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Abstract
Uncertainty analysis is essential for estimating variability within specified tolerances, particularly in three-dimensional (3D) 
assembly tolerance analysis. This study introduces a novel analytical approach for assessing assembly deviations, integrating 
the Jacobian–Torsor model with the bootstrap technique. The Jacobian–Torsor model combines the efficiency of representing 
tolerances with the adaptability of the Jacobian matrix for their propagation. This computerized method, based on the unified 
Jacobian–Torsor approach, focuses on cam-clamping devices, specifically the fastening flange component. The novelty of 
this study lies in the application of the bootstrap technique, a Monte Carlo Simulation approach, for uncertainty analysis to 
estimate variability within specified tolerances. A comprehensive comparison of statistical methods—bootstrap, stratified 
sampling, Bayesian statistics, and analytical methods—demonstrates the advantages of the Bootstrap approach. The results 
emphasize its user-friendliness and precision, even with complex shapes. The primary aim is to highlight the utility of the 
unified Jacobian–Torsor method for tolerance analysis. An experiment involving the fastening flange assembly illustrates 
the practical application of this approach. The findings confirm the effectiveness of the proposed method, demonstrating its 
accuracy and reliability for cam-clamping devices in real-world assembly scenarios with intricate geometries.

Keywords Tolerance analysis · Jacobian–Torsor model · Monte Carlo simulation · Unified Jacobian–Torsor · Mechanical 
assemblies · Bootstrap technique

1 Introduction

The advancement of manufacturing technologies and the 
increasing demand for complex and highly precise com-
ponents have necessitated the development of advanced 
tolerance methods. These methods, based on functional 
approaches, allow for the consideration of interactions 

between different surfaces within an assembly and accurately 
calculating the impact of tolerances on the performance of 
complex parts. This method addresses the challenges posed 
by modern manufacturing by enabling engineers and design-
ers to specify more precise tolerances while ensuring prod-
uct quality and functionality.

To address these challenges, 3D tolerance methods are 
increasingly being utilized. These methods, which combine 
dimensional and geometric tolerances, allow for a more pre-
cise consideration of interactions between different surfaces 
of a component compared to traditional methods. Tolerance 
is represented and transferred into three dimensions (3D) 
through the novel technique of three-dimensional (3D) tol-
erance analysis. Compared to traditional methods, the 3D 
method has the advantage of accounting for both dimen-
sional and geometric tolerances [1]. Automatic tolerancing 
of complex shapes using the Jacobian–Torsor model is a 
rapidly expanding field in the industry and design domain. 
The benefits of the Torsor model, which excels in repre-
senting tolerances, are seamlessly merged with those of the 
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Jacobian matrix, specifically designed for tolerance propaga-
tion, within the unified Jacobian–Torsor model [2, 3].

Automatic tolerancing of intricate shapes involves the 
automated assessment and specification of dimensional and 
geometric tolerances for complex-shaped components. Tra-
ditionally, manually tolerancing such complex shapes has 
been a challenging and subjectively interpreted task, leading 
to errors and substantial time consumption. However, the 
unified model plays a crucial role in the computer-aided tol-
erance field by integrating the strengths of both Jacobian and 
small displacement torsor (SDT) methods [4]. This model 
excels in representing and propagating complex geometric 
variations with high precision [5, 6]. It takes into account the 
kinematic relationships among different features of a part, 
enabling a thorough evaluation of the effects of geometric 
variations on the assembly and the overall performance of 
the final product.

By using the Jacobian–Torsor model, it becomes pos-
sible to automatically generate tolerance specifications for 
complex shapes, taking into account assembly constraints, 
functional interactions, and manufacturing requirements. 
This reduces errors, optimizes design and manufacturing 
processes, and ensures compliance with quality require-
ments. This approach offers numerous benefits, including 
reduced production costs, improved efficiency and accuracy, 
and increased product reliability. Enabling the automatic 
tolerancing of complex shapes, the Jacobian–Torsor model 
opens up new possibilities for advanced design, high-preci-
sion manufacturing, and meeting customer requirements in 
the industry.

