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A 3D Predictive Cutting-Force Model for End Milling of Parts
Having Sculptured Surfaces

T. S. Lee and Y. J. Lin
Department of Mechanical Engineering, University of Akron, Ohio, USA

A comprehensive, 3D mathematical model of desired/optimal
cutting force for end milling of freeform surfaces is proposed
in this paper. A closed-form predictive model is developed,
based on a perceptive cutting approach, resulting in a cutting
force model having a comprehensive set of essential cutting
parameters. In particular, the normal rake angle, usually miss-
ing in most existing models of the same sort, is included in
the developed model. The model also permits quantitative
analyses of the effect of any parameters on the cutting perform-
ance of the tool, providing a guideline to improving the tool
performance. Since the axial depth of cut varies with time
when milling sculptured surface parts, an innovative axial
depth of cut estimation scheme is proposed for the generation
of 3D cutting forces. This estimation scheme improves on the
practicality of most existing predictive cutting-force models for
milling, in which the major attention has been focused on
planar milling surface generation. In addition, the proposed
model takes the rake surface on the flute of mills as an
osculating plane to yield 3D cutting force expressions in only
two steps. This approach greatly reduces the time-consuming
mathematical work normally required for obtaining the cutting-
force expressions. A series of milling simulations for machining
freeform parts under specific cutting conditions have been
performed to verify the effectiveness of the proposed cutting-
force model. The simulation results demonstrate the accurate
estimating capability of the proposed method for axial depth
of cut estimation. The cutting force responses from the simul-
ation exhibit the same trends as can be obtained using the
empirical mechanic’s model referenced in the literature.
Finally, from the simulation results it is also shown that
designing a tool with a combination of different helix angles,
having cutting force signatures similar to those of the single
helix angle counterparts, is particularly advantageous.
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1. Introduction

One of the most common metal removal operations used in
industry is the milling process. The current practice of milling
sculptured surface parts is to choose overly conservative cutting
conditions so that excessive cutting forces or deflection of the
cutter do not occur [1]. However, as a high material removal
rate is mandated, the preferable way is to generate optimal
cutting conditions before actual machining. To realise this, a
comprehensive mathematical model for surface milling is
required. Since cutting force is the most important output
parameter of end milling that has direct influence on the quality
of machined parts, developing an accurate cutting-force model
is essential.

Prediction of end-milling forces is not a new area in manu-
facturing industry. However, most of the literature focuses on
2D cases where the contribution of the axial force to the
dynamic behaviour of the cutter is missing. Although a few
3D cutting-force models have been developed recently, they
have inherent shortcomings which merit further research in
the area.

In this paper, a more accurate and comprehensive 3D cutting-
force model for end milling, including sculptured surface cut-
ting, is proposed. The physical shape of the end milling cutter,
as in most other similar work, is assumed to be a cylinder
with helical flutes wound around its surface. However, the
proposed model takes the rake surface of a flute to be an
osculating plane, as opposed to viewing it as a ruled surface
as in most existing models. With this new approach, the
expressions of the unit vectors of a local right-handed ortho-
normal curvilinear coordinate system become simple, compact,
and well defined. Consequently, the unit tangent vector always
points in the direction of increasing spread angle, the unit
principal normal is directed toward the origin of the cutter,
and the direction of the unit bi-normal always points outward
and is perpendicular to the rake surface. The direct benefit of
this proposed approach is that the loading distribution on a
flute owing to the pressure of the chip on each elemental
cutting edge can be simplified to be a single resultant force.
Also, the location of the line of action of the force can be
determined by applying the principle of moments. Thus, the
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magnitude of the resultant force is equal to the sum of all the
elemental forces acting on the flute at that instant of cut.

The second consideration is of sculptured surface machining.
It is found that, so far, cutting force modelling for sculptured
surface milling has not attracted much attention. Since, along
a path of cut for generating a sculptured surface, the axial
depth of cut varies, the cutting-force determination is, therefore,
based mainly on the updated axial depth of cut estimation. For
this purpose, an innovative method for varying axial depths of
cut estimation has been proposed in this paper.

Lastly, it has been reported that helix angle is one of
the most important parameters in influencing the cutting-force
dynamics of a milling cutter [2]. Within the proposed cutting-
force model, the total cutting-force equations derived are aimed
at being more versatile, because the model allows various helix
angles of the flutes to be incorporated in the cutting-force
equations. Therefore, the proposed model can be used to assist
the design of an optimal milling cutter which is composed of
flutes with different helix angles for special needs.

