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Abstract
In this paper, an interval type-2 radial basis function neural network system is presented that produces an accurate forecast of 
the temperature of liquid steel in a secondary metallurgical monitoring and control process. The main goal of this proposal 
is to get the precise temperatures and times to aggregate the additives to the liquid bath to produce high-strength, low-alloy 
steel and not waste materials due to the oxidation caused by high temperatures. Also, the proposal reduces the replacement 
times of measurement instruments that are damaged by the high temperatures. The novelty of this proposal is the lack of this 
class of neural networks in steelmaking processes and the fact that this is an emergent technology that has only been around 
for less than 10 years. The produced results show an error in order of 0.12% that is a figure well below 0.30% which is the 
typo error produced by the measurement devices such as thermocouples of the k-type that are damaged at 1600° and produce 
erroneous measurements in temperatures superior to 1200 °C and less than the classic interval type-2 fuzzy logic systems.

Keywords Temperature control · Interval type-2 radial basis function neural network · Fuzzy neural network · It2 RBFNN · 
Process control · Secondary metallurgy

1 Introduction

One of the most recycled materials is the steel. But their 
recycling requires a process to refine it and to remove impu-
rities as slag, this action requires additives to enhance the 
steel properties, and the addition of these elements requires 
precise temperatures to avoid the loss of heat and the loss 
of additives caused by high temperatures that produce oxi-
dation [1]. To produce high-strength low-alloy (HSLA) 
steel, a complementary process called secondary metal-
lurgy is used. There are added some elements and chemicals 
added to produce the alloy. This kind of process requires 
temperatures above 1600 °C, and some low alloys require 
more than 1700 °C that cannot be measured by the common 

thermocouples such as the k type. The addition of elements 
necessary to refine the steel produces a temperature reduc-
tion in the liquid bath [2].

Several problems motivated this research. First, the tem-
perature cannot be measured online because the oven is 
sealed when it is in use to protect the devices and people 
from the temperatures and the electric arch used to produce 
heat. Second, sensors cannot be used in temperatures above 
1600 °C because they melt and are damaged by the electric 
arch, and the temperature cannot be taken [3]. Third, the 
temperature requires being taken more than once to avoid 
erroneous values and validate the measurement [4]. Fourth, 
the thermocouples produce an error in measurement near to 
1% in their specifications [5] and these thermocouples are 
used near to the walls of the oven and not in the center where 
the temperatures are high, the supports of the thermocouples 
produce heat dissipation [6], and finally, the thermocouples 
require a protective cap to prevent damage [5].
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2  Related work

2.1  Type‑2 neural networks

The type-2 or interval type-2 neural networks is a relatively 
new technology due to it only being 10 years old, and the 
first apparition of a class of artificial neural network (ANN) 
called fuzzy neural network similar to the pure or canonical 
form of radial basis function neural network appear in 2008 
in [7], but this network presents some complications due to 
the constraints of the network’s own artificial neurons which 
can only operate with a single variable is to say is required 
the decomposition of the problem onto smaller problems 
that finally in a summation gives the overall answer, which 
means that the classic fuzzy rules or Zadeh rules (1) men-
tioned by [8] cannot operate with this network. Another 
problem with the first type-2 network is the operation of 
these ANN with Takagi–Sugeno-Kang (TSK) rules (2), is 
to say in a form of a coefficients for every variable with 
equivalence to a function, in there the antecedents are equal 
to the Zadeh rules and a fuzzy rule cannot be operated by a 
single neuron and automatically assemble a fuzzy logic sys-
tem represented graphically by an ANN instead of an ANN 
with treat the inputs with a single neuron for every variable,

where xn are the input variables, Fn are the value of the n 
variable, and y is the output with their value G1.

where x(k) and its time-delayed versions are the states of the 
dynamical system under control, and the consequent is the 
control ui that here is a linear combination of the p states.