Over the past three decades, extensive fundamental 
research has delved into the mathematical foundations of 
tolerance analysis. Among the various models and concepts 
employed for tolerance representation, variational geometry 
stands out as a prominent approach [7, 8]. Additional meth-
odologies include the vector approach [9] tolerance map 
(T-Map) [10], topologically and technologically related 
surfaces (TTRS) [11], degrees of freedom (DOF) [12, 13], 
variational class [14, 15], small displacement torsor (SDT) 
[16, 17], matrix [18], and other techniques like the lineari-
zation method for tolerance propagation, network of zones 
and references [19], Taguchi method [20], state space [21], 
Jacobian matrix [22, 23]. and variational method [24].

Over the years, many models have been created to rep-
resent and propagate 3D tolerance. Fleming [19], employs 
a network of arc-connected zones and references, on which 
constraints are positioned to show geometric relationships. 
To simulate tolerance propagation, Portman et Weill [25], 
introduce a spatially dimensioned chain in which each indi-
vidual error is represented by an infinitesimal matrix. Rivest 
et al. [26], provide a kinematic explanation based on the 
characteristics of an element that is acceptable in relation 
to the data.

For a target entity, every possible combination of size, 
position, shape, and orientation is represented by the 
T-Map [10]. Six small displacement vectors are used in 
an SDT model introduced by Clément et al. [23]. Laper-
rière and Lafond [27], describe tolerance using virtual 
joints and propagate tolerance using a Jacobian matrix. 
The benefits of the Torsor model and the Jacobian matrix 
are combined in the unified Jacobian–Torsor model pro-
posed by Desrochers et al. [2]. Thanks to computer-aided 
tolerance (CAT), some of the aforementioned models have 
been widely used.

Yi et al. [28] present an advanced 3D assembly tolerance 
analysis method for digital twin precision analysis, address-
ing limitations of current approaches that miss geometric 
tolerances and form errors and fail to account for paral-
lel connections. Their novel method integrates the unified 
Jacobian–Torsor model with skin model shapes for effec-
tive tolerance propagation and geometric representation. An 
improved approach calculates positioning errors in serial and 
parallel connections using progressive contact and algebraic 
methods. The method’s statistical calculation scheme is vali-
dated through a case study, showcasing its effectiveness.

Peng and Peng [29] present an iterative statistical toler-
ance design method to guide economical and effective toler-
ance selection. They derive a unified Jacobian–Torsor model 
from assembly functional requirements (FR) and functional 
elements (FEs). Monte Carlo simulations generate varia-
tions within tolerance zones, and statistical analysis of these 
simulations determines FR limits. Critical FE tolerances are 
adjusted iteratively until the calculated FR aligns with the 
imposed FR. A case study demonstrates the method’s cost-
effectiveness and precision relaxation compared to tradi-
tional deterministic tolerancing.

Roth et al. [30] explore the integration of sampling-based 
tolerance analysis into tolerance-cost optimization, empha-
sizing its industrial significance for cost-effective tolerance 
allocation. They address the problem of sampling-induced 
variance, which impacts the stability, reproducibility, and 
reliability of the optimization process. The article proposes 
methods to mitigate and manage these uncertainties, improv-
ing the reliability of the optimization. Their recommenda-
tions offer guidance for researchers and practitioners to 
achieve consistent and dependable tolerance-cost optimiza-
tion outcomes.

Ding et al. [31] address challenges in aero-engine rotor 
assembly, focusing on the impact of manufacturing errors 
and assembly variations on engine reliability. They address 
issues in three-dimensional variation analysis, specifically 
over-positioning of multiple datums and variation propaga-
tion in rotating components. They developed an improved 
Jacobian–Torsor model, enhancing rotation regulation and 
feature interaction. Their multi-stage optimization of a four-
stage aero-engine rotor assembly demonstrates the model’s 



2321The International Journal of Advanced Manufacturing Technology (2024) 134:2319–2336 

effectiveness in precision prediction and analysis during the 
design phase.

