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The machining of a thin disk-shaped workpiece is a problem
commonly encountered in the aeronautics industry. Generally,
the successful machining of a thin disk requires reinforcement
by plaster. This reduces the productivity and increases the
production cost. It is recognised that the suitable control of
the cutting force to limit the maximum deflection of the disk
within a certain value for each loading allows the machining to
be successfully carried out without any plaster reinforcement.
Modelling and computer-simulation of the deflection of a thin
disk-shaped workpiece during turning are thus developed. The
results of the simulation are discussed.
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1. Introduction

Most thin disk-components used in the aeronautical industry
are difficult to machine because of their small flexural rigidity
for resisting the cutting force exerted. Although there are a
number of techniques available for successful machining of
such disks, they are inefficient and costly. The typical turning
procedure for such components is, first, to fill the hollow parts
of the disks with plaster, on the side which is not going to
be machined, then the plaster-reinforced disk is clamped onto
a turning fixture. The reinforcing plaster is taken off after
turning. This method is time consuming and usually jeopardises
productivity. Furthermore, the removal of the filling plaster
may create problems of dimensional accuracy. Although the
use of fixtures which support thin sections is also a common
and preferred method to solve such turning problems, the
production and mounting of fixtures are normally time consum-
ing and costly. Additionally, one type of fixture can only be
used for turning one kind of disk-shaped workpiece. Wastage
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of materials may occur if the fixtures are scrapped when they
are thought to be no longer required or when there is no space
to store them. Another solution to such difficult machining
problems is to work out the turning conditions which provide
a minimum and acceptable deflection profile by trial cuts, but,
such an approach demands trial cuts to be undertaken for each
material and each thickness. It is labour-exhaustive and waste-
ful of material. Also, the disk may be scrapped if it was
carelessly machined. Additionally, it requires a highly skilled
machinest to perform the task. Consequently, these types of
thin disks are very costly to produce and accuracy is hard to
maintain. The advance of computer simulation techniques pro-
vides the means to solve such machining problems by a series
of simulations, visualisations and analyses [1–6]. Simulation
of this kind can be classified into:

1. Geometrical simulation.
2. Physical simulation.

Geometric simulation predicts cutting kinematics controlling
the movement of a cutter on the basis of multiple minimal-
depth-feed allowable cuts within the NC programs [1–5]. It
does not take into account of the cutting kinetics. Consequently,
it cannot optimise the turning process, and may sometimes
cause turning failure when the last step of an estimated cut
exceeds the allowable stress for the thin disk. Consequently,
scrapping may frequently occur. Realising this shortcoming of
the geometric simulation, physical simulation to take account
of cutting force and torque, cutting heat generation, disk deflec-
tion, and so on, is proposed [1,6] so as to optimise the
machining phase of production. Because of the complexity of
modelling the physical aspects in the machining stage, most
researches in this field have been restricted to the geometric
aspect [1–5]. Additionally, the current integration of virtual
manufacturing technology with computer-aided simulation has
the great merit of encouraging the development of virtual
reality techniques [7].

The authors envisage that a physical simulation of the
successful turning of a thin disk is possible if the maximum
deflection, due to the application of cutting force, can be
controlled to a level such that the deflection is within the
allowable turning tolerance. With this in mind, this paper
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offers a methodology of physical simulation for analysing the
deflection of a thin disk-shaped workpiece in turning. To
demonstrate the validity of the simulation the deflection behav-
iour can be displayed, and the optimal parameters for the
turning using virtual reality technology can be obtained. Fur-
thermore, the simulation provides data for the selection of a
turning sequence.

2. Mathematical Model of Thin Disk
Deflection

A thin-walled part generally has an aspect ratio of thickness
to minimum surface area between 1/100 and 1/8. Figure 1
shows this kind of disk which is loaded with a cutting force
by a cutting tool on its turning face. Generally, the cutting
load on the disk can be resolved into a component parallel to
and another component perpendicular to the neutral plane of
the disk. The perpendicular component will deflect the thin disk
and it should be suitably controlled within the allowable limits.

