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Abstract
Structural chatter vibrations of machine tools are very complex nonlinear dynamic behaviors, which limit the machine tool 
productivity. Variable spindle speed milling is an efficient way to suppress chatter. This paper proposes a novel method for 
the stability analysis and parameter optimization of milling processes with periodic spindle speed variation. With the aid 
of the  3rd-order Newton-Cotes formula, the time-varying delay differential equation is disassembled into two parts, and the 
relationship between the two parts is constructed by the transition matrix. The iterative calculation of the transition matrix 
only depends on the spindle speed. By comparison with other methods, such as the semi-discretization method and the 
reconstructed semi-discretization method, the proposed method has the advantages of high computational efficiency and 
prediction accuracy. Finally, milling stability boundaries, chatter frequency analysis, and modulation parameter optimization 
are carried out to further investigate the dynamic characteristics of variable spindle speed milling proposed in this work.

Keywords Milling stability analysis · Variable spindle speed · Newton-Cotes formula · Transition matrix · Parameter 
optimization

1 Introduction

In milling processes, complex nonlinear dynamic behaviors 
are formed between the machine tool, the cutter, and the 
machined part, where regenerative chatter, belonging to the 
self-excited vibration, is one of the most common obstacles 
to high machining productivity and part quality [1, 2]. Many 
methods have been proposed during the recent decades to 
eliminate, or suppress the regenerative chatter, which can 
be classified into two categories, i.e., active suppression [3], 
and passive suppression [4]. The former usually utilizes aux-
iliary or additional instruments, such as computers, sensors, 
and actuators, to change the system characteristics; the lat-
ter usually utilizes certain methods, such as tool structure 
changes, damping energy absorption and milling parameter 

adjustment, to expand the stable area of stability lobe dia-
grams (SLDs) [5, 7]. It is worth mentioning that the mill-
ing parameter adjustment is widely used in CNC systems 
[8]. How to determine the appropriate milling parameters 
is attracting the attention of more and more researchers. So 
far, the semi-discretization method (SDM) [9], the full-dis-
cretization method (FDM) [10], the numerical integration 
method (NIM) [11], the frequency domain method [12], and 
the finite element analysis method [13] have been proposed 
to identify the stability boundaries in the parameter space of 
spindle speed and axial depth of cut. However, the effective-
ness of these methods is limited by system variations.

The regenerative chatter is closely related to the cut-
ting thickness changes which derives from improper phase 
differences between wavy surfaces left by adjacent teeth. 
There are two effective ways to extend the chatter sup-
pression effect, i.e., variable pitch cutters (VPC) [14] and 
variable spindle speed (VSS) [7]. The variable pitch cutters 
can enlarge the axial depth of cut for certain target spindle 
speeds. The comparison between the VPC and the VSS turns 
out that continuously changing the spindle speed during 
machining is a more flexible way to the variation of system 
characteristics. The VSS technique can be divided into two 
types, i.e., sinusoidal VSS modulation and triangular VSS 
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modulation [15], where the delay differential equation with 
varying time delay could be traced back to the 1970s. Sexton 
et al. [16] found out through experiments that any increase in 
either the amplitude or frequency of speed variation would 
significantly improve the stability and transient vibrations 
of the cutter. Zatarain et al. [17] simulated the effect of the 
sinusoidal VSS modulation and the triangular VSS modula-
tion on the regenerative chatter suppression. It is found from 
the simulation results that the sinusoidal VSS modulation 
has a strong inhibition effect than the triangular VSS modu-
lation. However, this work only analyzes the chatter suppres-
sion in the low-speed domain. Insperger et al. [18] inves-
tigated a single-degree-of-freedom (single-DOF) model of 
turning with sinusoidal VSS modulation and the correspond-
ing delay-differential equation with time-varying delay. The 
time-varying cutting force makes it difficult to derive the 
mathematical analysis of VSS cutting processes. Seguy et al. 
[19] analyzed the effect of spindle speed variation in the 
high-speed domain for spindle speeds corresponding to the 
first flip (period doubling) and to the first Hopf lobes. Based 
on both numerical simulation and experiments using specific 
cutting operation parameters, they concluded that the sinu-
soidal VSS modulation is more effective than the triangular 
one for the same amplitude and frequency parameters, and 
for the same spindle dynamics the triangular VSS modula-
tion allows larger modulation amplitude [20]. Taking the 
regenerative effect into account, Ding et al. [21] presented 
a semi-analytic method for stability analysis of milling with 
a VSS, where the spindle speed is periodically modulated 
around a nominal spindle speed. Subsequently, Niu et al. 
[22] proposed a variable-step numerical integration method 
with periodic spindle speed variation, where the results 
demonstrated that the modulation amplitude ratio is more 
influential than the modulation frequency ratio. Considering 
that machining instability control methods failed to provide 
detailed helix angle information matching the stability of 
milling cutters, Yang et al. [23] established a helix angle-
based 2-DOF milling model with simultaneous tooth pitch 
and spindle speed variation to deal with the above problem. 
Long et al. [24] compared the stability behaviors of up-mill-
ing and down-milling with the VSSs. It is found that the 
up-milling with the VSS can provide better improvements 
compared to the down-milling with the VSS. To address 
heavy transient vibrations, Wang et al. [25] provided a tran-
sient vibration analysis method for predicting the transient 
behavior of VSS milling, which took external excitation of 
transient behaviors into account. Dong et al. [26] established 
a reconstructed semi-discretization method to analyze the 
milling stability with sinusoidal and triangular modulations. 
The results showed that compared with the SDM method, 
this work can improve the computation efficiency by three 
times while ensuring the prediction accuracy. Most of the 
existing methods can guarantee the prediction accuracy, but 