Liu et al. [32] introduce a new method for assembly tol-
erance analysis by combining the Jacobian model with the 
skin model shape. This technique models small displace-
ments and uses point cloud representations to simulate 
actual toleranced surfaces. It effectively manages geomet-
ric tolerances throughout the product lifecycle, allowing 
accurate analysis of kinematic variations and functional 
requirements. While still under development, this method 
supports design, manufacturing, and inspection by quanti-
tatively analyzing the impact of multiple tolerances on key 
characteristics. The innovative integration of these models 
provides a comprehensive approach to geometric tolerance 
consideration in assembly processes.

To improve the machining performance of complex 
shapes, Wong et  al. [33] proposed a new solution for 
precision machining of thin-walled turbine blades. The 
integrated analysis method combines geometric tolerance 
localization analysis and structural deformation predic-
tion based on the finite element method (FEM). Zhang 
et al. [34] employed an analytical methodology for toler-
ance analysis and synthesis in a cam and translation fol-
lower system. They distributed tolerance values associ-
ated with design requirements in terms of functionality or 
output precision among identified design tolerances using 
a sequential quadratic programming (SQP) algorithm. 
Chang et al. [30] stress the significance of tolerance analy-
sis in the development and production of cam mechanisms, 
and the necessity of computer calculations and mathemati-
cal modelling to ascertain the optimal tolerance values.

Cam-clamping devices are extensively utilized in 
diverse machining fixtures due to their capacity for swift 
action, generation of substantial clamping force, and exe-
cution of specified functions, paths, and motions. These 
capabilities surpass those of pure linkages when evalu-
ated through the lens of kinematic design. However, the 
irregular shape of cams [35–37] presents a greater chal-
lenge in terms of accurate machining compared to the 
more straightforward dimensions of linkages. Even minor 
deviations in the cam contour within machining fixtures 
can result in excessive noise, wear, and vibrations [36–38], 
which adversely affect the precision and reproducibility of 
machined components.

To achieve kinematic accuracy and dynamic performance 
at an acceptable level, the manufacturing and assembly 
errors in a cam-clamping device must stay within specified 
tolerances. Consequently, the processes of tolerance analy-
sis and synthesis [39–41] become pivotal in the design and 
production of precise cam-clamping devices. Tolerance 
analysis assesses output motion errors resulting from known 
deviations or specified tolerances in the design parameters, 
while tolerance synthesis focuses on identifying the optimal 

combination of tolerances, considering restricted output 
motion errors and controlled production costs.

In the context of design for manufacturing and assembly 
(DFMA) [42, 43], it is essential to specify the largest (or 
optimal) values for the cam profile and the tolerance of each 
design parameter. This is crucial for simplifying the fabrica-
tion of components in a cam-clamping device. Additionally, 
the optimal combination of tolerances must align with the 
operational or functional requirements of the output motion. 
Therefore, the development of mathematical tools for both 
tolerance analysis and synthesis is imperative to facilitate the 
production of precise cam-clamping devices.

This paper aims to develop a computerized method based 
on the unified Jacobian–Torsor approach to conduct toler-
ance analysis on cam-clamping devices, particularly those 
with complex surfaces such as fastening flanges. The innova-
tion lies in applying the Unified Jacobian–Torsor method to 
assess tolerance among functional components, including 
irregularly shaped mechanical parts, within a cam-clamping 
device. This method offers a more precise and integrated 
approach for evaluating the quality and dimensional varia-
tions within the assembly.

Additionally, the paper introduces the innovative appli-
cation of the bootstrap technique for uncertainty analysis, 
enhancing the robustness of the tolerance assessment. The 
bootstrap technique, a Monte Carlo simulation approach, is 
leveraged to estimate the uncertainty associated with the ana-
lytical results, providing valuable insights into potential vari-
ability within specified tolerances. This dual integration of the 
unified Jacobian–Torsor method and the bootstrap technique 
contributes to a more comprehensive and advanced methodol-
ogy for precision engineering in cam-clamping devices.