2.1 Equation of Elastic Deflection Surface

Since the loaded disk is so thin, its deflection can be simulated
as a loaded sheet disk under bending conditions. It is suggested
that the machining can be successfully carried out if the
maximum turning tolerance of the thin disk is smaller than
the maximum deflection of a sheet disk deflected by the
perpendicular component of the cutting force. In order to
analyse such a turning problem it is further postulated that:

1. The shear strains,gxz and gyz, in the neutral plane of the
bent sheet are zero throughout.

2. The displacements, i.e.u and v, in the neutral plane along
the x- and y-directions (Fig. 1) are negligible when com-
pared with the deflectionw in the z-direction.

3. The stresssz perpendicular to the neutral plane is zero and
the strain in thez-direction ez = 0.

Fig. 1. Configuration of a thin disk during turning.

The postulation (1) thus gives [8–10]:

gxz =
u
z

+
w
x

= 0; gyz =
w
y

+
v
z

= 0 (1)

Integrating Eq. (1) with respect toz, we obtain:

u = 2
w
x

z + f1(x, y); v = 2
w
y

z + f2(x, y) (2)

From Eq. (2), it is reasonable to takef1(x, y) = f2(x, y) = 0.
Therefore, the three strain components, i.e.ex, ey and gxy, in
the (x, y)-plane can be expressed as a function of those relevant
geometrical deflection profiles as:
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= 2 z
2w
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y2, (3)
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= 22z
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respectively. Furthermore, Eq. (3) enables the establishment of
the following physical equations.

sx =
E

1 2 m2 (ex + mey), sy =
E

1 2 m2 (ey + mex) (4a)

in which m is the material Poisson’s ratio andE is the Young’s
modulus of the workpiece. Substituting the geometrical
equation (3) into the physical equation (4a), then further substi-
tuting the physical equation into the following equilibrium
equation for a 3D element [11]:
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= 0, (4b)
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then gives, after integration, the relevant stress functions as:

tzx =
Ez2

2(1 2 m2)


x
D2w + F1(x, y), (5)

tzy =
Ez2

2(1 2 m2)


y
D2w + F2(x, y)

Since the deflection functionw is independent ofz, the bound-
ary conditions oftzx = tzy = 0 at z = 6h/2 (Fig. 1) further
allow F1(x, y) and F2(x, y) to be evaluated from Eq. (5) which
itself can then be re-expressed as:
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E

2(1 2 m2) Sz2 2
h2

4D 

x
D2w, (6)
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Substituting Eq. (6) into the third expression in Eq. (4b) gives:

sz

z
=

E
1(1 2 m2) Sh2

4
2 z2DD4w (7)

The integration of Eq. (7) gives:

sz = 2
E

2(1 2 m2) Sh2

4
z 2

z2

3D D4w + F3(x, y) (8)

The consideration of the boundary condition of (sz)z=h/2 = 0
for Eq. (8) allows the functionF3(x, y) to be derived, and
subsequently Eq. (8) to be re-expressed as:
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sz =
Eh3

6(1 2 m2) S1
2

2
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hD2 S1 +

z
hD D4w (9)

Further, considering the boundary condition of (sz)z=2h/2 = q
for Eq. (9) permits Eq. (9) to be finally expressed as:

sz =
Eh3

12(12 m2)
D4w = q (10)

Equation (10), together with the consideration of geometrical
compatibility and stress equilibrium provides a partial differen-
tial equation for the deflection surface of a thin sheet with
uniformly distributed loadingq per unit surface to be written as:

4w
x4 + 2

4w
x2y2 +

4w
y4 =

q
D

(11)

in which the deflection stiffnessD of the thin sheet is:

D =
Eh3

12(12 m2)
(12)

To facilitate the derivation of the bending analysis of a disk-
shaped workpiece with radiusr, Eq. (11) can be rewritten in
polar coordinate system through a suitable transformation ofx
= r cos u and y = r sin u. It then gives:
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2.2 Boundary Condition

The solution of the deflection functionw(r, u) in Eq. (13)
should conform to the boundary conditions of the thin disk-
shaped workpiece to be turned. Generally, workpieces used in
the aeronautics industry have a thicker rim than their spoke-
plate. The relatively rigid rim thus allows the reasonable
assumption of a fixed boundary condition to be made (Fig. 1).
Let the outer radius of the spoke-plate ber = a, the deflection
function must satisfy a boundary condition of (w)r=a = 0,
(w/r)r=a = 0. That means, in a (X, Y)-coordinate system,w(x,
y) = 0, w/x = 0 and w/y = 0 wheneverx2 + y2 = a2.

