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This paper describes the use of an ARIMA (autoregressive-
integrated-moving-average) model and its equivalent state
space models to produce rule-based knowledge for flexible
manufacturing systems (FMS) that can be used to investigate
a wide variety of problems including machine breakdown,
material shortage, and changes of scheduling rules. One great
advantage of using the proposed models is the ease with
which the simulation results can be summarised, analysed
and captured, as well as the availability of the mathematical
representation of the knowledge that can be kept in a knowl-
edge database for evaluation and selection of alternative FMS
strategies in a real-time environment. Various case studies are
used to illustrate the methodology and the development of
ARIMA and state space models, the analysis includes the
system cost and stability of changes or interventions, the
relationships among the simulation inputs and outputs, and the
formulation of the production rule-base for the FMS scheduler.
Management can use this integrated approach to describe and
predict the dynamic behaviour of a complex FMS.
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1. Introduction

Flexible manufacturing systems (FMS) are computer-controlled
batch-manufacturing systems which combine the efficiency of
mass production with the flexibility of job shops. An FMS
consists of numerically-controlled (NC) machines, automated
material-handling mechanisms, robots, and in-process storage
facilities. An FMS operates in a large variety medium-volume
production environment and is usually designed to produce a
variety of high-precision parts and products. There are many
complex issues associated with the design of an FMS. Schedul-
ing is one of the most difficult aspects of FMS operations.
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During FMS operations, it is necessary to determine which of
the required jobs is to be carried out by which machine. For
example, the system must decide the most appropriate means
of transportation; must select the equipment, the machine tools,
the vehicles, the pallets, and the fixtures; and must monitor
the progress of the workpieces and the orders. Furthermore, in
the case of an interruption in the FMS owing to machine
breakdown, it is important to choose an alternative to adapt to
the new situation. Various approaches to the scheduling prob-
lems can be seen in [1–5]. Recent research [4,6] suggested the
use of priority rules which can be classified as local or global,
static or dynamic. Local rules are derived exclusively from
information relating to a particular FMS resource such as a
machine centre, whereas global rules are based on any relevant
information about the state of the entire FMS. Static rules
arise from information that is independent of the particular
state of the system at any given time, but dynamic rules, in
contrast, process the most recent information available regard-
ing the state of the system. Dynamic rules can be further
distinguished based on whether their parameters change on the
basis of past values. This is a research area that has attracted
much interest. Various authors have attempted to use techniques
such as expert systems and artificial intelligence to represent
FMS knowledge [7–9]. In this investigation, a non-traditional
approach is used, the dynamic rules being identified using time
series models which enable the interrelationships that persist
over time to be found. Box and Jenkins [10] and Box and
Tiao [11] provided a time series modelling approach which
can be used to analyse the interruptions and the FMS system
dynamics. Applications of their modelling approach in solving
management and production line problems can be found in
[12–14].

2. FMS Model

The FMS model currently under consideration is designed to
manufacture metal blocks. Basically, the FMS consists of an
automated storage and retrieval system (AS/RS), a material
handling system, a set of computer controlled machining
centres, two inspection devices and a set of computers to
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control all the operations within the FMS. Figure 1 is a
schematic diagram of the FMS model.

First, raw materials are stored in the AS/RS which is used
to accomplish a storage transaction, delivering loads from the
input station into storage, or retrieving loads from storage and
delivering them to the output station. Then, the raw stock to
be processed is delivered to the conveyor system. This con-
veyor will run as a loop with stops as a buffer in order to
transfer the raw stocks and parts between the AS/RS, machining
centres and the inspection devices. The raw stock will then be
transferred to the “CodeTag” inspection device to verify that
the correct material is being retrieved from the AS/RS. Con-
necting the conveyor system and the machining centres are
two robots. Their role is to transfer the material from the
conveyor into the machining centre or vice versa. After that,
the raw stock is machined and processed by the NC lathe and
milling machining centres into finished component. Another
inspection location uses a vision device to inspect the features
of the finished components. Finally, the finished components
will be transferred back to the AS/RS by the conveyor.