there is still much room for improvement in computation 
efficiency.

In this paper, the  3rd-order Newton-Cotes integration for-
mula is adopted for the chatter suppression prediction and 
the parameter optimization in the VSS milling processes. 
It is utilized to approximate the solution of the time-vary-
ing delay term. The computation efficiency can be greatly 
improved while ensuring the prediction accuracy. Besides, 
the sinusoidal VSS modulation and triangular VSS modula-
tion are analyzed in low-speed and high-speed domains in 
detail. This paper is organized as follows. In section 2, the 
dynamic model of VSS milling is first introduced. Next, the 
sinusoid spindle speed modulation and the triangular spindle 
speed modulation are respectively introduced in section 3. 
The  3rd-order Newton-Cotes stability analysis method is pro-
posed in section 4. The simulation analysis and modulation 
parameter optimization are conducted in section 5. Finally, 
the conclusions are given in section 6.

2  Dynamic model of VSS milling

In the milling operations, a rotating tool removes material 
in the commanded feed direction. Fig. 1 shows a face mill-
ing operation with multiple flat-end cutters, where the spin-
dle speed is denoted by Ω, the axial depth of cut is denoted 
by ap, the tool radial engagement is denoted by ae, and the 
immersion angle of the tool is denoted by φj. The dynamic 
model of the two-DOF face milling (see Fig. 1) considering 

Fig. 1  Face milling cutting operation scheme
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the regenerative effect can be governed by a  2nd-order dif-
ferential equation. By transforming the cutting forces into 
the orthogonal coordinate system and summing the cutting 
forces acting on all teeth, the dynamic model of the VSS 
milling system with two DOFs [22] can be expressed by

where M is the mass matrix, C is the damping matrix, 
K is the stiffness matrix, KC(t) is the cutting force coef-
ficient matrix, and �(t) is the time-variant delay of VSS 
milling. q(t) =

[
x(t), y(t)

]T denotes the vibration displace-
ment vector, and q̇(t) and q̈(t) denote the  1st-order and 
 2nd-order derivatives of q(t) w.r.t t, respectively. Let x(t) 
be x(t) =

[
x(t), y(t), ẋ(t), ẏ(t)

]T  , and then Eq. (1) can be 
expressed in a new form as follows:

where

where N is the number of teeth.