A recent study [9] divides the type-2 ANN in the follow-
ing forms: first in feedforward and recurrent form, Mamdani 
and TSK for modeling consequents outputs and finally on 
interval and general for the processing after output to con-
form the different categories. But does not exist a consen-
sus in the categorization of the networks can be say that all 
can be called type-2 multilayer perceptron’s or type-2 fuzzy 
neural networks or IT-2 RBFNN because their basic archi-
tecture corresponds to these classes of networks. On other 
hand, the term IT-2 RBFNN was produced in 2015 with the 
work of [10] that presents a simulated application for plant 
classification and E. coli bacteria classification also, presents 
test for mechanical properties prediction, later [11] presents 
a comparison of a data driven fuzzy models (DDFM) and 
IT-2 RBFNN in a real manufacturing process dedicated to 
classify the rail production, and [12] presents a self-evolving 
recurrent T-2 ANN that treat the weights as a fuzzy number 

(1)Rn ∶ IFx1isF1andx2isF2and… andxnisFn, thenyisG
1

(2)RnTSK
∶ IFx(k)isF1andx(k − 1)isF2and… andx(k − p + 1)is, thenui = cl

1
x(k) + cl

2
x(k − 1) +⋯ + cl

p
x(k − p + 1)

is to say as fuzzy sets that converts this ANN onto a general 
type-2 ANN used to dynamical system identification using 
as examples a bounded-input, bounded-output nonlinear 
plat, second order nonlinear time-varying plant to test their 
proposal. In [13] is proposed a robust fuzzy controller based 
on a type-2 RBFN with Takagi–Sugeno (3) consequents 
applied to an electrohydraulic actuator, [14] as a resume 
[11–14] show theoretical proposals to model RBFNNs. The 
applications of this class of ANNs are limited and present 
some challenges and limitations, [12] presents a network 
restricted to using only one type of membership function 
(MF), but it is recurrent to adapt the system. A network that 
transforms and uses the Mamdani and later is transformed 
onto the Takagi–Sugeno-Kang (TSK) model is presented in 
[13], this happens because as mentioned in previous para-
graphs the application of the fuzzy rules cannot applied to an 
ANN, and the only form to apply the antecedents of a fuzzy 
rule is the treatment variable per variable; beta basis func-
tions to define to delimit the spread of the uncertain inputs 
an used in [14] is applied the IT-2 RBFNN TSK to predict 
time series and to manage the uncertainties in the following 
examples: free noise Mackey glass chaotic time-series, noisy 
chaotic time-series prediction, ECG heart-rate time series 
monitoring. In [15], the IT-2 RBFNN is used for quality 
control via image processing; these models of type-2 are 
used to avoid the problems generated by the acquisition of 
the data, e.g., in the acquisition of images as is mentioned in 
[16] in there exists several problems as the shape of the lens, 

position of the camera, problems exposition, acquisition and 
transmission, among others.

A modified neuron is incorporated in the IT-2 RBFNN to 
eliminate the type reduction in [17, 18] use the IT-2 RBFNN 
to classify and recognize alphabets for dictation word and 
the recognition and response in the brain to a visual stimulus 
with the representation of a vowel at two level intrapersonal 
for himself and interpersonal for the group, and the sec-
ond phase is in where the IT-2 RBFNN is used to process 
the noise of variations in the sounds and images. In [19], a 
type-2 ANN model to predict time series and manage the 
uncertainties is developed using an evolving recurrent inter-
val type-2 intuitionistic fuzzy neural network (eRIT2IFNN); 
in [20] a dynamic SVD dynamic fractional-order deep 
learned type-2 fuzzy logic system (FDT2-FLS) is used to 
predict the solution of hyperchaotic system with adaptation 
rules of the consequent parameters are extracted such that 
the globally Mittag–Leffler stability is achieved. To test the 

(3)Rn ∶ IFx1isF1andx2isF2and… andxnisFn, theny = f (x)
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model are used online prediction of chaotic time series and 
online prediction of glucose level in type-1 diabetes patients 
with only one epoch of training. In [21], it is presented a 
multilayer interval type-2 fuzzy extreme learning machine 
(ML-IT2-FELM) for the recognition of walking activities 
and gait events this kind of network is an equivalent to IT-2 
fuzzy logic system without defuzzification. It uses three dif-
ferent kinds of walking: level-ground walking, ramp ascent, 
and ramp descent and finally the IT-2 RBFNN is used to rec-
ognize and classify the type of walking with precisions over 
99.5% but require learning. An enhanced version of [21] 
model is presented in [22] with a general type-2 RBFNN 
that provide an additional phase to process the uncertainty, 
and this is a theoretical proposal tested in three cases (bench-
mark data sets for multiclass classification and regression, 
nonlinear plant identification, and noisy chaotic time-series 
prediction).