2. Related Works

Cutting-force modelling of end milling has been investigated
extensively; [3–8] are some recent representative works. How-
ever, these investigations resulted in either prediction only for
static cutting forces which induce errors in realistic machining,
or models leading to less accurate cutting-force prediction
owing to a lack of physical comprehension. For example,
Smith and Tlusty [3] developed a model called the average
rigid force model in which the average power required for a
cut was assumed to be proportional to the metal removal rate.
The force model is inaccurate because it does not include the
influence of the cutter geometry and cutting conditions.

In 1994, Bayoumi et al. [4,5] developed a 3D mechanistic
force model. They used the ruled surface method to describe
the rake surfaces of the flutes of the cutter. As a result, the
expressions for the unit vectors of the moving trihedron of the
flutes become complicated and the directions of the vectors
are not well defined. In addition, to emulate cutting forces
accurately, each differential helical cutting-edge segment of the
flute is viewed as an oblique tool with an inclination angle
equal to the helix angle. The approach resulted in cumbersome
mathematical expressions for the cutting forces which not only
depend on the geometry of the cutter, normal rake angle, and
helix angle, but also on the process-dependent parameters such
as chip load (feed) and angular position of the chip.

The mechanistic force modelling method has also been
investigated by several researchers. Sabberwal [9] suggested
that the cutting force on the flute of a cutter is mainly due to
the tangential part of the force, and the force is proportional
to the undeformed chip area removed by that flute from
the region of engagement between the cutter and workpiece.
Martellotti [10] found that the contour generated by a cutting
flute can be considered to be circular. He then formulated the
chip load asf • sinu, where f is the feed of the cut andu is
the angular position of the cutter. It has become the most
frequently employed expression for the chip load. Tlusty and
MacNeil [11], and King [12] adopted a similar expression for

tangential force, and further assumed that radial force is related
to the tangential force by a constant coefficient. Kline et al.
[13] and DeVor et al. [14] developed a discrete mechanistic
force model in which the chip along each flute of the cutter
is divided into a series of discrete thin disks. Similar to the
model used by Tlusty and MacNeil, the elemental cutting
forces contributed by each disk can be calculated. The total
cutting forces are then obtained by summing all these elemental
cutting forces numerically. Based on this force model, Kline
and DeVor [15] examined the effects of the cutter runout on
the cutting forces. Sutherland and DeVor [16] took a step
further. In addition to the cutter runout, they also incorporated
static deflection of the cutter into their cutting force model.
Later, Sutherland [17] improved the cutting force model
presented in [16] by taking the dynamic nature of the cutter
deflection into consideration. The main drawback of this dis-
crete mechanistic force method is that, at each instant of time,
new discrete chip disks must be obtained from the new cutting
region. This requires that the cutting forces be recalculated
numerically. Therefore, it is a computationally intensive
method. It can be found that all the models discussed above
were 2D force models, which are unable to predict cutting
force in the axial direction. This motivated the development
of the first 3D mechanistic force model, proposed by Bouzakis
et al. [18] in 1985. Their model was also formulated in a discrete
form. Therefore, it can be expected that the model inherited the
same drawbacks as those of the 2D discrete models.

Other researchers such as Armarego and Deshpande [19]
used the mechanics of the cutting approach to predict milling
cutter forces. They began with partitioning the cutting edge of
each tooth into a series of differential elements. By viewing
each of these differential cutting edges as an oblique cutting
tool, they used the cutting force equations derived by Armarego
and Brown [20]. However, the accuracy of the predicted cutting
forces by this method relies entirely on the quality of the input
data including such parameters as shear stress and normal
shear angle, etc. Unfortunately, this parameter information is
generally not available in the literature.

3. Three-Dimensional Cutting Force
Formulation

In this section, a comprehensive 3D cutting force model for
the end-milling process is proposed. The model is derived
based on the assumption that the formation of the chip is of
a continuous type. In addition, the model assumes that the tool
is perfectly sharp and rigid, and chattering, tool breakage, and
wear do not occur during the course of machining.

The model is derived in four sequential steps and their
procedures are:

1. Define unit vectors for a curvilinear coordinate system at
any specified point of a flute. In differential geometry, the
coordinate system at that specific point is called the tri-
hedron or triad. However, as the point changes, the coordi-
nate system moves along the flute. In this case, the system
is known as the moving trihedron. The main function of
this coordinate system is to describe the directions in which
the cutting forces are exerted on the flute.
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2. Derive expressions for the pressure and friction components
of the cutting forces. The first component in the force model
is due to the cutting chip pressing on the rake surface of
the flute, and is known as the pressure component. The
other part, called the friction component, is due to the
sliding motion of the chip on the surface.

3. Establish the integration limits so that the cutting force
equations can be formulated in a closed form format.

4. Develop a methodology for estimating the ever-changing
depth of cut through machining of parts having sculptured
surfaces.

These four sequential steps will be elaborated in the follow-
ing subsections.