(1)Mq̈(t) + Cq̇(t) + Kq(t) = apKC(t)
[
q(t) − q(t − 𝜏(t))

]

(2)ẋ(t) = Ax(t) + apB(t)x(t) − apB(t)x(t − 𝜏(t))

(3)A =

[
0 I

−M−1K −M−1C

]

(4)B(t) =

[
0 0

−M−1KC(t) 0

]

(5)KC(t) =

[
hxx(t) hxy(t)

hyx(t) hyy(t)

]

(6)

hxx(t) =

N∑
j=1

g
(
�j(t)

)
sin

(
�j(t)

)[
Ktcos

(
�j(t)

)
+ Knsin

(
�j(t)

)]

(7)

hxy(t) =

N∑
j=1

g
(
�j(t)

)
cos

(
�j(t)

)[
Ktcos

(
�j(t)

)
+ Knsin

(
�j(t)

)]

(8)

hyx(t) =

N∑
j=1

g
(
�j(t)

)
sin

(
�j(t)

)[
−Ktsin

(
�j(t)

)
+ Kncos

(
�j(t)

)]

(9)

hyy(t) =

N∑
j=1

g
(
�j(t)

)
cos

(
�j(t)

)[
−Ktsin

(
�j(t)

)
+ Kncos

(
�j(t)

)]

(10)�j(t) =
�

30∫
t

0

Ω(s)ds + 2(j − 1)
�

N

3  Approximation of the delayed term

Sinusoidal and triangular spindle speed modulation schemes 
have been widely utilized for the chatter suppression. In this 
section, we focus on the sinusoidal and triangular spindle 
speed modulations, which will be discussed and analyzed 
below.

3.1  Sinusoidal spindle speed modulation

The sinusoidal spindle speed Ω(t) can be formulated as

where Ω0 is the nominal spindle speed, ΩA is the spindle 
speed amplitude, and ω is the angular velocity. The modula-
tion amplitude ratio RVA and the modulation frequency ratio 
RVF are introduced to quantify the periodic spindle speed 
variation as follows:

Substituting Eq. (12) and Eq. (13) into Eq. (11) yields

By combining Eq. (10) and Eq. (14), we obtain

�(t) is time-varying in the VSS milling operations, it can be 
implicitly expressed as

It is obvious that a closed form of �(t) cannot be solved 
by Eq. (16). Combining Eq. (14) and Eq. (16), we can obtain 
Eq. (17) as

From the sum difference product formula, Eq. (17) can 
be reformulated as

(11)Ω(t) = Ω0 + ΩAsin(�t)

(12)RVA =
ΩA

Ω0

(13)RVF =
60

Ω0T

(14)Ω(t) = Ω0

[
1 + RVA × sin

(
RVFΩ0

�t

30

)]

(15)�j(t) =
�

30
Ω0t +

RVA

RVF
[1 − cos(�t)] + 2(j − 1)

�

N

(16)∫
t

t−�(t)

Ω(s)

60
ds =

1

N

(17)

1

60

(
Ω0�(t) +

ΩA

�m
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(
�m(t − �(t))

)
−

ΩA

�m

cos
(
�mt

))
=

1

N

(18)
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60

Ω0

(
1

N
−

ΩA

RVFΩ0�
sin

(
�m

(
t −

�(t)

2

))
sin

(
�m�(t)
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3.2  Triangular spindle speed modulation

The triangular spindle speed modulation [27] can be expressed 
as:

Substituting Eq. (18) into Eq. (19) leads to

4  Newton‑cotes stability analysis method

The dynamic model of the VSS milling system with two DOFs 
is expressed by Eq. (2), where B(t) is the periodic coefficient 
matrix, i.e., B(t) = B(t + T) , and �(t) is the periodic delay 
term, i.e.,�(t) = �(t + T) . The first step to construct the tran-
sition function is to divide the period T into n equal intervals, 
obtaining 

{
ti
}n

i=0
∈ ℝ . The average time delay �i in 

[
ti, ti+1

]
 

can be defined as

The time series mi is computed from Eq. (21) as follows:

where int() stands for the round function.
For the sinusoidal spindle speed modulation, substituting 

Eq. (18) into Eq. (22) gives mi as

where Δt = ti+1 − ti.
For the triangular spindle speed modulation, mi can be 

deduced in the similar way.
By applying 

[
ti, ti+1

]
 to Eq. (2), we can obtain

where xi = x
(
ti
)
.