The brain of the FMS is the system controller. This system
controller is a set of computers with an attendant worker who
keeps track of performance and intercedes when necessary to
change priorities or solve problems. There are three levels for
the hierarchy of the system controller. The bottom level are
the machines and devices which are linked physically to the
middle level – the two cell computers (Cell 1 and Cell 2). In
this FMS, the CodeTag, the conveyor, robot1 and the NC lathe
machining centre are linked to the Cell 1 computer and the
AS/RS, vision system, robot2 and the NC milling centre are
linked to the Cell 2 computer. The middle level is connected
to the top level – the host computer.

The simulation model is constructed using WITNESS [15],
which contains a set of data structure for the FMS and the
associated logic for extracting and retrieving data. The major
component in this WITNESS model includes several scheduling

Fig. 1. Schematic diagram of the FMS model.

rules, which are typical scheduling rules in FMS (see [5]), and
may be summarised as follows. SPT (LPT): shortest (longest)
processing time; TOT: total processing time; SRPT (LRPT):
shortest (longest) remaining processing time; FRO(MRO): few-
est (largest) number of remaining operations; FIFO: first in,
first out; SLACK: least amount of slack; EDD: earliest due
date; CR: critical ratio and Random.

These are the typical scheduling rules in FMS, which can
be static (used for off-line scheduling and resulting in a
fixed schedule for the period), or dynamic (used for real-time
scheduling which changes over time). Three major types of
interruption are also included in the analysis: machine break-
down; machine shortage, and priority jobs. Figure 2 illustrates
the proposed system architecture.

The performance of the system is measured by three
major criteria:

Fig. 2.System architecture of the rule-based ARIMA models for FMS.
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1. Time in the system, which is the time that the job spends
in waiting and processing.

2. System use, which is the average percentage of time that
the machines are busy.

3. The number of jobs in the system, which is the jobs in the
system during the simulation study.

The time in the systemW and the use in the systemU
are selected as the major dependent variables or performance
measurements. The time in the system can be used to control
and predict the optimal condition of the FMS schedule, and
the use in the system can be used to estimate the effect of
machine breakdown or material shortage. The number of jobs
in the system, although important, is not expected to change
significantly in the long term, and is therefore not analysed.
Specifically, the behaviour of three major types of interruption
is investigated: change of scheduling rules; machine break-
down; and material shortage.

3. Transfer Function Models

3.1 Intervention Modelling

The modelling to analyse the dynamic interruptions and
changes of scheduling rules is performed using ARIMA
models, which are described briefly as follows:

The general transfer model is of the form:

Yt 5 Ovj(B)
dj(B)

BbjXjt 1
u(B)
f(B)

at (1)

whereYt is the output series,Xjt is the input series,vj(B)/dj(B)
is the transfer function polynomial,bj is the delay for thejth
series,u(B)/f(B)at defines the ARIMA noise model, andat is
a white noise function series.

An intervention models proposed by Box and Tiao [11] is
of the form:

Yt 5 Ovj(B)
dj(B)

BbjIjt 1
u(B)
f(B)

at (2)

where Ijt is a binary or dummy variable (0,1) which is non-
zero only during the period of intervention. To develop the
model of Eq. (2), an univariate analysis onYt is performed,
which results in an ARIMA(p,d,q) (P,D,Q)s autoregressive
integrated moving average of the general form:

=d=DsYt 5 { uq(B)fQ(Bs)/

fp(B)VP(Bs)} at (3)

where=d is regular difference;=Ds is the seasonal differencing;
p is the number of autoregressive (AR) terms;q is the number
of moving average (MA) terms;P is the number of seasonal
AR terms andQ is the number of seasonal MA terms.

The values of the parameters obtained in the univariate
ARIMA model estimation, Eq. (1), are used as initial estimates
of the parameters in the intervention model, Eq. (2). Different
types of transfer function can be chosen to fit the response to
the intervention variables. Once a tentative model is identified,

it is followed by the estimation of parameters and diagnostic
checks of residuals.