3.1 Unit Vector Representation of a Helical Flute

The geometric shape of a flat-end milling cutter is a right
circular cylinder with the flutes of the cutter winding around
the cylinder. The geometric shape of a flute is a circular helix.
Figure 1 shows a typical flat-end milling cutter with flutei
lying on the surface of the cutter. The cutter has a radiusR
and is rotated at a constant angular velocityv. In order to
describe instantaneous orientation and the position of a point
on the flute, two sets of coordinate systems, namely, a fixed
and a rotational coordinate system are required. Referring to
Fig. 1, the coordinate systemx0y0z0 is the fixed coordinate
system andxiyizi is the rotational coordinate system. The main
purpose of the rotational coordinate system is for describing
the position of a point on a flute. For example, the instan-
taneous rotational orientation of a flute such as flutei, as
shown in Fig. 1, can be described by the anglebi, which is
the angle between thexi-axis of the rotational coordinate system
xiyizi and thex0-axis of the fixed coordinate system. In defining

Fig. 1. Geometric description for a point on a flute.

this angle, thexi-axis is established in such a way that it
passes through the leading point on the cutting edge of the
flute. From the geometry of the cutter as shown in Fig. 1, the
position vectorr i for a point on the flutei that corresponds
to the spread angleci is obtained as

r i 5 R coscie1 1 R sincie2 1 hie3 (1)

where e1, e2, and e3 are the unit vectors pointed in the
directions of thexi-, yi- and zi-axes, respectively, andhi is
used to indicate the elevation of a point on the flutei. Because
the geometric shape of the flute of the cutter is a circular
helix, the elevation of a point on the flute is proportional to
the circumferential movement,Rci of the cutter. Hence, the
elevation of a point on the flutei at a spread angleci can be
written as

hi 5 Rci cot ai (2)

whereai is the helix angle of the flutei, i.e. the angle between
the unit tangentTc of the helical flute and thezi-axis. In
addition, to form a local righthanded rectangular coordinate
system at each point of the flute, there are two other unit
vectors required, namely, the unit normalNc and bi-normal
vector Bc. This coordinate system is used to describe cutting
forces acting on the cutting edges of the flute.

As can be seen in Eqs (1) and (2), the position vector is a
function of the spread angleci. However, using the relation
s 5 eudr i/dciudci, the position vector of the flute can then be
transformed into a function in which the arc lengths is a
variable. Therefore, applying the chain rule with the definition
of unit tangent,Tc 5 dr i /ds, and the relation that relates the
derivative of arclength s to that of position vector,
ds/dci 5 udr i/dciu, the unit tangent can be expressed in terms
of ci as

Tc 5
dr i

ds
5

dr i

dci
Y ds

dci

5
dr i

dci
Y |dr i

dci|
= −sincisinaie1 + coscisinaie2 + cosaie3 (3)

As in the case of a unit tangent, the unit normal along the
helical flute is also defined in terms of arclengths. However,
using the chain rule and the relation ds/dci 5 udr i/dciu, this
quantity can also be expressed in terms ofci. Therefore, the
expression of the unit normal is given by

Nc 5
dTc

ds Y |dTc

ds | = −coscie1 − sincie2 (4)

Equation (3) indicates thatTc is tangent to the flute and
pointed in the direction of increasingci. On the other hand,
Eq. (4) implies that the vectorNc points toward the origin of
the xiyizi coordinate system and is parallel to thexiyi-plane.

The plane that contains vectorsTc and Nc is called an
osculating plane. However, in metal cutting terms it is equival-
ent to the rake surface of the cutter. In fact, this is the surface
from which the chip will be removed by the cutting operation.

With Tc andNc defined, the unit bi-normal vectorBc required
to complete the triplet of the local coordinate system can be
obtained by applying the cross-product. Thus, it is perpendicu-
lar to the osculating plane, or can be expressed in terms ofci as
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Bc 5 Tc × Nc

5 sinci cosaie1 2 coscicosaie2 1 sin aie3 (5)

After having defined the curvilinear coordinate system suf-
ficiently, a closed-form mechanistic cutting-force model can
then be developed.

3.2 Closed-Form Mechanistic Cutting Force Model

Figure 2 shows a flat-end milling cutter in the process of
machining a slot in a workpiece. The cutter is fed in the
direction of x0 with a feedrate offr. The axial and radial
depths of cut areda and dr, respectively. As the cutter rotates
with an angular velocityv, a point on flutei will start engaging
with the workpiece at an angular position equal to the cutter
entry angleuen and will leave the cut at an angular position
equal to uex, the cutter exit angle. As depicted in Fig. 2, the
instantaneous angular position of such a point with reference
to the fixed coordinate systemx0y0z0 can be described by angle
gi. The corresponding chip thicknesshc of the point is determ-
ined by the radial difference between paths 1 and 2 as follows:

hc 5 f cosgi (6)

where f is the feed of the cutter.
As shown in Fig. 2, the cutter entry angle for a given radial

depth of cut can be determined by

uen 5 sin21[dr/R) 2 1] (7)