(19)

Ω(t) =
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(21)�i =
1

ti+1−ti
∫ ti+1

ti
�(t)dt i = 0,1,⋯ , n

(22)mi = int

(
1

2
+

�i

ti+1 − ti

)

(23)mi = int

(
1800RVA

RVFΩ2

0
N�(Δt)2

(
cos

(
RVFΩ0�

30
ti+1

)
− cos

(
RVFΩ0�

30
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�0

Δt
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1
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(24)xi+1 = eAΔtxi + ap∫
ti+1
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eA(ti+1−�)B(�)x(�)d� − ap∫
ti+1

ti

eA(ti+1−�)B(�)x
(
� − �i

)
d�

It should be noted that there are two integral terms. To 
solve the terms, the  3rd-order Newton-Cotes formula [28] is 
introduced as follows:

When the  3rd-order Newton-Cotes formula is applied to 
the first integral term, the first integral term can be approxi-
mately expressed as

where Bi = B
(
ti
)
.

The second integration term can be approximately 
expressed as

where

where �i =
1

2
− mi +

�i

Δt
 and �i =

1

2
+ mi −

�i

Δt
By substituting Eq. (26) and Eq. (27) into Eq. (24), the 

transition function is obtained by the following:

where I is an identity matrix.
B a s e d  o n  t h e  d i s c r e t e  m a p 

col
(
x
i+1, xi,⋯ , x

i−M+1

)
= C

i
col

(
x
i
, x

i−1,⋯ , x
i−M

) , the transition function 
can be reformulated as

where

(25)∫
b

a

f (�)d� ≈
b − a

2
(f (a) + f (b))

(26)ap∫
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2
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d� ≈ �i

(
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)
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((
eAΔt − 1

)
Bi +

(
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(
eAΔt − 1

) 1

AΔt

)(
Bi+1 − Bi

)) 1

A

(29)B(t) ≈ Bi +
(
Bi+1 − Bi

) t − ti

Δt

(30)x
(
t − �i

)
≈ �ixi−M + �ixi−M+1

(31)

(
I −

Δt

2
Bi+1

)
xi+1 = eAΔt

(
1 +

Δt

2
Bi

)
xi − �i

(
�ixi−M + �ixi−M+1

)

(32)Φ = Cn−1Cn−2Cn−3 ⋯C1C0



The International Journal of Advanced Manufacturing Technology 

According to the Floquent theory [22], if all the mod-
uli of the eigenvalues of Φ are less than one, the milling 
system is stable; if any modulus of the eigenvalues of Φ is 
more than one, the milling system is unstable. And Φ only 
depends on the spindle speed rather than the axial depth of 
cut. This means that, when calculating Φ , it is not necessary 
to calculate the matrix exponential function repeatedly for 
different axial depths of cut for a given spindle speed. Take 
the semi-discretization method as an example. The matrix 
exponential function depends on both the spindle speed and 
the axial depth of cut, so the calculation amount is much 
larger than that of the method proposed in this paper. Given 
a Ns × Na sized grid, where Ns denotes the number of the 
spindle speed, and Na denotes the number of the axis depth 
of cut, the semi-discretization method needs to compute the 
matrix exponential function n × Ns × Na times to determine 
the stability boundary, while the method proposed in this 
paper only needs to compute the matrix exponential func-
tion Ns times.

5  Simulation analysis

In this section, two milling examples with two DOFs are 
employed to verify the method proposed in this paper, the 
detailed parameters of which are listed in Table 1. To make 
the following discussion more concise, the method proposed 
in this paper is abbreviated as the NCM, and the axial depth 
of cut is abbreviated as the ADC. We compare the three 
algorithms, i.e., the SDM [9], the RSDM [26], and NCM, 
by two indexes that measure the computation efficiency 
and computation accuracy. The computation efficiency is 

(33)

Ci =

⎡
⎢⎢⎢⎢⎢⎣

Hi+1e
AΔt

�
1 +

Δt

2
Bi

�
0 ⋯ −�iHi+1�i −�iHi+1�i

I 0 ⋯ 0 0

⋮ ⋮ ⋱ 0 0

0 0 ⋯ 0 0

0 0 ⋯ I 0

⎤
⎥⎥⎥⎥⎥⎦

(34)Hi+1 =
(
I −

Δt

2
Bi+1

)−1

measured by the time consumed for the stability bound-
ary calculation. All algorithms in this paper are executed 
with MATLAB 2022b on a desktop computer [AMD Ryzen 
5-5600H; CPU, 4.0GHz, 16GB].