2  Small displacement torsor (SDT)

A variety of geometric shapes, such as parallel planes or sur-
faces, parallelepiped faces, coaxial cylinders, and cylindrical 
faces, are frequently used to represent a three-dimensional toler-
ance zone. Table 1 provides these 3D tolerance zones coupled 
with the Small Degrees of Freedom (SDOF) vectors that corre-
spond to them, along with a general description of the elements 
of these SDOF vectors in modal interval expressions [44].

The modeling of these 3D tolerance zones greatly ben-
efits from the use of small displacement torsor (SDT) 
parameters. The six parametric intervals of the SDT are 
particularly well-suited to this task, as they allow for rep-
resenting all potential variations in terms of size, shape, 
orientation, position, and out-of-roundness of a geometric 
element relative to its nominal position within the toler-
ance zone. This approach provides essential precision and 
flexibility to comprehensively describe geometric varia-
tions in a three-dimensional context, which is crucial for 
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ensuring compliance of parts and assemblies in applica-
tions requiring strict tolerances. A detailed inventory of 
the various standard tolerance zones, together with torsor 
representations and related geometric restrictions, was 
compiled by Desrochers et al. [2]. Several typical toler-
ance zone examples are included in Table 1, along with 

information on their forms, related torsor matrices, and 
underlying geometric restrictions. Each geometric limita-
tion constrains the range of variation of the different tor-
sor components, as illustrated in Table 2. Following their 
incorporation into the torsor matrices, these geometric 
restrictions can be expressed as follows (Eq. (1)):

Table 1  Modal interval description of 3D tolerance zones in SDOF vector form [44]

3D tolerance zone SDDF vectors description

Spherical zone

Cylindrical zone

Two coaxial

Cylindrical

Parallelepiped zone

Two paralleles plans

Two parallel

Surrfaces
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3  Integration of the Jacobian–Torsor model

The integration of the Jacobian–Torsor model highlights 
the fundamental concepts and tools of the proposed unified 
model for cam clamping devices in scenarios involving 
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the assembly of complex geometries. This integration 
involves the visualization of Functional Elements (FEs), 
which represent the structure of a mechanical system 
through a contact graph, categorizing these elements into 
real and fictitious components. Pairs of Contact Functional 
Elements (PCFE) are established when there is physical 
contact between two functional elements, symbolically 
represented by (C). Additionally, Pairs of Internal Func-
tional Elements (PIFE) are formed when two FEs on the 
same part come into contact, symbolized by (I). Func-
tional requirements (FR) define the relationships between 
FEs located on separate parts, particularly focusing on 
the space between end surfaces, depicted by double-ori-
ented arrows. The complete set of these desired functional 
requirements is designated as (FR).

Table 2  Zones of tolerance and related torsor parameters [2]

Tolerance zones Zone shapes Torsor matrixes Constraints

Space with in a cylinder

Space between two coaxial cylinders

Space with in a parallelepiped

Space between two parallel planes

Space between two equidistant surfaces
Undefined
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4  Unified Jacobian–Torsor model

To create the unified Jacobian–Torsor model, the benefits 
of both approaches are combined: the Torsor model is help-
ful in characterizing tolerances, and the Jacobian matrix is 
used to propagate tolerances. Jacobian matrices describe the 
locations and relative orientations between local frames and 
the global frame of reference. This combination allows com-
plex geometric changes in this model to be accurately repre-
sented and transmitted. The model considers the kinematic 
links among various mechanism aspects, allowing for the 
evaluation of the effects of geometric alterations on product 
performance and assembly. The final statement of a unified 
Jacobian–Torsor model can be written as follows: [2, 3]:

Equations (2) and (3) allow us to understand and quantify 
how geometric variations propagate through the different 
components of an assembly, providing a powerful tool for 
product quality analysis and improvement.

Here, [FR] represents the translational matrix [ u v w]T 
and the rotational matrix [ � � �]T in the global reference 
system. In this global system, u, v, and w correspond to three 
translation vectors, while α, β, and γ represent three rotation 
vectors around the x, y, and z axes, respectively, in the local 
reference systems.