By cross-referencing Fig. 1 with Fig. 2, it can be seen that
the instantaneous angular positiongi of the point on the flute
can now be written asgi 5 bi 1 ci − f with bi being the
angular position of the leading point on the cutting edge of

Fig. 2. Cut geometry and positive coordinate sign convention for a
flat-end mill.

the flute i and f being the instantaneous position of the cutter
owing to the cutter rotation ratev. If the cutter has more than
one flute with the pitch between any two flutes being constant,
then the angular position of the leading point can be shown
to bebi 5 br 1(i 2 1)(2p/Nf), wherebr is the angular position
of the leading edge point of the referenced flute andi varies
from 1 to Nf, i 5 1,2, . . . Nf.

Figure 3 shows an elemental cutting edge of flutei. The
axial depth of cut by this elemental cutting edge isdzi. The
cutting force acting between this elemental cutting edge and
the work piece isdzi. The cutting force acting between this
elemental cutting edge and the workpiece can be resolved into
two components: a pressure and a friction component. The
pressure component acts in the direction perpendicular to the
rake surface of the flute. This component provides a measure
of the compressive action which the chip applies to the surface
of the flute. However, the friction component is applied parallel
to the surface owing to the sliding movement of the chip on
the surface of the flute. Since the chip slides up the surface
without any restraint on its movement, it is expected that the
friction force would act in the direction of the chip movement.

For a flute with zero helix angle, the chip slides on the rake
surface along the direction ofNc. However, when the helix
angle of the flute is greater than zero, the chip will take a
path that makes an anglehi with Nc. Referring to Fig. 3 as
well as to Eqs (3) and (4), the unit vector defining the direction
of the chip movement on the rake surface of the flute can be
found to be

Qc 5 coshiNc 1 sinhiTc

5 2(coshicosci 1 sinhisincisinai)e1 (8)
1 (sinhicoscisinai 2 coshisinci)e2

1 sinhicosaie3

where hi is called the chip flow angle. However, in the case
when the information regarding this angle is not available,
then as an approximation it is generally assumed to be equal
to the helix angle of the flute,hi 5 ai. In metal cutting, it is
known as the Stabler’s flow rule.

The dimensions of the chip which are required for calculating
cutting forces are obtained from the projection of the elemental
axial depth of cutdzi and the undeformed chip thicknesshc

in the direction of chip flow on the plane of the rake surface.
As shown in Fig. 3, the geometry of the chip movement

shows the trianglesADF and AFE do not lie on the same
plane. TriangleADF is in the plane normal to the cutting
edge, while triangleAFE lies on the plane of the rake surface.
However, these two triangles share the same edgeAF. There-
fore, in order to find the length of the chipAE from the
undeformed chip thicknessAD 5 hc, one must first projectAD
orthogonally ontoAF, and then projectAF back toAE. In the
light of Eq. (6),

AE 5
AD

coseicoshi

5
f cosgi

coseicoshi

(9)

where the angleei is known as the normal rake angle formed
betweenAD and AF and is located in the plane normal to the
cutting edge. Similarly, the widthBC of the chip can be
obtained accordingly. It is noted that that trianglesACB and
AGB do not lie on the same plane but they have the same
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Fig. 3. Projection of the undeformed chip area into the direction of chip flow on a rake surface.

hypotenuseAB. Thus, from the geometry, the width of the
chip BC can be expressed as

BC 5 ABcoshi 5
dzi

cosai

coshi (10)

where dzi is the differential axial depth of cut for flutei at a
differential spread angledci. In analogy to Eq. (2),dzi can be
written as dzi 5 R cot aidci. Thus, the normal cutting force
for this differential cutting edge can be written as:

d Fi,p 5 Kc (AE) (BC) (11)

where Kc is defined as the specific cutting pressure. It is a
variable that depends on the material properties of the
workpiece/tool and on the geometry of the tool as well as on
the undeformed chip thickness.

After obtaining this elemental cutting force model, the cut-
ting force due to the pressure component for the flute at an
instant of cut can be predicted by summing up the elemental
cutting forces at each elemental cutting edge of the flute.
Substituting Eqs (9) and (10) into Eq. (11) and then integrating
the resultant equations yields

Fi,p 5
fRkc

cosPi sinai
Eci,U

ci,L

cos(bi 1 ci 2 f)dci

5
fRKc

cosPi sin ai

[sin(bi 1 ci,U 2 f) 2 sin(bi 2 ci,L 2 f)]

(12)

whereci,L andci,U are used to indicate the range of the cutting
edge of the flute engaged with the workpiece. Applying the
principle of moments yields

RgiFi,p 5 E Rgi dFi,p (13)

where gi is the equivalent angular position for the line of
action of Fi,p, usually denoted bygi 5 bi 2 f 1 ci, with ci

being the equivalent spread angle.