5.1  Computation accuracy and efficiency

The stability lobe diagrams are obtained over a 200 × 100-
sized grid in the parameter spaces of nominal spindle speed 
and axial depth of cut by using the SDM, the RSDM, and 
the proposed NCM, respectively. For fair comparisons, the 
discretization step size of the proposed NCM is kept the 
same with other methods in each comparison group. Since 
the approximation parameter is M = 44, the transition matrix 
is a matrix of 46 × 46. The three different modulation fre-
quency ratios, i.e., RVF = 0.1, RVF = 0.2 and RVF = 0.5, 
are set while the modulation amplitude ratio is always equal 
to 1, i.e., RVA = 0.1.

After applying each algorithm to predict the stabil-
ity boundaries, the computation results for the Example 
I are schematically depicted in Fig. 2. Take RVA = 0.1 
and RVF = 0.1 as an example. As observed from Fig. 2, 
although the three stability boundaries are nearly the 
same with each other when RVA = 0.1 and RVF = 0.1, 
there are obvious differences in the computation time. 
With the proposed NCM, the computation time is sig-
nificantly decreased from 2178.56 to 691.41 s. Thanks 
to the  3rd-order Newton-Cotes integration formula, the 
computation time of the proposed NCM drops by over 
60% than that of the SDM and the RSDM when RVF = 
0.2 and RVF = 0.5. Through comparisons, the proposed 
NCM shows higher computation efficiency than the SDM 
and the RSDM.

Similarly, the benchmarked parameters of the Example II 
are adopted for further verification and analysis. The compu-
tation results are presented in Fig. 3. According to the com-
parisons with other methods, it is found that for the same 
RVA and RVF, the stability boundaries are nearly the same 
with each other, there are no obvious differences between 
the stability boundaries with the SDM, the RSDM and the 
proposed NCM. It can be observed that the computation 
time of the proposed NCM drops by over 80% than that of 

Table 1  The benchmarked 
parameters

Cutting parameters Example I [27] Example II [26]

Modal mass (kg) 3.1663 0.0436
Number of teeth 4 2
Tangential cutting force coefficient (N/m2) 8 ×  108 6 ×  108

Normal cutting force coefficient (N/m2) 3 ×  108 2.52 ×  108

Angular natural frequency (rad/s) 400 × 2π 729 × 2π
Relative damping 0.02 0.01
Radial depth of cut 0.5 0.05
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the SDM and the RSDM when RVF = 0.1, RVF = 0.2 and 
RVF = 0.5. Therefore, the proposed method is effective for 
improving the computation efficiency while ensuring the 
computation accuracy.

As shown in Fig. 4, six sets of cutting parameters, i.e., 
A(Ω= 3000 rpm, ap = 2.3 mm), B(Ω= 3000 rpm, ap = 2.8 
mm), C(Ω= 5000 rpm, ap = 2.7 mm), D(Ω= 5000 rpm, ap 
= 3.2 mm), E(Ω= 7600 rpm, ap = 5.8 mm) and F(Ω= 7600 
rpm, ap = 6.3 mm), are adopted to demonstrate the effec-
tiveness of the proposed NCM for ensuring the computation 
accuracy. The circle ○ denotes the cutting parameters above 
the stability boundary. The square □ denotes the cutting 
parameters below the stability boundary. The numerical 

simulation analysis, which refers to Ref. [29], is carried out 
in the time domain. The analysis results are plotted in Fig. 5. 
It is noted that A, C and E in the stability region converge 
along time, while B, D and F in the unstable region diverge 
along time. According to Fig. 5, the stability lobe diagrams 
obtained with the proposed NCM shows the correctness of 
this work.

5.2  Milling stability boundaries

The stability lobe diagrams in Figs. 2 and 3 indicate that the 
introduction of SSV technique possibly enlarges the stability 
boundaries. It is concluded in Ref. [17] that the sinusoidal 

MCNMDSRMDS

Computation time 6158.81s  Computation time 2178.56s Computation time 691.41s  

Computation time 3432.78s Computation time 1131.4s Computation time 352.24s 

Computation time 1439.09s Computation time 468.56s  Computation time 143.69s 

Fig. 2  Computational efficiency comparisons of the SDM, the RSDM, and the proposed NCM for Example I
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MCNMDSRMDS

Computation time 6376.53s  Computation time 2196.42s Computation time 355.03s 

Computation time 3476.98s Computation time 1239.64s Computation time 178.08s 

Computation time 1329.07s Computation time 498.34s  Computation time 71.11s  

Fig. 3  Computational efficiency comparisons of the SDM, the RSDM, and the proposed NCM for Example II