On the other hand, 
[
FES

]
 represents the translation and 

rotation matrix of the ith 
[
FEi

]
 in the local reference system. 

Finally, [J] symbolizes the 6 × 6 Jacobian matrix for the ith 
pair of assembly features, with i ranging from 1 to N. The 
subsequent formulation can be used to express it precisely:

The relationship between the minor variation of all 
functional components [FE] and the intended functional 
requirement [FR] is expressed using the Jacobian matrix. 
The matrix’s columns are derived from different homoge-
neous transformation matrices that connect the functional 
elements’ [FE] and functional requirements’ [FR] reference 
frames [45].

The geometric relationships between the 0th and ith con-
secutive references are defined by the transformation matri-
ces 

[
Ti
0

]
, More precisely, a rotation matrix and a translation 

vector can be extracted from each transformation matrix 
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[46]. Therefore, the following representation can be used to 
represent a transformation matrix:

where 
[
Ri
0

]
3×3

 represents the orientation transformation 
matrix of the ith FES relative to the global reference sys-
tem (designated as the 0th frame). This matrix is defined 
in Eq. (6).[

RPTi

]
3×3

 is a projection matrix, indicating the projection 
coefficient of the three axes in the ith local reference sys-
tem, depending on the direction of variation of the tolerance 
zone. The product 

[
Ri
0

]
3×3

.
[
RPTi

]
3×3

 in Eq. (4), ensures that 
the Jacobian matrix takes into account the inclination of the 
reference system of a projected tolerance zone.

The vectors within the matrix 
[
Ri
0

]
3×3

 illustrate the ori-
entation of ith local reference system concerning the global 
reference system 0 −th frame. The columns ��⃗C1i , ��⃗C2i , and ��⃗C3i 
correspond to the unit vectors along the axes xi , yi , and zi of 
reference mark ith within reference global  0−th. The position 
vector, denoted as di =

[
dxidyidzi

]
 , indicates the location of 

the origin of reference frame ith with respect to reference 
mark 0th.[

Wn
i

]
3×3

 represents the position transformation matrix 
between the ith and nth local reference system, which is 
anti-symmetric. To express it, use the formula below.

In the ith and nth local reference systems with respect to 
the global reference system, the coordinate values around 
thex,y, and z axes are represented by the variable dxn

i
 = dxn

–dxi, dyni  = dyn– dyi, and dzn
i
 = dzn–dzi; dxi etdxn

i
, dyi etdyn

i
 , 

and dzi anddzn
i
 , respectively. The constraint relationship 

between surface entities and the tolerance variation domain 
interval will be determined by the surface type and toler-
ance value ofFES . In the tolerance zone where 

[
FEI

]
 must 

be located, every parameter of 
[
FES

]
 will be restricted to the 

allowable range of the variation domain. Thus, the conven-
tional unified Jacobian–Torsor model can be described as 
follows by applying the principle of addressing variances 
and constraints imposed by surface features in mechanical 
assemblies. The Jacobian matrices for internal and kinematic 
pairs are computed using the unified Jacobian–Torsor model, 
and they are crucial for building the final expression of the 
unified model.
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Each matrix represents contributions to the functional 
requirements (FR).

N: Number of wrenches in a chain.
(u, v…….�

_

): Minimum limits of u,v, …, �

(u, v……�  ): Maximum limits of u,v, …, �
The interval matrix representation, as proposed, better 

represents reality in tolerancing.
The dispersions of a functional requirements (FR)are rep-

resented by the column matrix [FR]. The column matrix FES 
contains the dispersions of functional elements and uncer-
tainties of a contact pair. Both column matrices contain tol-
erance intervals in translation and rotation. This expression 
allows presenting tolerancing with tolerance zones instead of 
points. Indeed, some values of u , v , …, � contain zero values. 
To make calculations easier, some of the primary wrench 
model vectors in Table 2 can be set to zero in accordance 
with Hervé's displacement set theory [47].