Classification process is made by type-2 process in a 
fuzzy c-means (FCM) classifier with the classifier embedded 
in the hidden or middle layer of the ANN, this study is only 
for comparison the performance of the proposed method by 
the authors versus type-1 FCM in a theoretical proposition, 
in [23]; in [24] the It-2 RBFNN is used to forecast with the 
novelty of the proposal is the use of ellipsoidal MFs (Fig. 1a) 
and not a classic Gaussian MF (Fig. 1b). The ellipsoidal MFs 
provide the chance to get bigger intervals due their shape, 
but this kind of MF’s non-uncertain (certain) region at the 
center of the interval is reduced because the shape of the 
interval that is an ellipsoid and grows up the uncertain region 
as show in (Fig. 1c) that presents a comparison between the 

Gaussian and ellipsoidal MF’s certain regions, Fig. 2 pre-
sents the forms of “S” shape of the classic Gaussian interval 
(2a), “ovoid” for the ellipsoidal interval (2b), or trapezoid in 
the triangular functions (2c) and the use of non-symmetrical 
functions in the interval is not adhered to the canonical form 
created by two type-1 fuzzy sets that need to be symmetrical; 
the form of the set needed is shown in Fig. 3 to assemble an 
interval type-2, low or left (Fig. 3a), right or high (Fig. 3b) 
and ellipsoidal interval type-2 (Fig. 3c), the justification for 
it is the presence of noise generated by an external distur-
bance, but exists the limitation of only can be used with 
interval type-2 systems with uncertain standard deviation 
and not with uncertain means that generates another limita-
tion or challenge for the modeling of the system. In [25] is 
proposed a learning method based on backpropagation to 
adjust the weights of the neurons and with this reduce the 
computational times required for the evaluation and forecast. 
Prospection was made by IT-2 RBFNN in [26] the applica-
tion of the neural network to control the dynamic uncertain 
trajectory of a directional drilling process with a dynamical 
environmental change, in [27] is proposed a type-2 network 
to generate a generalized predictive control for a catalytic 
reaction, controlling the ammonia (NH3) in the process of 
decomposition of nitrous oxide (NOx) with time delay and 
uncertainties is proposed a predictive control due the classi-
cal methods as proportional-integral-derivative (PID) cannot 
made this work. A sliding mode control is presented in [28] 
using an IT2 RBFNN with the advantage of adaptation by 
learning by a backstepping method that generates this own 
information and adjust it to get a desired performance.

Fig. 1  Comparison between Gaussian and ellipsoidal membership functions and their respective certain and non-certain regions. a Gaussian MF, 
b ellipsoidal MF, and c comparison of certain regions
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2.2  Secondary metallurgy

Birat in [29] defines the secondary metallurgy as the process 
of cleaning the steel. The secondary metallurgy is character-
ized to the use of ladle furnaces to refining the steel, in their 
several processes are made as desulfurization, deoxidation, 
inclusion control, and clearly alloying, as mention [30], in 
these steps of production the temperature control is one of the 
most important tasks to be made to produce ultra-low carbon 
steel, HSLA, among others due the additives that prevents the 
oxidation are added and they can be lost by oxidation caused 

by high temperatures, as is mentioned by [31] and specific 
temperatures are needed to add every chemical additive, also, 
with every addition of elements exists loss of heath due the 
quantity of the element added and this condition causes the 
elevation of the production cost [2].

2.3  Secondary metallurgy and artificial intelligence

The research in the control process of temperature on sec-
ondary metallurgy is limited to 147 papers that covers this 
topic in the period 2020–today in a Google academic search 

Fig. 2  Comparison between the form of intervals by different MFs. a Gaussian, b ellipsoidal, and c triangular

Fig. 3  Ellipsoidal membership 
functions. a Low or left and b 
high or right
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in July 2024 without more specification. If the search is lim-
ited to the addition of “neural” term the papers reducing 
considerably to 60 in the same period. As relevant and recent 
papers about the topic figure the following.

