles share the same edlgeThere-
fore, in order to find the length of the chipE from the
z undeformed chip thicknes&D = h,, one must first projecAD

A orthogonally ontoAF, and then projecAF back to AE. In the
~—— 22, light of Eq. (6),

a
’ AD f cosy
£ R — — i
>/ T AE CO%,COS),  CO;CO%, )

N
|“f’| b—r betweenAD and AF and is located in the plane normal to the
cutting edge. Similarly, the widtlBC of the chip can be

Fig. 2.Cut geometry and positive coordinate sign convention for aobtained accordingly. It is noted that that triangle€B and
flat-end mill. AGB do not lie on the same plane but they have the same

>x where the angle; is known as the normal rake angle formed
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Fig. 3. Projection of the undeformed chip area into the direction of chip flow on a rake surface.

hypotenuseAB. Thus, from the geometry, the width of the  Since the radius of the cuttR is a constant, substituting

chip BC can be expressed as Egs (11) and (12) into Eq. (13) gives
dz — CL—CG+C—C
BC= A =1 . 1 =
C = ABCOSI = Gog,, 00 (10 W [Sin@ o — 0) — sin@ + b~ 9)
where dz is the differential axial depth of cut for fluteat a - Bi — b) (14)

differential spread angldy;. In analogy to Eq. (2)dz can be
written asdz = R cot o;dis;. Thus, the normal cutting force
for this differential cutting edge can be written as:

where the termsg,, ¢, C;, andc, are all constants having the
following expressions:

€ = iy SiN@; + by — )

d Fip = Ke (AB) (BC) (11) Co = YiL SINE; + Y — )
where K. is defined as the specific cutting pressure. It is a C3 = COSB; + Yiy — d)
variable that depends on the material properties of the Cs = COSE; + Ui — &)

workpiece/tool and on the geometry of the tool as well as ony, \wnhich Yiu
the undeformed chip thickness. viL = B — & + U, respectively.
After obtaining this elemental cutting force model, the cut- “Finajly, the cutting force due to the pressure component in
ting force due to the pressure component for the flute at agne |ocal coordinate system becomes
instant of cut can be predicted by summing up the elemental _ )
cutting forces at each elemental cutting edge of the flute. Fip = FipBe = —Fi, sinyicosxe,
Substituting Egs (9) and (10) into Eq. (11) and then integrating + F, coslcosye, — F, , sinue; (15)
the resultant equations yields ® P

and v, are yiy = Bi—é+yy and

where B, is a unit binormal vector evaluated at the equivalent

fRk. iy spread anglal;.
Fip = oS €; Siny; L COSE; + i — d)i In addition, the frictional force can be written as
iL
3 fRK, i N B  sin@ — - Fi,f = KfFi,ch
" cose; sina, [SiN@: + o = ¢) = sin@: — i — b)) = —KF,, (cosncosl; + simmsinl;sina;)e,
(12) + KiFip (sinm;coslisina; — cosn;sings)e,
whereys; . andys;, are used to indicate the range of the cutting + K(F; zSimm;cosy,e; (16)

edge of the flute engaged with the workpiece. Applying the

principle of moments yields where K; is the coefficient of friction on the interface of the

chip and the rake surface of the flute. In Eq. (1§), is used
to indicate the evaluation of the unit chip flow vector at the
RYiFip = f Ry; dF;, (13)  equivalent spread angl..