Since the radius of the cutterR is a constant, substituting
Eqs (11) and (12) into Eq. (13) gives

ci 5 F c1 2 c2 1 c3 2 c4

sin(b 1 ci,U 2 f) 2 sin(b 1 ci,L 2 f)G
2 (bi 2 f) (14)

where the termsc1, c2, c3, and c4 are all constants having the
following expressions:

c1 5 gi,U sin(bi 1 ci,U 2 f)
c2 5 gi,L sin(bi 1 ci,L 2 f)
c3 5 cos(bi 1 ci,U 2 f)
c4 5 cos(bi 1 ci,L 2 f)

in which gi,U and gi,L are gi,U 5 bi 2 f 1 ci,U and
gi,L 5 bi 2 f 1 ci,L, respectively.

Finally, the cutting force due to the pressure component in
the local coordinate system becomes

Fi,p 5 Fi,pBc 5 2Fi,p sincicosaie1

1 Fi,pcoscicosaie2 2 Fi,p sinaie3 (15)

whereBc is a unit binormal vector evaluated at the equivalent
spread angleci.

In addition, the frictional force can be written as

Fi,f 5 KfFi,pQc

5 2KfFi,p (coshicosci 1 sinhisincisinai)e1

1 KfFi,p (sinhicoscisinai 2 coshisinci)e2

1 KfFi,psinhicosaie3 (16)

where Kf is the coefficient of friction on the interface of the
chip and the rake surface of the flute. In Eq. (15),Qc is used
to indicate the evaluation of the unit chip flow vector at the
equivalent spread angleci.

However, summing the cutting force contributed by these
pressure and friction components will yield the total local
cutting force acting on the flute. Hence, the components of
the total local cutting force are given by
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Fi,x 5 2Fi,p sincicosai 2 KfFi,p

(coshicosci 1 sinhisincisinai)

Fi,y 5 Fi,p coscicosai 1 KfFi,p (sinhicoscisinai 2 coshisinci)

Fi,z 5 2 Fi,p sinai 1 KfFi,psinhicosai (17)

Equation (17) is only applicable to a single flute force analysis.
To obtain a global cutting force on the tool for a multiflute
cutter, the global cutting force acting on the tool can be
written as

5
Rx

Ry

Rz

6 5 ONe

i51 3
cos(bi 2 f) 2sin(bi 2 f) 0

sin(bi 2 f) cos(bi 2 f) 0

0 0 1
4 5

Fi,x

Fi,y

Fi,z

6
(18)

where Ne is the number of cutter flutes involved in the cut at
that instant of time. To use Eq. (18) as a model to predict the
instantaneous cutting force on the tool, the data regarding the
cutter specification, i.e.R, Nf, ei, ai, and cutting conditions,
i.e. da, dr, fr, f, as well as the cutting process parameters, i.e.
Kc, Kf, hi, must be available and be used as inputs to the model.

3.3 Integration Limits

The integration limitsci,L and ci,U for flute i depend on the
cutter entry angleuen and the cutter exit angleuex, as well as
on the instantaneous angular positiongi of a point on the flute.
These variables in turn are functions of the radial and axial
depths of cut,dr andda, respectively, as well as on the angular
position bi of the leading edge point of the flute and the
spread angleci for a point on the flute at a given axial depth
of cut.

As shown in Fig. 4, at any instant of time, the rotational
position of a flute can assume any one of the five possible
positions. For example, in Fig. 4(a) where the leading edge
point of the flute is located in the regionB while the angular
position gi,a for the point on the flute corresponding to the
axial depth of cutda is in regionA, the integration limits for the
flute at this orientation areci,L 5 0 and ci,U 5 uen 2 (bi 2 f),
respectively, where the expression forgi,a is given as
gi,a 5 bi 2 f 1 ci,a. In mathematical terms, the orientation of
the flute is said to be in the position of Fig. 4(a) when the
angular positions of the leading edge point satisfy the con-
ditions of bi 2 f , uen and gi,a . uen.

Similarly, the expressions for the integration limits and the
conditions at which these limits are applicable to all other
orientations of the flute shown in Fig. 4 can be obtained as:

Case 1
bi 2 f a uen

bi 2 f 1 ci,a s uen
J ci,L 5 0, ci,U 5 uen 2 (bi 2 f)

Case 2
bi 2 f $ uen

bi 2 f 1 ci,a # uen
J ci,L 5 0, ci,U 5 ci,a

Case 3
bi 2 f a uen

bi 2 f 1 ci,a # uen
J ci,L 5 uex 2 (bi 2 f), ci,U 5 ci,a

Fig. 4.Possible rotational positions of a flute withs 5 leading edge
point, andE 5 angular position of a point on the flute that corresponds
to the axial depth of cutda.