Some relevant papers talk about secondary metallurgy 
and artificial intelligence techniques but in there appears:

A brief review with the models for quality control in ladle 
furnace processes, but practically all are used to verify and 
predict the quantity of sulfur in the steel using black box 
models and mixed models without more explanations about 
the type of black box method or if it is used to predict tem-
peratures o other control process parameter [32]. An appli-
cation for temperature prediction based in historical data to 
provide a genetic algorithm that optimizes a backpropaga-
tion neural network used to predict the temperature of the 
molten steel with an error of ± 5 °C [33].

In [34] is used principal component analysis (PCA) 
and a deep neural network (DNN) to eliminate the col-
linearity, dimension, and reduce the complexity of the 
model reducing their variables; the obtained data of PCA 
are used to feed the DNN. If the precision is decreased, 
the error decreases to from errors 54%, 93%, and 98.8% 
in precisions with ± 1, ± 2, and ± 5%, presented in the 
steel. In the case of manganese, the error rates increase 
from ± 1%, ± 2%, and ± 3% are 77.0%, 96.3%, and 99.5%, 
respectively, multiple linear regression, modified back-
propagation, and DNN model. Assembled learning is used 
(the use of regression and classification mixed models) as 
predictor of temperature of the molten steel, the classifica-
tion is made by k-nearest neighbors in [35]. The case of 
[36] presents a neural network forecaster of temperature 
for energy saving based in the monitoring of temperature 
(heat-loss) in the process to avoid the use of extra energy 
in the cycles of heating and cooling to reduce the energy 
waste in the process particularly in period between non-
casting and casting times. Their proposal presents a mean 
absolute error in the order of 8.53 °C produced by a linear 
regression and 4.97 °C produced by the ANN forecaster. 
Design an estimation model for the temperature in the 
steel using two approaches to compare their performances, 
the first one is based in physic principles using a series of 
equations in a gray box model, and the second one uses 
an ANN to predict the temperature of the steel. The main 
problem of this application is the lack of reliability of 
their ANN if the input data differs from the calibration 
of the designed tool, while the physic approach presents 
stable behavior. The mean absolute error (MAE) of the 
ANN is around 6 °C, while the physics-based application 
produces a MAE of 14 °C in [37]. The application of [38] 
presents the use of heuristics to generate an approxima-
tion for temperature of the liquid steel. But, as mentioned 
by the authors, “it can predict the end temperature of LF 
molten steel relatively accurately. The prediction accuracy 

of the end temperature of molten steel at ± 10 °C can reach 
more than 80%.” Then, their MAE is ± 10 °C.

A two-layer transfer learning framework based on a 
temporal convolution network (TL-TCN) to measure billet 
temperature and generative adversarial networks (GAN) to 
predict the temperature in every zone of the ladle is pro-
posed in [39], while [40] uses an optimized kernel extreme 
learning machine (OKELM) is proposed. Firstly, the opti-
mized kernel extreme learning machine is used to establish 
the relationship between the furnace temperature and its 
related factors. Based on this, the continuous human learn-
ing optimization (CHLO) algorithm is adopted to opti-
mize the kernel parameter and regularization coefficient, 
then the best OKELM with optimal parameters is adopted 
to predict the furnace temperature more precisely and 
effectively. In [41] is used a DNN with hybrid modeling 
using isolation forest (IF), zero-phase component analysis 
whitening (ZCA whitening) to predict the temperature of 
molten steel but are required multiple techniques to obtain 
the principal variables of the process (Pearson correlation 
coefficient, ZCA whitening, IF, and t-distributed stochastic 
neighbor embedding (t-SNE)) making some complications 
on the design of the prediction model previous to model 
the own ANN, in the experiments are used different lev-
els of precision with temperature of 3, 5, and 10 degrees 
obtaining percentages of 77.9, 92.3, and 99.6 of precision, 
respectively; in Table 1 the results obtained by [41] are 
shown.