However, summing the cutting force contributed by these
where v; is the equivalent angular position for the line of pressure and friction components will yield the total local
action of F;,,, usually denoted byy, = B — & + iy, with s cutting force acting on the flute. Hence, the components of
being the equivalent spread angle. the total local cutting force are given by
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Fix = —Fip sinicosy — KiFi, @
(cosn;cosp; + simm;sings;sino;)

Fiy = Fip cospicosy + KiF;, (sim;cospsine; — cosy;sinls;)

Fi,= — Fpsiny + K¢F;  sinm,cosy 17

Equation (17) is only applicable to a single flute force analysis.
To obtain a global cutting force on the tool for a multiflute
cutter, the global cutting force acting on the tool can be
written as

Rq n [COSBi — &) —sin@ — ¢) O] |Fix

R, =2 sin@ — ¢) cos@; — &) O|{Fiy (c)
R) ' 0 0 UlF.) (@8

where N, is the number of cutter flutes involved in the cut at
that instant of time. To use Eq. (18) as a model to predict the
instantaneous cutting force on the tool, the data regarding the
cutter specification, i.eR, N;, €, «;, and cutting conditions,
i.e. dy d, f, f, as well as the cutting process parameters, i.e.
K. K:, mi, must be available and be used as inputs to the model.

3.3 Integration Limits

The integration limitsy;, and {5, for flute i depend on the (e
cutter entry angled,, and the cutter exit anglé., as well as

on the instantaneous angular positignof a point on the flute.
These variables in turn are functions of the radial and axial s
depths of cutd, andd,, respectively, as well as on the angular
position B; of the leading edge point of the flute and the
spread angle); for a point on the flute at a given axial depth
of cut.

As shown in Fig. 4, at any instant of time, the rotational
position of a flute can assume any one of the five possible
positions. For example, in Fig.d( where the leading edge Fig. 4.Possible rotational positions of a flute with= leading edge
point of the flute is located in the regid® while the angular point, andE = angular position of a point on the flute that corresponds
position v, for the point on the flute corresponding to the t0 the axial depth of cut..
axial depth of cud, is in regionA, the integration limits for the
flute at this orientation arés;, = 0 andisy, = 0, — (Bi — &),
respectively, where the expression foy, is given as Case 4
Yia = Bi — & + Y .. In mathematical terms, the orientation of

the flute is said to be in the position of Figaj(when the Bi — & < Ben i = Oor— (B — )
angular positions of the leading edge point satisfy the con- Bi — b + Yia>Ben | - ' '
ditions of B; — & < 0., and vy, > 0o,

Similarly, the expressions for the integration limits and the Biu = 0on— (B — d)

conditions at which these limits are applicable to all other
orientations of the flute shown in Fig. 4 can be obtained as: Case 5
Otherwise ;. =0, ¢, =0

Case 1
B — & < Ben where cases 1 to 5 are based on the positions shown in
B — & + ya> 0o Uie =0, Uiy =0en— (B — &) Figs 4@) to 4(e), respectively. _ N
’ The above integration limits are valid for machining a plane
Case 2 surface with a constant radial depth of cut. However, if a
Bi — ¢ = 0, sculptured surface must be produced, then, even when machin-
Bi— b + 0= 0o e =00 ¥ = tia ing at a constant radial depth of cut, the axial depth of cut
may vary along a contour of the surface. To determine these
Case 3 constantly varying cutting forces, the axial depth of cut must
Bi — & < 6en Pie = O — (B — ) Wiy = Wy be constantly identified and be fed into the cutting force model.
Bi— b+ Yia=0e) = ' T e In the following section, an innovative method, capable of
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estimating the axial depth of cut for a sculptured surfacewhere u,, u, and u, are the three components of the unit
machining, is proposed. surface normalu in the X, Y and Z directions of theXYZ
coordinate system, respectively.

Similarly, with regard to the intersection poimg of the
cutter and the plane we can write

In order to estimate the axial depth of cut at any instant on a PP = gpoPs (22)

sculptured surface, the orientation of the cutter with respect to h . | iable. Agai ding thi tion i

the sculptured surface at that instant of time must be known\_’tv ereg is a treathva?alll €. Again expanding btls' e?ﬁa ion-n