5  Unified Jacobian–Torsor tolerance model 
organization

The methodology for analyzing tolerances involves five key 
steps. First, it entails establishing the sequence of events 
relevant to the functional requirement or system under 
examination. The second step involves deriving the torsors 
of internal functional elements, which define their degrees 
of freedom, permissible small movements, and constraints. 
Subsequently, obtaining the contact zone torsors constitutes 
the third step. The fourth step employs Jacobian matrices to 
represent the relative positions and orientations of the tor-
sors within the chosen kinematic chain. Finally, the torsor 
and Jacobian are integrated to form a matrix equation, the 
solution of which yields the limits of the functional require-
ments (FR) being analyzed. Figure 1 illustrates the organi-
zational structure of these five steps in the unified J-T model.
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6  Three‑dimensional dimension chain

As mentioned earlier, the proposed approach was applied 
on a cam-clamping device. The cam-clamping device com-
prises two essential elements: firstly, the fixed part repre-
sented by a flange, serving as the assembly’s foundation, and 
secondly, the movable part consisting of an irregular-shaped 
component known as a cam. This movable piece is critical 
to the fastening mechanism and plays an essential role in the 
overall functionality of the assembly.

To achieve the utilization of a unified model, it is cru-
cial to follow a series of important preliminary steps to pre-
cisely define the dimensional specifications related to the 
functional requirements (FR) of the mechanism. The model 
relies on identifying contact surfaces between the various 
components of the mechanism. This identification of sur-
faces is essential for constructing the linkage diagram of the 
mechanism in question. To illustrate these concepts, refer to 
Fig. 2, which represents an assembly consisting of two parts, 
one inserted into the other. This figure also relies on the 
functional requirements (FR), which expresses a requirement 
related to the operation or assembly of the two parts, in order 
to visually represent the various terms involved.

The cam-clamping device, consisting of two different 
parts—1: a fixed part composed of a flange, and 2: a mov-
able part consisting of a complex piece (a cam)—is repre-
sented in Fig. 2 to illustrate the application of the proposed 
tolerance analysis method. The functional requirement (FR) 
represents the variation in the circular clearance between the 
two circular surfaces of the movable part (part 2) and the 
fixed part (part 1) to achieve optimal working performance.

Particulars of the mechanical drawing and critical 
dimensional specifications of the cam-clamping device 
are presented in Fig. 3. A dimensional connection graph 
is constructed around the FR of this assembly after the 
required local coordinate frames have been defined and 
the effective feature surfaces associated with the toler-
ance analysis have been determined. The effective fea-
ture surfaces between the two parts are identified once 
all effective geometric features have been identified and 
local coordinate frames have been defined. This allows 
for the ascertainment of variations in circular displace-
ment between the two circular surfaces, as illustrated in 
Fig. 4. By locating these surfaces, the linkage diagram of 
the associated mechanism can be created, and as Fig. 5 
illustrates, a connection graph of the restraining flange 
mechanism can be built.

Figures 4 and 5 illustrate six impactful geometric fea-
tures associated with the functional requisrement (FR) of 
this assembly. These features include FE0, representing 
the arbitrary shape in relation to the two slots (1–2) of the 
fixed flange. FE1 and FE2 form an internal pair signifying 
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coaxiality relative to the two slots (1–2), collectively referred 
to as FEslo. FE3 characterizes the arbitrary shape of the cam 
concerning the two axes (4–5). FR1 denotes the operational 
clearance between the two slots (1–2) and the two axes (4–5) 
of the cam. FE4 and FE5, functioning as an internal pair, 
denote coaxiality concerning the two axes (4–5) of the cam, 
grouped into a single functional element known as FEaxe

. Lastly, FE6 represents the distance between the axis of 
the outer radius R20 and the two axes (4–5) of the cam, 
respectively.

The resulting kinematic chain contains five internal pairs 
(FE0, FEslo), (FE1, FE2) belonging to the fixed part, ( FE3, 
FEaxe), ( FE4, FE5 ), and ( FE6, FEaxe ) belonging to the mov-
able part, as well as a contact pair ( FEslo, FEaxe).