Are remarkable a couple of conditions in the state of 
art literature, first the presented ANNs for the specific pro-
cess of secondary metallurgy are type-1 networks, is to say 
paraphrasing the words of Jerry M. Mendel [8] this class 
of systems cannot handle the uncertainties present in the 
productive system but can manage the uncertainties in meas-
urements by learning, is to say the design phase is critical 
to obtain a reliable system after training and learning, the 
systems modeled and presented in literature require more 
complexities as the obtention of a function that represents 
the system and this fact is a complication due are needed 
the necessity of an adequate method and adequate selec-
tion of variables to make a precise system these processes 
needs training. The systems presented using IT-2 RBFNNs 
are TS [13] or TSK [7, 9, 14], but the study of [9] presents in 
their survey of ANNs only TS or TSK ANNs that represents 

Table 1  Comparison of models 
using MAE as precision metric. 
Adapted from [41]

Model tested MAE

KNN 2.650
RELM 2.892
BR-BP 3.136
MLR 3.227
DNN 4.2897
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that practically all work in this field is dedicated to TS or 
TSK models except for [15] and this proposal that presents 
a Mamdani model using IT-2 RBFNN.

3  Materials and methods

3.1  Interval type‑2 radial basis function neural 
network (IT‑2 RBFNN)

The interval type-2 systems such as the IT-2 RBFNN 
(Fig. 4) are an option to manage the uncertainties present 
in the processes produced by measurements [42]. Their 
output produces an interval of values that contains the 
uncertainty, and this is called secondary membership. 
To obtain a single value, the low and high values in the 
interval are averaged to produce the final output, called 
type reduction.

The algorithm of the IT-2 RBFNN could use as basis 
with the necessary adaptations the type-2 fuzzy rule base as 
is used in fuzzy logic systems in the form (4) that could be 
transformed into (5) and required the MF value (6) to obtain 
a weight value for the next step. With (6), (7), and (8), that 
produces the low and high values of the interval. The low and 
high values of membership for every variable are used in (7) 
for low output and (8) for high output, and the final approxi-
mation is obtained by (9), (10), or (11), which can be reinter-
preted as a center of gravity defuzzifier in fuzzy models (12).

where F̃i
1
=
{
m1,m2

}
 are the values low and high of the x 

variable, and G̃l = yi = {yi, y
i
} and represents the output of 

the variable’s combination.

(4)Rulei ∶ IFx1isF̃i
1
andx2isF̃i

1
thenyi = G̃l

(5)ifX1is(a, a)andX2is(b, b)THEN(Y1
_

,Y1)

Fig. 4  IT-2 topology adapted 
from [15]
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where �a(x) is the membership function value of the variable 
xi , xi is the mean of the fuzzy set, and �xi is the dispersion 
of the fuzzy set.

where ci is the output in the dataset for the prediction.

4  Proposal

This method uses the individual base inference [43], which 
means that every lecture of the process could be used as a 
rule. This is an alternative to clustering or composed base 
inference, which is the classic approach for intelligent sys-
tems. In this case are selected seven rules as is shown in 
Table 2. An interval type-2 model is denoted by a type-2 
fuzzy represented by a set given by (13) and depicted in 
Fig. 5.

where Ã , contents a type-2 membership function �
Ã(x, u) , 

where x ∈ X and u ∈ Jx ⊆ [0,1] and 0 ≤ �
Ã(x, u) ≤ 1.

In Fig. 6 in there can be seen �A(xq) that is equal to f l
r
(xq) 

and �
_ A

(
xq
)
 that is equivalent to f l

l
_

(xq).