There are several ways foosition the cutter with respect to ItS components, he following expression 1S obtained.:

the surface. However, for rapid and efficient machining of the{x;,y1,z.} 7 = {Xo.Yo.Zo} T + &{Xs — X0, Y1 — Yor Zo — Zo} T

surface, thezy-axis of the cutter must be placed in such a way (23)

that the direction of the axis is coincident with that of the ) ) ) )

surface normal. Figure5 shows the cutter oriented in such |t can be seen from this equation thatgf= 0, the pointp

a position. coincides with the poinp,. On the other hand, i = 1, then
As shown in the figure, the cutter has the flute lengtiat  the pointp is located at p,. In other words, if the variablg

an instant of time, it is located at poim, (X, Yo, Z) ON the in this Eq. |s_ allowgd to vary in th_e range of 0 to 1,509_5 1,

surface. The cutter intersects with a plane at pgift,y,d. then the point of intersectiop will assume the position of

The position of the cutter at the end of the flute length is@NY Point on the line segment connectipgandp,. Physically,

represented by poinp,(x, Vi, z). Since the surface(u,y) is this constraint means that the axial depth of cut for the milling

represented in a parametric form in whichand v are the Process cannot be larger than the flute length.

3.4 Axial Depth of Cut Estimation

parameters of the surface, the unit surface normadf the In implicit form, every plane in space is represented by an
surface can be obtained by equation of the first degree in one or more of the varialdles
y, and z However, all these Eq. can be represented by a
_ fuXry (19) general expression
ruxr ax + by + cz=d (24)

wherer, andr, are partial derivatives of with respect to the
parameteral and v, respectively; and the ternm, xr,| in the
equation is the magnitude of the surface normakr,. It is
defined adr, xr,| = V((r,xr,)* (ryxr,). However, as illus-
trated in the figure, if vectopyp; is to be on the same line
as the extension of the unit surface normalthen the vectors
poP. andu must satisfy the condition x pop, = 0. This implies _ d—ax—by—cg

that u and pop, must be linearly dependent. Since for a regular 9= a(X, — Xo) + b(y: — o) + ¢(z — %)
surface,u # 0, pop, Mmust be equal to a scalar (il. multiplied
by u. Or we can write

provided thata, b, ¢, andd are real humbers and, b, andc
are are not all zero.

Substituting Eqg. (23) into (24) and simplifying, the general
expression for the variablg at which the cutter and the plane
intersect can be written as

(25)

where theg varies in the range of 0 to 1.
If the shape of a workpiece is rectangular, then from Eg.

PPy = Isu (20) (25) the g value for the cutter to intersect théplane of the
Equation (20) can be rewritten in the coordinates of ppjras ~ WO'kpiece is
d, —
XY.37 = (XoYoza " + Iy {Ulu}T (21) o = ﬁ O=g=1 (26)

whered, is the coordinate of intersection of théplane with
the X-axis. Notice that in obtaining this equation, the equation
of the planex = d, has been applied to Eq. (25).

The equation that describes tiveplane of the workpiece is
y = d,. Comparing this equation with Eq. (25), tleformula

Z for the intersection of the cutter and theplane becomes
d —
g =2 (0=g,=1 27)
Y1 = Yo

whered, is again used to denote the coordinate of intersection
of the Y-plane with theY-axis.
Similarly, plugging theZ-plane equationz = d,, into Eg.

Y (25), theg expression for this case is obtained as
dz )
,=——— (0=g¢g,=1 28
0=, (0=g¢=D (28)