Case 4

bi 2 f a uen

bi 2 f 1 ci,a s uen 6 ci,L 5 uex 2 (bi 2 f),

ci,U 5 uen 2 (bi 2 f)

Case 5
Otherwise ci,L 5 0, ci,U 5 0

where cases 1 to 5 are based on the positions shown in
Figs 4(a) to 4(e), respectively.

The above integration limits are valid for machining a plane
surface with a constant radial depth of cut. However, if a
sculptured surface must be produced, then, even when machin-
ing at a constant radial depth of cut, the axial depth of cut
may vary along a contour of the surface. To determine these
constantly varying cutting forces, the axial depth of cut must
be constantly identified and be fed into the cutting force model.
In the following section, an innovative method, capable of
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estimating the axial depth of cut for a sculptured surface
machining, is proposed.

3.4 Axial Depth of Cut Estimation

In order to estimate the axial depth of cut at any instant on a
sculptured surface, the orientation of the cutter with respect to
the sculptured surface at that instant of time must be known.
There are several ways toposition the cutter with respect to
the surface. However, for rapid and efficient machining of the
surface, thez0-axis of the cutter must be placed in such a way
that the direction of the axis is coincident with that of the
surface normal. Figure 5 shows the cutter oriented in such
a position.

As shown in the figure, the cutter has the flute lengthlf. At
an instant of time, it is located at pointp0 (x0, y0, z0) on the
surface. The cutter intersects with a plane at pointp(x,y,z).
The position of the cutter at the end of the flute length is
represented by pointp1(x1, y1, z1). Since the surfacer (u,v) is
represented in a parametric form in whichu and v are the
parameters of the surface, the unit surface normalu of the
surface can be obtained by

u 5
r u × r v

uru × r vu
(19)

where r u and r v are partial derivatives ofr with respect to the
parametersu and v, respectively; and the termuru × r vu in the
equation is the magnitude of the surface normalr u × r v. It is
defined asuru × r vu 5 √((ru × r v) • (r u × r v)). However, as illus-
trated in the figure, if vectorp0p1 is to be on the same line
as the extension of the unit surface normalu, then the vectors
p0p1 andu must satisfy the conditionu × p0p1 5 0. This implies
that u and p0p1 must be linearly dependent. Since for a regular
surface,u ± 0, p0p1 must be equal to a scalar (i.e.lf) multiplied
by u. Or we can write

p0p1 5 lfu (20)

Equation (20) can be rewritten in the coordinates of pointpl as

{ x,y,z} T 5 { x0,y0,z0} T 1 lf { ux,uy,uz} T (21)

Fig. 5. The intersection of a cutter with a plane at pointP.

where ux, uy and uz are the three components of the unit
surface normalu in the X, Y and Z directions of theXYZ
coordinate system, respectively.

Similarly, with regard to the intersection pointp of the
cutter and the plane we can write

p0p 5 gp0p1 (22)

where g is a real variable. Again expanding this equation in
its components, the following expression is obtained:

{ x1,y1,z1} T 5 { x0,y0,z0} T 1 g{ x1 2 x0, y1 2 y0, z1 2 z0} T

(23)

It can be seen from this equation that ifg 5 0, the pointp
coincides with the pointp0. On the other hand, ifg 5 1, then
the point p is located at p1. In other words, if the variableg
in this Eq. is allowed to vary in the range of 0 to 1, 0# g # 1,
then the point of intersectionp will assume the position of
any point on the line segment connectingp0 andp1. Physically,
this constraint means that the axial depth of cut for the milling
process cannot be larger than the flute length.

In implicit form, every plane in space is represented by an
equation of the first degree in one or more of the variablesx,
y, and z. However, all these Eq. can be represented by a
general expression

ax 1 by 1 cz5 d (24)

provided thata, b, c, and d are real numbers anda, b, and c
are are not all zero.

Substituting Eq. (23) into (24) and simplifying, the general
expression for the variableg at which the cutter and the plane
intersect can be written as

g 5
d 2 a x0 2 b y0 2 c z0

a(x1 2 x0) 1 b(y1 2 y0) 1 c(z1 2 z0)
(25)

where theg varies in the range of 0 to 1.
If the shape of a workpiece is rectangular, then from Eq.

(25) the g value for the cutter to intersect theX-plane of the
workpiece is

gx 5
dx 2 x0

x1 2 x0

(0 # gx # 1) (26)

where dx is the coordinate of intersection of theX-plane with
the X-axis. Notice that in obtaining this equation, the equation
of the planex 5 dx has been applied to Eq. (25).