3.2 Univariate Transfer Function Modelling

For a single inputXt, the transfer function can be simplified
into:

Yt 5 V(B) Xt 1 Nt (4)

Where,

V(B) 5 v(B)b/d(B)

v(B) 5 v0 2 v1B2%2vsBs

d(B) 5 1 2 d1B2% 2drBr

Nt 5 u(B)/f(B)at

The development of the transfer function is outlined as follows:

1. Identify and estimate the model for inputX. An univariate
analysis onXt is performed using the autocorrelation (ACF),
partial autocorrelation (PACF) and inverse autocorrelation
(IACF). It results in an ARIMA(p,d,q) (P,D,Q)s autoregress-
ive integrated moving average of the general form of Eq.
(2) or Eq. (3).

2. Pre-whiten bothXt and Yt. The output series is next pre-
whitened using the univariate model of inputX. The pre-
whitening process is performed as follows:

If u(B)Xt 5 f(B) at, and if we define

Yt9 5 { u(B)/f(B)} Yt; Xt9 5 { u(B)/f(B)} Xt 5 at

Computing Yt9 and Xt9 from the univariate modelX is
known as “pre-whitening”. In addition, the cross-correlation
betweenXt9 and Yt1j9 are proportional toV(B) which is also
known as the impulse response function.

3. Identify the appropriate transfer function form using the
cross-correlation function. The cross-correlation function
(CCF) is most important in determining the form of the
transfer function, i.e.v(B), d(B), andb. The transfer function
is restricted to workable functional forms according to the
result of the analysis of CCF. The identification ofr,s,b is
accomplished by observing and comparing the impulse
response weights generated by the theoretical transfer
functions.

4. Fit the transfer function followed by residual analysis. After
the form of the transfer function model has been determined,
a model for the noise component must be specified. This
is done by using the ACF, PACF and IACF of the residual,
and specifying an appropriate univariate model.

5. Fit the transfer function-noise model. Combing the transfer
function model and noise model leads to

Yt 5 v(B)/d(B)Xt2b 1 u(B)/f(B)at (5)

3.3 State Space Modelling

Models in ARIMA representation can be put into state space
form in a systematic way; conversely, models in state space
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representation can be put into ARIMA representation. Theoreti-
cally, then, models in these two alternative representations are
equivalent; Akaike [16] demonstrated the equivalence of the
two approaches. If we defineXt as the multivariate vector of
state variables at timet, the state space model consists of a
transition equation and an observation equation as follows:

Xt 5 FXt21 1 Gjt, transition equation (6)

where Xt is a sequence of normally distributed white noise
with known or an otherwise defined covariance structure rep-
resenting the manner in which the state will be allowed to
change.F is the transition matrix andG is the input matrix.
Then

Yt 5 HXt 1 et, observation equation (7)

where Yt is a function of the state variables andet is a
sequence of normal white noise representing the error in the
observation andH is the observation matrix. Akaike [16] has
introduced a statistical vector model identification procedure
that can be conducted automatically. Given the vector of
observationsY(t), we wish to determine the optimal orderm
such that at timet, all significant past and present information
is contained inY(t),Y(t21),%,Y(t2m). This is done by success-
ively increasing the order of vector autoregression:

Y(t) 5 u1Y(t21) 1 u2Y(t22)1%1et

and computing the following Akaike’s information criterion,
(AIC) [17] after each autoregressive fit:

AIC i 5 n loguCiu 1 2ik2

where n is the number of observationsuCiu is the determinant
of the k-dimensional covariance matrix. Akaike uses a series
of canonical correlation analyses to determine the state vector
Xt. The canonical correlation analyses between the present and
past of the process:

Yp 5 { Y(t)9,Y(t 2 1)9,%,Y(t2m)9} 9

and the set of present and future values:

Yf 5 { Y(t)9,Y(t 1 1)9,%,Y(t1n)9} 9

they are used to determine the state vectorXt and theF and
G matrices. The orderm is determined by the minimum AIC
in the stepwise autoregression. Stepwise canonical correlation
analysis is performed between the fixed setYp and Yf as the
dimension of Yf increases. At each step the last canonical
correlation is tested for significance by the differenced infor-
mation criterion (DIC) which tests the components of the state
vector for linear dependence. A negative value of the criterion
indicates linear dependence of the last element entered into
the state vector. The preliminary estimates for the parameters
of the F and G matrices are obtained from the canonical
correlation analysis and these estimates of the matrix para-
meters are then used to obtain an infinite AR representation
which in turn is used to obtain a sample estimate for the
residual covariance matrixG. Once the state vector model has
been identified, a complete set of Kalman filtering equations
[18] are developed for model prediction and control.