X

whered, is the coordinate of intersection of tt#&plane with
Fig. 5. The intersection of a cutter with a plane at pomt the Z-axis.
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The main drawback of using an implicit form to describe afor each flute is 5 The tool is used to machine a 7075
plane is that the equation that represents the plane represertiminium workpiece. The cutting parametefs,andK;, which
an infinite plane. Therefore, for a rectangular workpiece awere identified empirically by Wang et al. [6], are taken to be
cutter with flute lengthl; will either intersect one or more (at the nominal values in these simulations. The expressions of
most 3 planes) planes of the workpiece at any instant. Amonghese identified parameters are as follows [6]:
these intersection planes, the one that is most relevant for _
calculating axial depth of cut is the plane that first intersects K. = 569.14 b)) 2%
the cutter. In fact, at that intersection the axial depth of cut is K, = 0.1468 ) 036 (30)
a minimum when compared with other possible intersections.
In other words, the axial depth of cut that corresponds to thevhere the average chip thicknebsis expressed ab, = fggﬁ
first intersection plane is determined by the following conditionf cos 6d6/(6., —6.,). In addition, a sampling rate of 36 samples
d, = min{ | I I R (29) per revolution and a spindle speed of 1200 rev/min have been
a G:PoPa GyPoPal 19:oP: used in the simulations. The tool has been fed with a feedrate
in which the first term in the brackets corresponds to the axiabf 20 mm st and the radial of cut of the tool is 10 mm.
depth of cut with respect to the€-plane intersection. Similarly, Gouging problems were not considered in the simulations.
the other two terms in the brackets are associated withythe  Figure 7 shows the orientations and positions of the cutter
and Z-plane intersections, respectively. However, among thesalong the pathv = 0.5 of the surface. The orientations in the
three values in the equation, the one that is the minimum igigure are plotted at every fifth position of the cutter. The
the one that corresponds to the first intersection plane. cutting tolerance for generating this path is 0.02 mm. The
positions as shown in the figure are obtained by using the
adaptive cutting path generation algorithm [21]. However, the
4. The Predictive Model Assessment on a orientations and the axial depth of cut of the cutter are obtained
Sculptured Surface Machining by using the axial depth of cut estimation method proposed
previously in this paper. In the figure, the depth of cut at any
Figure 6 shows a general sculptured surface to be machindgstant is determined by taking the corresponding distance
from a rectangular shaped workpiece by using a milling cutterP&tween the cross symbols. _
The workpiece has dimensions of 7 mm in height, 20 mm in F|gure_s 8 and 9 show the instantaneous cutt_mg forces along
depth, and 45 mm in width. It is clear that in order to generatdh® cutting pathv =0.5. The forces are obtained from the
this surface from the workpiece, the axial depth of cut of theProposed predictive cutting-force model. The helix angles used
machining process must be continuously varied with timein the simulations for these two figures aré &nd 30,
Therefore, in order to calculate the predictive cutting forcesreéspectively. The observation of the force fluctuations in these
it must be estimated continuously and then fed back to thdigures indicates that as the helix angles increase the force in
cutting-force model. the z-direction also increases in tandem but it has little effect
In this section a test is performed to assess the Capabi"t?n the forces in the other two directions. Similar trends are
of the axial depth of cut estimation method as developed abov@lso predicted by using the mechanics of cutting approach,
for identifying the depth of cut for this machining operation. even though the cutting parameters used in the prediction are
Comparisons of simulation results are also made against sonféifferent. However, the shortcoming of studying the effect of
data published in the literature to further validate the proposedutting parameter on the cutter, based on force fluctuations, is
cutting-force model. In addition, a cutting tool is designed bythat it lacks the capability of describing in detail the intricate
effectively arranging the helix angles of the tool using this interactions of the cutting. Therefore, it was decided to use a
predictive model as a guideline. statistical method (e.g. root mean square) to assist in the
To perform the verification, a computer program wasinterpretation of the cutting phenomena.
developed for simulation purposes. In the simulations, a 10 mm Since the analysis would become very complicated if the
diameter HSS end mill has been used. The tool has four flutesffects of cutting parameters on the cutter were analysed for
with all the flute lengths being 19 mm. The normal rake angleeach component of cutting force, the analysis was carried out

sxe-Z

x-axis

Fig. 6. A general shape of a sculptured surface.
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based on the specific cutting force due only to the pressure
componentFs, The pressure component is defined as

Fsp Ro> + R + R, )Y (31)
where R

«p» Ryp aNd R, are the global cutting-force compo-
nents which are due to the pressures of the chips on the rake
surfaces of the cutter. Although the pressure component of the
specific cutting force is not an instantaneous cutting force, it
is a useful and effective method of investigating the effects of
the cutting parameters on the cutter.