Fig. 4  Stability lobe diagram 
obtained with the proposed 
NCM for computation accuracy 
verification
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VSS modulation has a strong inhibition effect than the trian-
gular VSS modulation. To further analyze the effect of VSS 
modulations on the stability boundaries, the stability bound-
aries in the low-speed domain and the high-speed domain 
are depicted in Figs. 6 and 7, respectively. The modulation 

amplitude ratio is set as 0.1, and the modulation frequency 
ratio is set as 0.5. The low-speed domain corresponds to the 
spindle interval from 2000 to 10000 rpm. The high-speed 
domain corresponds to the spindle interval from 14000 to 
20000 rpm. It is shown from Fig. 6 that when the spindle 

Fig. 5  Vibration displacements of (A), (B), (C), (D), (E) and (F) obtained with the proposed NCM for computation accuracy verification

Fig. 6  Stability lobe diagrams 
in the low-speed domain 
obtained with the proposed 
NCM when RVA = 0.1 and RVF 
= 0.5
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Fig. 7  Stability lobe diagrams 
in the high-speed domain 
obtained with the proposed 
NCM when RVA = 0.1 and RVF 
= 0.5

noitaludomralugnairTnoitaludomladiosuniS

Feasible part 

Infeasible part 

Feasible part 

Fig. 8  3D stability lobe diagrams of VSS milling with sinusoidal and triangular modulations when Ω = 4900 rpm
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speed changes from 2000 to 8160 rpm, the sinusoidal VSS 
modulation is better than the triangle VSS modulation, while 
the triangle VSS modulation becomes better than the tri-
angular VSS modulation when the spindle speed changes 
from 8160 to 9120 rpm. The results also verify the previous 
conclusion. The sinusoidal VSS modulation has a strong 
inhibition effect than the triangular VSS modulation, but 
this case is limited to the low-speed domain. This alternation 
can also be observed in Fig. 7. It should be noted that the 

triangular VSS modulation has a strong inhibition effect than 
the sinusoidal VSS modulation in the high-speed domain.

5.3  Modulation parameter optimization

The VSS strategies can suppress the chatter to a greater 
extent. How to design the RVA and RVF is worth further 
study. Take Example II as an example. The 3D stability lobe 

noitaludomralugnairTnoitaludomladiosuniS

Feasible part 

Feasible part 

Infeasible part 

Infeasible part 

Fig. 9  3D stability lobe diagrams of VSS milling with sinusoidal and triangular modulations when Ω = 8000 rpm

Table 2  Sinusoidal and 
triangular modulation 
optimization. “Irate” is the 
abbreviation of “Improvement 
rate”

Spindle 
speed (rpm)

Sinusoidal modulation Triangular modulation

4900 RVA RVF CADC Irate RVA RVF CADC Irate
0.140 0.066 3.6 mm 157.14% 0.150 0.100 3.4 mm 142.86%

8000 RVA RVF CADC Irate RVA RVF CADC Irate
0.120 0.030 3.8 mm 52.00% 0.070 0.080 4.3 mm 72.00%
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diagrams are drawn with the proposed NCM in modulation 
spaces for Ω = 4900 rpm in Fig. 8 and Ω = 8000 rpm in 
Fig. 9, where the sinusoidal modulation and the triangular 
modulation are both considered. With spindle speed limit 
alim (denoted by the black surface), each stability lobe dia-
gram can be divided into two parts, i.e., the feasible one and 
the infeasible one. The optimized parameters are selected 
from the feasible part. The maximum spindle acceleration 
amax cannot exceed the spindle speed limit, i.e., amax< alim, 
where alim is set as 400 rev/s2 in this work.