4. Case Studies

The FMS scheduling rules described earlier are used to form
the intervention models. The first example of interruption or
intervention is generated by the change in the random schedul-
ing rule to the shortest processing time scheduling rule.Yt

represents the FMS performance measurement which is the
waiting time in the system andIt is the intervention or changes.
The intervention was initiated at the 100th period. ARIMA
identification using autocorrelation (ACF), partial autocorre-
lation (PACF) and inverse autocorrelation (IACF) functions
indicates a model of three AR factors and a differencing of
two periods.

The pre-intervention model using the random scheduling
rule is:

(1 2 B2)Yt 5
at

{(1 2 0.3727B)(1 1 0.5792B2)(1 1 0.5056B4)}

The post-intervention ARIMA model after changing to the
shortest processing time scheduling rule is estimated, where
the diagnostic of residuals indicates that it is a white-noise
process. The model which includes the intervention is:

(1 2 B2)Yt 5

216.32It28

(1 2 0.8244B)
1

at

{(1 2 0.284B)(1 1 0.579B2)(1 1 0.507B4)}

The asymptotic change given by the intervention in the schedul-
ing rule is

16.32/(120.8244)5 93 units.

The second example analyses the intervention of the shortage
material. Yt measures the utilization andIt is the intervention
due to material shortage. ARIMA identification of ACF, PACF
and IACF indicates a model of AR(2).

The pre-intervention model before material shortage is:

Yt 5 644.71
at

(1 1 0.604B2)

The post-intervention ARIMA model after material shortage
occurs is estimated, where the diagnostic of residuals indicates
that it is a white-noise process. The model which includes the
intervention is:

Yt 5 644.72 137.9It25 1
at

(1 1 0.604B2)

The following interpretations can be drawn from the two
models. In the first model, the change of scheduling rule from
random to shortest operation time is estimated by an initial
decrease of 16.32 units and is followed by an alternative
increase and decrease to a permanent level. The intervention
effect can be calculated as an asymptotic change of 93 units.
The lag time effect is estimated to be 8 periods before the
system settles down to a steady state. In the second model,
the intervention due to material shortage has an immediate
effect, which decreases the system use to 138 units, the time
lag effect being 5 periods.

It can be seen that the form of the intervention is changed
by a combination of the numerator and denominator of the
intervention component. When the parameter in the denomi-
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nator is large, the intervention effect is realised slowly, whereas
when it is zero the effect is realised instantaneously. The
parameter is limited to the interval of21 to 11: if it lies
outside this range the intervention becomes unstable. The result
of the analysis agrees with the expectation that the scheduling
rule using the shortest operation time performs better than a
random method. The shortage of material will certainly
decrease the system use. The models provide a precise esti-
mation of the form and magnitude of the intervention effects
on the FMS. The interpretation and analysis reveal the transient
behaviour of FMS interventions and provide the answers for
FMS analysts regarding the effects of changing the scheduling
rules and the interruption of material shortage. Similar analysis
can be done to model the effects of other scheduling rules such
as the critical ratio and FIFO, as well as for the interruptions by
machine breakdown and re-scheduling of the priority of jobs.
It should be pointed out that these analyses could not be
accomplished by steady-state analysis such as ANOVA,
because the successive FMS simulations are correlated and the
noise factor is not isolated.