The equation that describes theY-plane of the workpiece is
y 5 dy. Comparing this equation with Eq. (25), theg formula
for the intersection of the cutter and theY-plane becomes

gy 5
dy 2 y0

y1 2 y0

(0 # gy # 1) (27)

wheredy is again used to denote the coordinate of intersection
of the Y-plane with theY-axis.

Similarly, plugging theZ-plane equation,z 5 dz, into Eq.
(25), theg expression for this case is obtained as

gz 5
dz 2 z0

z1 2 z0

(0 # gz # 1) (28)

where dz is the coordinate of intersection of theZ-plane with
the Z-axis.
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The main drawback of using an implicit form to describe a
plane is that the equation that represents the plane represents
an infinite plane. Therefore, for a rectangular workpiece a
cutter with flute lengthlf will either intersect one or more (at
most 3 planes) planes of the workpiece at any instant. Among
these intersection planes, the one that is most relevant for
calculating axial depth of cut is the plane that first intersects
the cutter. In fact, at that intersection the axial depth of cut is
a minimum when compared with other possible intersections.
In other words, the axial depth of cut that corresponds to the
first intersection plane is determined by the following condition

da 5 min{ ugxp0p1u ugyp0p1u ugzp0p1u } (29)

in which the first term in the brackets corresponds to the axial
depth of cut with respect to theX-plane intersection. Similarly,
the other two terms in the brackets are associated with theY-
and Z-plane intersections, respectively. However, among these
three values in the equation, the one that is the minimum is
the one that corresponds to the first intersection plane.

4. The Predictive Model Assessment on a
Sculptured Surface Machining

Figure 6 shows a general sculptured surface to be machined
from a rectangular shaped workpiece by using a milling cutter.
The workpiece has dimensions of 7 mm in height, 20 mm in
depth, and 45 mm in width. It is clear that in order to generate
this surface from the workpiece, the axial depth of cut of the
machining process must be continuously varied with time.
Therefore, in order to calculate the predictive cutting forces,
it must be estimated continuously and then fed back to the
cutting-force model.

In this section a test is performed to assess the capability
of the axial depth of cut estimation method as developed above
for identifying the depth of cut for this machining operation.
Comparisons of simulation results are also made against some
data published in the literature to further validate the proposed
cutting-force model. In addition, a cutting tool is designed by
effectively arranging the helix angles of the tool using this
predictive model as a guideline.

To perform the verification, a computer program was
developed for simulation purposes. In the simulations, a 10 mm
diameter HSS end mill has been used. The tool has four flutes
with all the flute lengths being 19 mm. The normal rake angle

Fig. 6. A general shape of a sculptured surface.

for each flute is 5°. The tool is used to machine a 7075
aluminium workpiece. The cutting parameters,Kc andKf, which
were identified empirically by Wang et al. [6], are taken to be
the nominal values in these simulations. The expressions of
these identified parameters are as follows [6]:

Kc 5 569.14 (hc)20.283

Kf 5 0.1468 (hc)20.364 (30)

where the average chip thicknesshc is expressed ashc 5 euexuen

f cosudu/(uex 2uen). In addition, a sampling rate of 36 samples
per revolution and a spindle speed of 1200 rev/min have been
used in the simulations. The tool has been fed with a feedrate
of 20 mm s21 and the radial of cut of the tool is 10 mm.
Gouging problems were not considered in the simulations.

Figure 7 shows the orientations and positions of the cutter
along the pathv 5 0.5 of the surface. The orientations in the
figure are plotted at every fifth position of the cutter. The
cutting tolerance for generating this path is 0.02 mm. The
positions as shown in the figure are obtained by using the
adaptive cutting path generation algorithm [21]. However, the
orientations and the axial depth of cut of the cutter are obtained
by using the axial depth of cut estimation method proposed
previously in this paper. In the figure, the depth of cut at any
instant is determined by taking the corresponding distance
between the cross symbols.

Figures 8 and 9 show the instantaneous cutting forces along
the cutting pathv 5 0.5. The forces are obtained from the
proposed predictive cutting-force model. The helix angles used
in the simulations for these two figures are 5° and 30°,
respectively. The observation of the force fluctuations in these
figures indicates that as the helix angles increase the force in
the z-direction also increases in tandem but it has little effect
on the forces in the other two directions. Similar trends are
also predicted by using the mechanics of cutting approach,
even though the cutting parameters used in the prediction are
different. However, the shortcoming of studying the effect of
cutting parameter on the cutter, based on force fluctuations, is
that it lacks the capability of describing in detail the intricate
interactions of the cutting. Therefore, it was decided to use a
statistical method (e.g. root mean square) to assist in the
interpretation of the cutting phenomena.