2.3 Load on Workpiece

There are loads due to cutting force, residual stress and thermal
stress produced by cutting heat, on a thin disk-shaped work-
piece, and all these loads cause deflections in turning. For
simplification, only the cutting force and the residual membrane
stress will be considered in the analysis, since the deflections
caused by thermal stresses in cutting are usually negligibly
small.

2.3.1 The Cutting Force

During cutting, the workpiece will deflect in thez-direction
(Fig. 1) owing to the action of the cutting force. In turning,
the cutting force can normally be expressed as [11]:

Fz = KCapfa sin12aKr (14)

where C is a material coefficient;ap is the cutting depth;f is
the feedrate of a cut;a is an exponential index;Kr is the

cutting-edge angle of a cutter; andK is a constant. At any
instant of cutting, the cutting force will be concentrated at the
cutting location. Its contribution toq in Eq. (13) will be zero
throughout the spoke-plate except at its action point, where its
contribution toq will be Fz.

2.3.2 The Residual Stress

Prior to turning material off the surface, the whole spoke-plate
is in a state of stress equilibrium. When material on one of
its surfaces is removed during turning, the stress equilibrium
is disturbed and it releases residual membrane stress in the
turned surface. Such residual stress yields an equivalent deflec-
tion w0 = w0(r) in the z-direction (Fig. 1) of the spoke-plate.
Generally, the direction of deflection will be either in the same
direction as the loading direction of the cutting force, when
compressive residual force results, or it will be in the positive
direction, when tensile residual stress is obtained. Owing to
the thinning effect of the spoke-plate, the level of the resultant
of residual membrane stress increases as turning proceeds. To
simplify the analysis, the residual membrane stress, sayq0, is
first assumed to be evenly distributed in the disk surface. Let
M0 be the equivalent bending moment which causes the same
amount of deflection of the spoke-plate, having radiusa, second
moment of areaI and thicknessh, due toq0. The consideration
of zero stress in the non-turned surface of the spoke-plate
allows such an equivalent bending momentM0 to be expressed
as [9] M0 = q0I/h when the disk is turned atr from its centre.
Subsequently, the corresponding deflection is given as:

-
2w0(r)
-r2 =

M0

EI
=

q0

Eh
(15)

Let q′
0 be a visible normal stress on the disk surface, which

generates the equivalent deflectionw0 = w0(r), as described by
Eq. (15), its respective deflection in the disk will be [9]:

w0(r) =
12q9

0(1 2 m2)
64Eh3 (a2 2 r2) (16)

The second-order differentiation of Eq. (16) gives:

-
2w0(r)
-r2 = 2

24(12 m2)
64Eh3 q9

0 (17)

Under turning conditions, the deflectionw0(r) produced by the
bending momentM0 due to the residual stressq0 should be
equal to that produced byq9

0. Consequently, equating Eq. (15)
with Eq. (17) after rearrangement gives:

q9
0 =

64h2

24(12 m2)
q0 (18)

which will be contributed toq in Eq. (13). Such treatment
ignores the variation of residual stress when a turning pass on
the machining face has not been fully completed.

3. Simulation Model and Treatment

3.1 High-Order Differential Method for the
Simulation Model

A high-order finite-difference method (FDM) [9,10] is used to
solve the 2D partial differential equations for the deflection
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function w since the FDM is easier to formulate and program
than the finite-element method. LetD be the step difference
between two neighbouring nodes in a finite-difference grid
along the neutral planexoz of the disk shown in Fig. 1. The
(x, y)-coordinates of a (i, j)th node in the grid are therefore
(x = iD, y = jD). Subsequently, the first-order finite-difference
equation for the deflection functionwi,j at the (i, j)th node can
be expressed as [9]:

Sw
xDi,j

=
1

2D
(wi+1,j 2 wi21,j),

Sw
yDi,j

=
1

2D
(wi,j21 2 wi,j+1), % (19)

While the fourth-order finite-difference equation for the (i, j)th
node and its neighbouring nodes in a grid system can be
written as:

[(wi,j+2 2 wi,j) + (wi,j22 2 wi,j) + (wi+2,j 2 wi,j)

+ (wi22,j 2 wi,j)] + 2 [(wi+1,j+1 2 wi,j) + (wi21,j+1

2 wi,j) + (wi+1,j21 2 wi,j) + (wi21,j21 2 wi,j)]

2 8 [(wi+1,j 2 wi,j) + (wi21,j 2 wi,j) + (wi,j+1

2 wi,j) + (wi,j21 2 wi,j)] =
qi,jD

4

D
(20)

3.2 Treatment of Boundary Condition and Load

Physically, the boundary deflectionw around the fixed rim
where x = a cos u and y = a sin u (Fig. 1) is zero. That
means thatwi,j = 0 wheneverx2 + y2 2 a2 # d, where d is
the allowable accuracy. When an (i, j) node is on such a
boundary, the deflectionw for those fictitious nodes outside
the boundary is assumed to be equal to the corresponding
nodes either inside or outside the spoke-plate. This implies
that wi,j22 = wi,j+2, wi,j21 = wi,j+1, wi22,j = wi+2,j, wi21,j = wi+1,j,
wi21,j21 = wi+1,j21, and wi21,j+1 = wi+1,j+1 in Eq. (20) which
itself also becomes zero. Whenever a node is acted on by a
concentrated load, the load is assumed to be evenly distributed
over its entire areaD2 whilst surrounding nodes are allocated
an appropriate proportion of the load, depending on their
respective distances from the loaded node. For each cutting
simulation, the cutting point is always taken as a node where
the concentrated load is acting.

3.3 Treatment of Simulation Process

Since the spoke-plate is so thin, the deflection variation in the
z-direction (Fig. 1) can be assumed to be negligible. Further-
more, the level of relative deflection on the disk surface to be
turned is a maximum along the cutter path. The purpose of
this study is to predict the loading condition which allows
successful turning to be conducted. Consequently, it is sufficient
to achieve the prediction by describing only the neutral plane
deflection profilew along the cutter path during the simulation.
To further simplify the handling of the data, the feed direction
of a cutter is taken along thex-axis (Fig. 1). Under such

Fig. 2. Basic structure of a simulation computer program.

conditions u = 0 and the movement of the cutter in the
r-direction is always assumed to coincide with thex-axis.
Consequently, the deflection of the disk is symmetric to the
x-axis andwi,j = wi,2j. This leads the finite-difference equation
(20) on and about thex-axis to be simplified to:

(wi+2,0 2 wi22,0) 2 8(wi+1,0 + wi21,0) + 4(wi+1,1

2 wi,1,1) + 20wi,0 2 16wi,1 + 2wi,2 =
qi,0D

4

D
(21a)

where:

qi,0 = Hq9
0 + Fy/D2 (i = k)

q90 (i ± k)
(21b)

for a cutter rotating at a rate ofn, and fed at a rate off, to
position rk = knfDt on the cutting surface, at a timet = kDt
when the total number of a time stepsDt is k (where k = 0,
1, 2, %, N). Figure 2 shows a block diagram of the data
processing during the simulation.

4. Results and Analysis

Figures 3 to 6 show the simulated deflection results in fine-
turning a Ti-6Al-4V thin disk workpiece which had (i) a
spoke-radius of 160 mm, and spoke-thickness of 1.5 mm, (ii)
coefficient of materialC = 547 N mm−2 and cut under the
conditions of: cut-depthap = 0.15 mm, feedratef = 0.1
mm rev21, exponent of feedratea = 0.64, tool cutting-edge

Fig. 3.Predicted deflection distribution when the tool is atr = 0 and
r = 70 mm.
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Fig. 4. Distribution of predicted and measured spoke-plate thickness
difference after turning.

Fig. 5. Similar to Fig. 3, but the cutter travels from the rim towards
the centre of the disk.

Fig. 6. Similar to Fig. 3, but with the application of a tensional residual
stress of 20 N mm22.

angle Kr = 90°, and the constantK = 0.6 (see Eq. (14)), with
the rotational speed of machine tooln = 200 rev min21.