The maximum spindle acceleration amax [22] is intro-
duced as

(35)

amax = max

{
1

60

nu∑
n=1

Ann�cos
(
n�t + �n

)|0 ≤ t ≤ T

}

For the sinusoidal modulation, combining Eq. (35) with 
Eq. (14), it yields

For the triangular modulation, combining Eq. (35) with 
Eq. (19), it yields

The ADC limit of constant spindle speed milling is 1.4 
mm for Ω = 4900 rpm and 2.5 mm for Ω = 8000 rpm, 
respectively. As shown in Figs. 8 and 9, four maximum 
ADC points, i.e., A, B, C and D, are chosen based on alim. 
As quantified in Table 2, the maximum ADC abbreviated as 

(36)amax =
2� ⋅Ω2

0
⋅ RVA ⋅ RVF

3600
≤ alim

(37)amax =
4 ⋅Ω2

0
⋅ RVA ⋅ RVF

3600
≤ alim

Frequency analysis of sinusoidal modulation Frequency analysis of triangular modulation 

margaidebolytilibatSSSCfosisylanaycneuqerF

Fig. 10  Frequency spectrum diagrams of VSS milling and CSS milling
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MADC reaches 3.6 mm and 3.4 mm for sinusoidal modula-
tions and triangular modulation when Ω = 4900 rpm. And it 
reaches 3.8 mm and 4.3 mm when Ω = 8000 rpm. Although 
both modulation modes show some advantages, the feasible 
part spaces of triangular modulations are much broader than 
those of sinusoidal modulations. Thus, the triangular modu-
lation provides a wider selection of the VSS parameters.

5.4  Chatter frequency analysis

It’s necessary to further alnalyze the chatter properties in the 
frequency domain. In this section, the VSS frequency and 
CSS frequency are calculated in an analytical way. For the 
VSS milling, the chatter frequency fv is introduced as [18]

where �1 denotes the positive imaginary part of the critical 
characteristic multiplier.

For the CSS milling, the chatter frequency fc is introduced 
as [27]

The modulation frequency fm is defined as

Take Example II as an example again. The spindle speed 
varies between 3000 and 6000 rpm. The ADC is set as 2.5 
mm. According to Eqs. (38)–(40), the  17th-order modulation 
frequencies and chatter frequencies of the VSS milling and 
the CSS milling are obtained in Fig. 10. With the VSS mill-
ing strategy, the frequency band is reduced a lot. The CSS 
frequency exceeds 1500 Hz, while the VSS frequency does 
not exceed 900 Hz. When the chatter frequency curve covers 
the modulation frequency curve, the milling system tends to 
be stable. The VSS spectrum diagrams show that the spindle 
speed stability areas of the sinusoidal modulation are [3180 
rpm, 3252 rpm], [3720 rpm, 4305 rpm], [4410 rpm, 5430 
rpm], and [5550 rpm, 6000 rpm], and that the spindle speed 
stability areas of the triangular modulation are [3240 rpm, 
3270 rpm], [3795 rpm, 3960 rpm], [4260 rpm, 4785 rpm], 
and [5340 rpm, 6000 rpm]. The CSS spectrum diagrams show 
that the spindle speed stability areas are [3105 rpm, 3135 rpm], 
[3210 rpm, 3585 rpm], [3585 rpm, 3690 rpm], [4290 rpm, 
4500 rpm], [4680 rpm, 4695 rpm], and [5340 rpm, 5760 rpm]. 
The comparison results demonstrate that the VSS milling strat-
egy can effectively suppress the chatter, and the sinusoidal 
modulation is superior to the triangular modulation in the low-
speed domain.

(38)fv = ±
�1

2
+ j

RVF × Ω(t)

60
[Hz] j = 0,1, 2,⋯ , n

(39)fc = ±
�1

2�
+ j

NΩ0

60
[Hz] j = 0,1, 2,⋯ , n

(40)fm = j
RVF × v0

60
[Hz] j = 0,1, 2,⋯ , n

6  Conclusions

This paper proposes a novel method for the stability analy-
sis and parameter optimization of milling processes with 
variable spindle speed variation. Since the iterative calcu-
lation of the transition matrix only depends on the spindle 
speed, the proposed NCM shows higher computation effi-
ciency than the SDM and the RSDM while ensuring the 
computation accuracy. In the low-speed domain, the sinu-
soidal VSS modulation has a strong inhibition effect than 
the triangular VSS modulation; in the high-speed domain, 
the triangular VSS modulation has a strong inhibition 
effect than the sinusoidal VSS modulation. It is found 
that the feasible part spaces of triangular modulations are 
much broader than those of sinusoidal modulations in the 
3D stability lobe diagrams. Besides, the VSS modulation 
can effectively suppress the chatter, where the sinusoidal 
modulation is superior to the triangular modulation in the 
low-speed domain.
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