(6)�
a

(
xi
)
= exp

[
−
1

2

[
xi − x

i

�
xi

]2]
= R

(
xi
)
= w(xi)

(7)�
a
_

�
xi
�
= exp

⎡⎢⎢⎢⎣
−
1

2

⎡⎢⎢⎢⎣

xi
_

− x
i
_

�
xi
_

⎤⎥⎥⎥⎦

2⎤⎥⎥⎥⎦
= R(xi)

_

= w(x
i
)

(8)�
a

�
xi
�
= exp

⎡⎢⎢⎣
−
1

2

�
xi − x

i

�
xi

�2⎤⎥⎥⎦
= R(xi) = w(xi)

(9)d(x)
_

=

H∑
i=1

ciwi
_

∀c,R ∈ x

(10)d(x) =

H∑
i=1

ciwi∀c,R ∈ x

(11)
d(x) =

d(x)
_

+ d(x)

2

(12)yc(x) =

∑n

1
yi�B(yi)∑n

1
�B(yi)

(13)�A =
{
(x, u),

(
𝜇�A(x, u)

)|∀x ∈ X,∀u ∈ Jx ⊆ [0,1]
}

This proposal presents an enhanced and optimized system 
with a composed base inference based on the model of [31], 
while [31] is assembled with 49 rules; this proposal only has 
seven rules. The proposal is optimized with a reduction of 
86% in their size to a system with only seven rules to reduce 
the complexities of design, programming, and computational 
times that increment the different costs of the system.

In this case, the inference is produced by (9) and (10) 
for the low and high values of the interval and by (11) to 
produce an overall forecast or prediction. The rule base is 
generated by the seven principal points of the Gaussian dis-
tribution, the sigma points, and the mean point for the ante-
cedents and consequents.

To evaluate the proposal, 18 data pairs were obtained of 
the process using two variables: time of the process and 
kilowatt-hours used to enhance the temperature, and a tem-
perature in °C to evaluate the performance of the proposal. 
The data is presented in Table 3.

5  Results and discussion

The forecast of temperature obtained by the monitoring and 
control system for secondary metallurgy in ladle furnaces 
produces an average error below the common error pro-
duced by thermocouples of the k-type (Fig. 7). The shad-
owed region shows the error zone region produced by a 
k-type thermocouple (± 6 °C), and the prediction of the IT-2 
RBFNN falls into this zone (Fig. 7). Moreover, as shown in 
Fig. 8, all forecasters used fall into this zone, but the type-1 
(T1) singleton fuzzy logic systems (SFLS) and the interval 
type-2 (IT2) radial basis function neural network (RBFNN) 
present better levels of precision in contrast with the type-1 
(T1) RBFNN and the IT2 SFLS but no better in comparison 
with the IT-2 RBFNN.

In Fig. 7, the IT-2 RBFNN produces better results than 
the IT-2 FLS. The mean average error is 2.02 °C for IT-2 
RBFNN and 6.48 °C for the IT-2 FLS, which represents an 
error of 0.126% for IT-2 RBFNN and 0.403% for the IT-2 
FLS, also the actual thermocouples of k type present a mean 
error of 0.4% that is equivalent to the IT-2 prediction as is 

Table 2  Rule base for the IT-2 RBFNN

Rule Inputs Outputs

1 x̃1 − 3�
x1
, x̃2 − 3�

x2
ỹ1 − 3�

y

2 x̃1 − 2�
x1
, x̃2 − 2�

x2
ỹ1 − 2�

y

3 x̃1 − �
x1
, x̃2 − �

x2
ỹ1 − �

y

4 �̃x1,�̃x2 �̃y1

5 x̃1 + �
x1
, x̃2 + �

x2
ỹ1 + �

y

6 x̃1 + 2�
x1
, x̃2 + 2�

x2
ỹ1 + 2�

y

7 x̃1 + 3�
x1
, x̃2 + 3�

x2
ỹ1 + 3�

y
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mentioned in [44]. For both cases (IT-2 RBFNN and IT-2 
FLS), the error is less than or equal (IT-2 FLS) to the error 
produced by a k-type thermocouple without the necessity 
of specialized instruments. All that is needed is the time 
of the process and the kilowatt-hours used in the process 
to enhance the temperature of the ladle furnace. The error 
grows when the oven is off because the dependent variable 

Fig. 5  Low and high member-
ship values of interval type-2 
fuzzy set

Fig. 6  Vertical slice, second-
ary membership, or interval of 
evaluation of interval type-2 
fuzzy logic system

Table 3  Data pairs for test Sample X1 X2 Y

1 2260 3220 1598
2 2290 3340 1600
⋮ ⋮ ⋮ ⋮

18 2830 3900 1604

Fig. 7  Results of temperature 
forecasting of interval type-2 
models
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is time, and with the growth of time, the temperature grows 
up when the oven is in operation and produce contradiction 
in the behavior of the process with limited information, but 
with this level of temperature, 10 °C or less does not affect 
the refining process because it represents (0.6%) that is near 
to the error of specialized instruments.