Since the analysis would become very complicated if the
effects of cutting parameters on the cutter were analysed for
each component of cutting force, the analysis was carried out
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Fig. 7. Positions and orientations of a cutter along cutting pathv 5 0.5.

Fig. 8. Force responses for the full immersion of a cut along cutting
path v 5 0.5 with cutter helix angles of 5°, 5°, 5°, 5°.

Fig. 9. Force responses for the full immersion of a cut along cutting
path v 5 0.5 with cutter helix angles of 30°, 30°, 30°, 30°.

based on the specific cutting force due only to the pressure
componentFs,p. The pressure component is defined as

Fs,p 5 (Rx,p
2 1 Ry,p

2 1 Rz,p
2)1/2 (31)

where Rx,p, Ry,p, and Rz,p are the global cutting-force compo-
nents which are due to the pressures of the chips on the rake
surfaces of the cutter. Although the pressure component of the
specific cutting force is not an instantaneous cutting force, it
is a useful and effective method of investigating the effects of
the cutting parameters on the cutter.

Table 1 shows the helix angle arrangements for a four-flute
cutter with its corresponding root mean square value for spe-
cific cutting force due to pressures. As shown in Figs 8 and
9, the table also shows that as the helix angle of the flutes
increases from 5° to 30°, the pressure-component (normal)
specific cutting force will increase in tandem with the increase
in angle in which the specific cutting force at 30° is 23.9%
higher than that for 5°. However, the problem associated with
this high normal specific cutting force is that it could cause
the chips to adhere to the rake surfaces of the tool. This in
turn could lead to the formation of built-up edges on the tool.
On the other hand, if the cutting tool with a lower helix angle
is chosen to machine a surface in which the radial engagement
of the tool with the workpiece is less than full immersion,
then the cutting force will increase to a maximum value and
then rapidly drop to a minimum value. This sharp variation of
force could act as an impact load which in turn could induce
vibration in the cutter and/or machine tool.

The only way out of this dilemma is to design a tool that
has a combination of different helix angles. In the case of a
cutter with four flutes, the possible combinations of arrange-
ments for the flutes with helix angles of 5° and 30° are,

Table 1.Helix angle arrangement and its corresponding specific cutting
force for a cutter with four flutes.

Helix angle arrangement Root mean square for specific
cutting force due to pressure (N)

5°, 5°, 5°, 5° 628.5041
30°, 30°, 30°, 30° 778.8776
30°, 30°, 5°, 5° 701.0402
5°, 30°, 5°, 30° 689.3893
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Fig. 10.Force responses for the full immersion of a cut along cutting
path v 5 0.5 with cutter helix angles of 30°, 30°, 5°, 5°.

[30,30,5,5] and [5,30,5,30]. However, according to the Table 1,
the pressure component of the specific cutting force for the
first arrangement is larger than for the second one. In fact, the
percentage increase for the second arrangement compared to
that with a cutter having a 5° helix angles, is 9.7%. The force
fluctuations for these two new arrangements are shown in
Figs 10 and 11, respectively.

5. Conclusion

The majority of work carried out in the past on the predictive
cutting-force modelling of end milling processes was aimed at
2D planar surface generation. In this paper, a new comprehen-
sive 3D predictive cutting-force model for milling sculptured

Fig. 11.Force responses for the full immersion of a cut along cutting
path v 5 0.5 with cutter helix angles of 5°, 30°, 5°, 30°.

surface parts has been proposed. The model was developed
based on the mechanistic cutting approach and is presented in
a closed-form format. As opposed to the empirical method
commonly used in which the force information obtained is
only valid for some specific cutting conditions, the proposed
model provides a simple and generic means to determine the
cutting force. It only requires identification of the coefficient
of friction and the specific cutting pressure from tests.

In addition, the normal rake angle, which is usually missing
in the existing models, has been included because it has a
marked effect on the cutting horsepower calculation. Also, the
proposed model considers the rake surface as an osculating
plane which enables one to obtain 3D cutting-force expressions
in two steps:

1. To determine the magnitude of the resultant cutting force
acting on the flute.

2. To find the location of the line of action of the resultant
force by using the principle of moments.

This procedure drastically reduces the mathematical work
normally required in the derivation of cutting-force expressions.
Moreover, this comprehensive model allows quantitative analy-
ses of the effect of any parameters specified on the cutting
performance of the tool. This in turn provides some guideline
for further improvements of tool performance.

The simulation of machining a sculptured surface has shown
the capability of the proposed estimation method to identify
the axial depth of cut for machining. It also indicated that
force responses of the model exhibit the same trends as those
obtained from the mechanic cutting models reported in the
literature. Further, the simulations have demonstrated the
advantages of designing a tool with a combination of different
helix angles having a cutting-force signature similar to the
single helix angle counterparts.
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