Note that there are two functional requirements (FR and 
FR1). FR represents the functional clearance under study, 
while FR1 applies between ( FEaxe, FEslo ) and is defined 
by the functional fit H7/g6 of the bore 18+0.018

0.00
 of the fixed 

flange housing and the diameter  18−0.06
−0.017

 of the camshafts.
We assumed that the longitudinal plane and the reference 

points were situated in the middle of the tolerance zone. 

Fig. 1  The five key steps of organizational structure in the unified model (J-T)
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Six torsors are connected in series to form the cumulative 
torsor T3∕0 , which represents the torsor of the difference 
between features FE0 and FE3 . These torsors are Tslo∕0 , 
Taxe∕3, T2∕1 , Taxe∕slo , T4∕5 , T6∕axe . Next, a direction of analysis 
specified along the modest translation displacement nor-
mal to surfaces 0 and 3 of the functional requirements (FR) 
under study must be projected onto these six torsors. From 
each transformation matrix, a rotation matrix and a trans-
lation vector can be constructed, as indicated in Eq. (5). 
Additionally, all surfaces are positioned vertically inside 

the mechanism, which means that their orientation corre-
sponds to that of the tolerance zone. Under these condi-
tions, all 

[
RPTi

]
3×3

 projection matrices are linked to identity 
matrices so that the tolerance zones respect the movement. 
The mathematical specifics for the clamping mechanism’s 
traditional torsors, also known as intermediate torsors, are 
provided in Table 2. Equation (9) comprises six Jacobian 
matrices that describe the geometric and dimensional rela-
tionships between the assembly pairs FR and FE . These 
matrices can be expressed as follows:

(9)FR=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
FE1

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 3

0 −3 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.FE4

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 18

0 −18 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
FE2

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 18

0 −18 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
FE5

∙

.

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 18

0 −18 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
FE3 .

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 −23

0 23 0

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
FE6 .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

[−0.00,0.05]

[0,0]

[−0.00,0.05]

[−0.0026,0.0026]

[0,0]

[−0.0026,0.0026]

⎤⎥⎥⎥⎥⎥⎥⎦
FE1

⎡⎢⎢⎢⎢⎢⎢⎣

[−0.00,0.05]

[0,0]

[−0.00,0.05]

[−0.0033,+0.0033]

[0,0]

[−0.0033,+0.0033]

⎤⎥⎥⎥⎥⎥⎥⎦
FE2

⎡⎢⎢⎢⎢⎢⎢⎣

[0.000,0.018]

[0,0]

[0.000,0.018]

[−0.00127,+0.00127]

[0,0]

[−0.00127,+0.00127]

⎤⎥⎥⎥⎥⎥⎥⎦
EF3

⎡⎢⎢⎢⎢⎢⎢⎣

[0.0175,0.0175]

[0,0]

[−0.0175,+0.0175]

[−0.00175,+0.00175]

[0,0]

[−0.00175,+0.00175]

⎤⎥⎥⎥⎥⎥⎥⎦
FE4

⎡⎢⎢⎢⎢⎢⎢⎣

[−0.017,−0.006]

[0,0]

[−0.017,−0.006]

[−0.0009,+0.0009]

[0,0]

[−0.0009,+0.0009]

⎤⎥⎥⎥⎥⎥⎥⎦
EF5

⎡⎢⎢⎢⎢⎢⎢⎣

[−0.05,+0.05]

[0,0]

[−0.05,+0.05]

[−0.0066,+0.0066]

[0,0]

[−0.0066,+0.0066]

⎤⎥⎥⎥⎥⎥⎥⎦
EF6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In Eq.  (9), the inherent drawback of the presented 
approach is evident—assigning a unique value to each Func-
tional Element (FE) restricts the ability to define uncertainty. 
In the domain of uncertainty analysis, a critical requirement 
is to delineate the limits surrounding the average value, pro-
viding insights into the potential range of the true value and 
the associated confidence level. This necessity has led to the 
recognition of three fundamental approaches for uncertainty 
evaluation on an international scale: the GUM Method, 
Monte Carlo simulation, and the Bayesian method. Despite 
its popularity, the GUM Method, also known as the classi-
cal method, relies on simplistic assumptions in its founda-
tional formulation and exhibits limitations when applied to 
advanced measurement techniques [48–50].