It is remarkable that compared to the process of the inter-
val with both systems without training, the results produced 
are better or equal to those of a system of type 1 with train-
ing (Fig. 8); Fig. 9 is a different representation of Fig. 8 
to better illustrate the mean average error produced by the 
system that could not be appreciated in Fig. 8. This condition 
can be generated by the fact that the inferences are produced 
by the product of the membership values of the variables 
using the product t-norm. The fact that the proposal does not 

use the training phase produces an accurate system capable 
of being used online.

In Table 4 and Fig. 6, the obtained results with different 
forecasters using the mean absolute error (MAE) given by 
(14) or (15) show a reduction of error using the RBFNNs in 
type 1 or the interval type-2 RBFNN. In contrast, the interval 

Fig. 8  Error in °C produced by 
different forecasters on T1 FLS, 
IT2 FLS, T1 RBFNN, and IT2 
RBFNN

Fig. 9  Error in °C produced 
by different forecasters on 
T1 SFLS, IT2 FLS, and IT2 
RBFNN

Table 4  MAE of different forecasters

Forecaster Error in °C Error in %

T1SFLS 2.0381 0.126953
T1 RBFNN 2.6604 0.165713
IT2 SFLS 6.4807 0.403671
IT2 RBFNN 2.0279 0.126432
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type-2 fuzzy logic system presents an error in the order of 
300% compared with both RBFNNs for this application due 
to the management of uncertainties and the fact that this 
process presents cycles of linear and non-linear behavior. As 
shown in [31], the model does not adapt in this case, as can 
be seen in Fig. 5. The error rates are shown in Table 4 and 
are remarkable than the T1 SFLS and IT2 RBFNN produce 
so similar values of error.

where ŷi is the desired output and yi is the prediction or 
forecast.

where ei is the absolute error of prediction or forecast.
In Table 5 are presented the MAE obtained in the differ-

ent approaches using type-2 ANNs present in literature, in 
there can be shown that the range of error oscillates between 
the 0.4 and 0.9% is to say between 5 and 14 °C for a basis 
value of 1600 °C in the production process. The first column 
presents the referenced work, second column presents the 
value of error in °C if it is available, and the third column 
presents the value in percentage if it is available.

6  Conclusions

The management of the uncertainty on the artificial neural 
networks (ANNs) in the classic form of the type 1 model 
presents precision rates near to 80%, as is shown in the 

(14)MAE =

∑n

i=1
��̂yi − yi

��
n

(15)MAE =

∑n

i=1
��ei��

n

literature and documented by [45]. This means that an ANN 
with a precision of 99.87% is an excellent classifier, as is the 
case with both RBFNNs used. The T1 SFLS, due to their 
nature, does not manage the uncertainties, and this fact is 
crucial for this application as a control system that acts as 
a classifier because this presents high levels of precision 
near 100%. The T1SFLS presents similar behavior, but in 
comparison the IT-2 RBFNN system improves the results 
of their counterpart T1 SFLS in 0.000521%, which means 
an enhancement in the results.

The devices commonly used in these processes and the 
limitations of the process itself mean that the temperature 
cannot be monitored all the time, which is why there is a 
need to have an intelligent expert system that works as a 
forecaster of the existing temperature in the ladle furnace to 
add the chemical elements in the right way at the right time 
and the right amount, avoiding their loss due to oxidation 
and thus achieving high-strength low-alloy steels.

The system created with a small rule base allows work to 
be done online and keeps operators safe since the process 
of handling high temperatures and an electric arc is very 
risky for the personnel who work inside it. On the other 
hand, since the sensors or devices are limited, this system 
can operate at very high temperatures, which these com-
mercially available devices are not able to handle adequately.
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