In Fig. 3, the “series 1” curve illustrates the deflection
distribution of the disk along the cutter path when the cutter
was at the centre of the disk and just commencing cutting
from the centre towards its rim. The “series 2” curve shows
the deflection when the disk was being cut from the centre to
a position r = 70 mm away from the disk centre. It can be
observed that the maximum deflection for the first cutting case
is at the disk centre and has a magnitude ofw = 0.0792 mm.
Computer simulation showed a symmetric deflection profile
with its apex at the disk centre. In the second cutting case,
the maximum deflection is 0.04135 mm and occurs atr = 35
mm, and gives a skew deflection profile.

Figure 4 shows the distribution of thickness difference of
the turned spoke-plate as predicted (“series 2” curve) and
measured (“series 1” curve). The predicted values for the
“series 2” curve were obtained from the maximum value of
the individual deflection simulation curves when the cutter was
at a number of different positions at and between 0# r #

160 mm. Results show that the predicted thickness difference
is higher than the actual measurements. This suggests that the
residual tolerance is looser than the actual one. Subsequently,
when the predicted deflection gives a value equal to the
required machining tolerance, it produces a tighter tolerance
than the expected one. The maximum thickness difference of
the simulated value is almost 19% higher than the experimental
value, and the difference between the prediction and measure-
ment tends to reduce from the centre towards the rim.

The cutting direction also influences the deflection distri-
bution along the axis of its direction of cut. Results for a
cutter travelling from the rim of the spoke-plate to its centre
are shown in Fig. 5. It can be seen that the maximum deflection
increases to 0.1107 mm when the cutter arrives at the centre
(“series 2” curve – Fig. 5) and the general deflection profile
is larger in comparison with its counterpart when the cutter is
travelling from the centre to the rim (Fig. 3). Similarly, the
maximum deflection for the cutter atr = 70 mm is approxi-
mately equal to 0.08 mm and occurs at the disk centre (“series
1” curve – Fig. 5) instead of skewing 35 mm away from centre
as shown in Fig. 3. Such characteristics are because the flexural
rigidity in the outer machined annular area of the disk was
reduced when turning from the outer rim towards the inner
part. This implies that turning from the centre towards the
outer rim is a better way to achieve finer machining tolerances.

Deflection simulation with a tensional residual stressq0 =
20 N mm22, uniformly applied to the disk which was being
cut from the centre to the rim, with the position of the cutter
at r = 70 mm, is shown in Fig. 6. It should be noted that the
“series 1” curve presents the deflection distribution when
residual stress was not considered while the “series 2” curve
depicts that when tensional residual stress was taken into
account. The “series 1” curve shows that the maximum deflec-
tion is approximately 0.065 mm and shifted slightly away from
the disk centre tor < 20 mm, whilst the “series 2” case has
a maximum of 0.04135 mm and is at r< 40 mm. Comparing
the two curves, it can also be seen that deflection for the two
cases is almost the same whenr . 60 mm. For the region of
r # 60 mm, the deflection for the case under tensional residual
stress is generally higher than the case with only the cutting
load. Such characteristics seem to suggest that the increase in
tensional residual stress reduces the degree of skewing, but
increases relatively the deflection and improves the relative
symmetry. A deduction can also be drawn from this study that
the application of compressive residual stress would generally
diminish the deflection and produce higher accuracy and suc-
cessful machining.

Normally, the larger the cutting depthap and feedratef, and
the smaller theKr, the larger is the concentrated load and the
higher is the asymmetry of the deflection.

4. Conclusion

The theory of small deflection of sheet-disk bending is suitable
for use for the physical simulation of turning a thin disk-
shaped workpiece. Such a simulation enables the estimation of
the loosest tolerance that the turning would produce, and
subsequently allows the determination of whether a specific
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finishing thickness cut of thin disk-shaped workpiece can be
achieved successfully for a particular machining condition. The
application of the technique can also predict the machining
condition appropriate for achieving a particular specification of
a thin disk-shaped workpiece so as to optimise the operation
and reduce costs. Simulation results also show that turning a
sheet spoke-plate from the disk centre to the rim boundary
reduces the magnitude of deflection, thus producing more
accurate machining. Consequently, this is a relatively better
turning method to use when the spoke-plate is thin.
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