Table 1 shows the helix angle arrangements for a four-flute
cutter with its corresponding root mean square value for spe-
cific cutting force due to pressures. As shown in Figs 8 and
9, the table also shows that as the helix angle of the flutes
increases from 5to 3, the pressure-component (normal)
specific cutting force will increase in tandem with the increase
in angle in which the specific cutting force at°3& 23.9%
higher than that for & However, the problem associated with
this high normal specific cutting force is that it could cause
the chips to adhere to the rake surfaces of the tool. This in
turn could lead to the formation of built-up edges on the tool.
On the other hand, if the cutting tool with a lower helix angle
is chosen to machine a surface in which the radial engagement
of the tool with the workpiece is less than full immersion,
then the cutting force will increase to a maximum value and
then rapidly drop to a minimum value. This sharp variation of
force could act as an impact load which in turn could induce
vibration in the cutter and/or machine tool.

The only way out of this dilemma is to design a tool that
has a combination of different helix angles. In the case of a
cutter with four flutes, the possible combinations of arrange-
ments for the flutes with helix angles of° tand 30 are,

Table 1.Helix angle arrangement and its corresponding specific cutting
force for a cutter with four flutes.

Helix angle arrangement Root mean square for specific

cutting force due to pressure (N)

5°, 5° 5° &° 628.5041
30°, 30¢¢, 30, 3Cr 778.8776
30°, 307, 5°, 5° 701.0402

689.3893
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surface parts has been proposed. The model was developed
based on the mechanistic cutting approach and is presented in
a closed-form format. As opposed to the empirical method
commonly used in which the force information obtained is
only valid for some specific cutting conditions, the proposed
model provides a simple and generic means to determine the
cutting force. It only requires identification of the coefficient
of friction and the specific cutting pressure from tests.

In addition, the normal rake angle, which is usually missing
in the existing models, has been included because it has a
marked effect on the cutting horsepower calculation. Also, the
proposed model considers the rake surface as an osculating
plane which enables one to obtain 3D cutting-force expressions
in two steps:

1. To determine the magnitude of the resultant cutting force
acting on the flute.

2. To find the location of the line of action of the resultant
force by using the principle of moments.

Fig. 10.Force responses for the full immersion of a cut along cutting  Thijs procedure drastically reduces the mathematical work
pathv = 0.5 with cutier helix angles of 3030, 5°, 5°. normally required in the derivation of cutting-force expressions.
Moreover, this comprehensive model allows guantitative analy-
[30,30,5,5] and [5,30,5,30]. However, according to the Table 1ses of the effect of any parameters specified on the cutting
the pressure component of the specific cutting force for theperformance of the tool. This in turn provides some guideline
first arrangement is larger than for the second one. In fact, théor further improvements of tool performance.
percentage increase for the second arrangement compared toThe simulation of machining a sculptured surface has shown
that with a cutter having a°Shelix angles, is 9.7%. The force the capability of the proposed estimation method to identify
fluctuations for these two new arrangements are shown ithe axial depth of cut for machining. It also indicated that

Figs 10 and 11, respectively.

5. Conclusion

force responses of the model exhibit the same trends as those
obtained from the mechanic cutting models reported in the
literature. Further, the simulations have demonstrated the
advantages of designing a tool with a combination of different
helix angles having a cutting-force signature similar to the

The majority of work carried out in the past on the predictive Single helix angle counterparts.
cutting-force modelling of end milling processes was aimed at
2D planar surface generation. In this paper, a new compreherficknowledgement

sive 3D predictive cutting-force model for milling sculptured
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Fig. 11.Force responses for the full immersion of a cut along cutting

pathv = 0.5 with cutter helix angles of°5 3C°, 5°, 3(°.
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