In the second example, we apply the transfer function model-
ling technique described in Section 3.2 to analyse the FMS
simulation. Here, the FMS simulations are generated by the
work orders and the output is the system costs, the system
control rule is FIFO. On the assumption that there is no
feedback, we built a model of the transfer function to represent
the behaviour of the system. We first identified a model
describing the work order which is used to prewhitenXt and
Yt. The univariate model ofXt was identified using ACF, PACF
and IACF which indicated a model of two AR factors. The
identification, estimation and diagnostics suggested that the
model was adequate.

The model for the demand is

Xt 5
at

(1 2 0.372B 1 0.507B2)

Once we obtained the model describingXt, we used this
model to prewhitenXt and Yt. The prewhitening filter required
a further differencing of eight periods. The sample cross-
correlation (SCC) indicated that they were not white noise,
and we noted that the lag at which we encountered the first
spike in the SCC is zero. The SCC appeared to die down in
a sinusoidal pattern after lag zero. We setb 5 0, r 5 2 and
s 5 0. The tentative model is of the form:

(1 2 B8)Yt 5
v0(1 2 B8)Xt

(1 2 d1B 2 d2B2)
1 Nt

Further analysis of the residual sample correlation (RSC)
indicated that the residual was not white noise. To find a
model describingNt, we applied two AR factors at lag 10 and
lag 13 and another AR factor at lag 8. The final model is;

Yt 5
1.6Xt

(1 1 0.73B 1 0.5B2)

1
at

(1 2 B8)(1 2 0.18B10 2 0.16B13)(1 1 0.49B8)

The third case illustrated the use of state space modelling.
In this example, the FMS simulation output is generated by
the demand, the lot size rule was CR (critical ratio). State

space models allowed feedback, and both the demand and
system cost can be treated as input variables or exogenous
variables and modelled simultaneously. However, in this simul-
ation analysis, we treated the work order as the input and the
system cost as the output. The ACF and PACF of the demand
pattern died out, which indicated that it was nearly stationary.
The ACF and PACF of the system cost died out slowly which
required further differencing and transformation to stationary.
It was deseasonalised by an ARIMA(1,1) model in the seasonal
lags. The seasonal effects of the output were hence removed
before analysis. The identification and estimation of the state
space model were performed using the AIC criterion and
a number of important statistics. They were summarised in
the following:

Trial order
Criteria 1 2 3 4 5 6 7 8 9
AIC 872.7 871.1 860.5 853.6 834.8 844.4 846.0 842.8 842.3
Schwarz 842.2 857.6 861.9 868.0 864.6 880.3 890.8 897.7 906.1
FPE 834.7 842.7 839.6 838.4 827.8 836.3 839.5 839.5 841.1

To determine the model order, the order which minimises the
criteria was chosen. Each criterion decreases as the error variance
decreases or goodness-of-fit increases, but increases as the number
of parameters increases. There were a wide variety of criteria
which differ only in the manner and degree to trade off between
goodness-of-fit and complexity based on the AIC criterion. The
first term of AIC is a goodness-of-fit and the second is a penalty
for complexity of the model. The Schwarz error criteria [19], on
the other hand, penalises complexity to a much higher degree,
which leads to models of lower order than AIC. The final
prediction error (FPE), which is calculated as the variance of the
one-step-ahead prediction errors in the model, is another measure
of the goodness-of-fit. The criteria suggested that a model of
order five would be appropriate. Further analysis of the residual
correlation, however, indicated that there was autocorrelation at
a particular lag and an order of seven was chosen. The transition
matrix F, input matrix G and Kalman gain matrixK were
estimated as follows:

Transition matrixF

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

20.1641 0.581120.9007 0.626220.106520.8390 1.5977

Kalman gain matrixK Input matrixG

20.1108 0.8621

0.2473 20.2372

20.1168 0.2218

0.0852 20.3659

20.1374 0.2096

0.0523 20.0772

20.1702 0.3116
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Prediction matrixH

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The equivalent Box–Jenkins ARIMA(n,n) model can be ex-
pressed as

Yt 5 v(B)/d(B)Xt 1 w(B)at or alternatively,

Yt(1 2 d1B12%2dnBn) 5 Xt(v1B1 1 v2B2 1 % 1 vnBn)
1 at(1 2 w1B1 2 w2B2

% 1 wnBn)

Where the autoregressive matricesd1,%,dn are the same as in
the F matrix, and thew1%, wn and v1,%, vn can be computed
recursively as follows:

w1 5 K[1]2d1

w2 5 K[2]2d1K[1]2d2

w3 5 K[3]2d1K[2]2d2K[1]2d3

wn 5 K[n]2d1K[n21]2d2[n22]%2dn

v1 5 G[1]
v2 5 G[2]2d1G[1]
v3 5 G[3]2d1G[2]2d2G[1]%
vn 5 G[n]2d1G[n21] % 2dn21G[1]

The ARIMA model is therefore

Yt(121.598B10.839B210.106B320.626B410.900B520.581B61

0.164B7)5

Xt(0.862B21.615B211.324B320.827B410.415B5

10.229B620.282B7)1

at(121.708B11.263B220.498B320.158B4

10.625B520.504B610.164B7)

The adequacy of the fitted state space model was checked by
examining various statistics including the Ljung–Box test andR-
squared. Other similar tests were the Durbin–Watson test and the
F-test, which also indicated that the model was adequate. The
autocorrelations of the 12 lagged residual errors were as follows
and none of the autocorrelations exceed two standard errors and
there is no evidence to assume inadequacy in the model:

Autocorrelations of lagged residual errors

Lag:
1 2 3 4 5 6 7 8 9 10 11 12

20.0120.1320.1420.210.090.1220.0320.0120.0620.030.1920.14

5. Conclusion

There are two purposes for the use of ARIMA models. First,
the ARIMA model is inserted into a knowledge data represen-
tation (KDR) in order to provide knowledge about the behav-
iour of the FMS that is represented in Fig. 2. The second
purpose is to provide the decision maker with this set of rules
or interruptions which represent insight about the system so that
better decisions can be made in the future. The methodology is
the logical extension of the scheduling rules in FMS. Here,
the FMS specific knowledge, based on past simulation, is
stored in the form of knowledge. When a decision has to be
made, it is possible to explain a particular state of the FMS

with the help of the ARIMA models captured and also to
derive an alternative strategy for FMS planning and
control. Conventional knowledge representation is characterised
by its inflexibility and lack of specific domain knowledge about
a particular FMS interruption. The methodology proposed here
is data driven in a parametric sense, the FMS simulation being
used to construct the knowledge base and the interruption
being captured through the ARIMA models. Moreover, it is a
systematic methodology of identification, estimation and diag-
nostics of the residuals in developing and integrating simulation
with rule-based knowledge for FMS. The methodology provides
a sound theoretical basis for the analyst in modelling dynamic
response. The requirements for applying the methodology suc-
cessfully are:

1. A detailed knowledge of FMS problems.
2. An understanding of the theoretical principles and appli-

cations on which time series analysis is based.
3. An appreciation of the practical analytical skills that are

necessary to develop and use the methodology.

By constructing models which contain the skill judgement,
production scheduling rules and knowledge of the underlying
FMS, machines and processes descriptions; and by first-prin-
ciple reasoning; a powerful and flexible system can be built.
The system is capable of generating realistic and accurate
descriptions of FMS and has been shown to provide consider-
able promise for the solving of complex FMS scheduling
problems. This paper has demonstrated the use of an ARIMA
model to produce rule-based knowledge for FMS that can be
used to investigate a wide variety of problems including
machine breakdown, material shortage, and changes of schedul-
ing rules. The ARIMA model represents the underlying mech-
anisms of the FMS and increases the understanding of the
dynamic behaviour of the system. The methodology has been
extended further to the study of multivariate stochastic pro-
cesses of FMS, one great advantage of using ARIMA analysis
being the ease with which the simulation results can be sum-
marised, analysed and captured. Moreover, the importance of
this approach is the mathematical representation of the knowl-
edge that can be kept in a knowledge database for the evalu-
ation and selection of alternative FMS strategy in a real-
time environment.
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