This study employs the bootstrap technique, a Monte 
Carlo simulation method utilizing available data to estimate 
statistic or estimator uncertainty, chosen for its versatile 
features. A notable advantage is its capacity to bypass the 
need for knowledge about the true distribution, making it 
particularly suitable for scenarios with unknown or complex 
distributions.

One of the most well-known applications of the bootstrap 
technique involves estimating the population mean, denoted 
as µ, from a dataset obtained by random sampling from that 
population’s distribution function F [51].

The sample mean is a function of the empirical distribu-
tion function, namely,

where X1 , X2,… ,Xn denote the data. Hence, the bootstrap 
estimator for the population mean, denoted by µ, is the sam-
ple mean X,

(10)� = ∫ xdF(x)

(11)F̂(x) =
1

n

n∑
i=1

I
(
X
i
≤ x

)

Similarly, the bootstrap estimator for a population vari-
ance is the sample variance.

The developed process of integrating the bootstrap tech-
nique into statistical tolerance redesign, alongside the uni-
fied Jacobian–Torsor model, comprises the following steps:

1. Input specified assembly requirements and assign initial 
tolerance values for each functional element based on 
engineering expertise and historical knowledge.

2. Develop the expression for the Jacobian–Torsor model, 
defining small displacement torsor (SDT) matrices and 
corresponding Jacobian matrices.

3. Generate authentic random values for each SDT compo-
nent, adhering to constraints, designated distributions, 
and a defined rejection rate. By extracting the limits of 
each parameter, random values are generated, lever-
aging the normal distribution assumption for all SDT 
components. The use of the Randn function in Matlab 
software facilitates the generation of N = 1000 values. 
Subsequently, the average and standard deviation of 
these values are calculated.

4. The calculated mean of the data is subjected to the boot-
strap process 10,000 times. This involves resampling the 
data with replacement 10,000 times and computing the 
mean during each iteration. For every iteration, 10,000 
samples are randomly chosen, the mean is computed, 
and the process is repeated to obtain 10,000 means. 
These means are then used to establish the confidence 
interval (CI). The choice of CI type, while not heav-
ily impactful due to the central limit theorem, typically 
leans towards the percentile method, recommended for 
its independence from the shape of the distribution. The 
bootstrap process is summarized in Fig. 6.

(12)X = ∫ xdF̂(x) =
1

n

n∑
i=1

X
i

Fig. 2  Detailed assembly for a 
flange mechanism with two FRs
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5. Utilize the Jacobian–Torsor model to calculate actual 
Functional Requirement (FR) values.

6. Analyze FR results statistically, simultaneously quanti-
fying the confidence interval (CI) using bootstrap-gen-
erated means.

7. Compare the calculated FR with the specified FR. If 
misalignment occurs, adjust tolerances based on boot-
strap-generated data. Iterate until convergence with a 
predefined deviation limit.

The meticulous use of the bootstrap technique, assign-
ing normal distributions to each functional element, ensures 
comprehensive uncertainty analysis. Subsequently, the mean 
undergoes the bootstrap process 10,000 times, facilitating the 
establishment of a confidence interval. This approach offers a 
robust and flexible method for uncertainty analysis, particu-
larly valuable for dealing with complex or unknown distribu-
tions. The integrated process aligns with an iterative synthesis 

Part 1

Part 2 

Fig. 3  Mechanical drawing and critical dimensional specifications of the cam-clamping device
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Fig. 4  Contact surfaces and FR of a mechanism

Fig. 5  Connection graph of mechanism
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methodology, supporting engineers in selecting optimized tol-
erances for mechanical assemblies.

Table 3, presents a comprehensive analysis of tolerance 
parameters for various Functional Elements (FE) in a system. 
Parameters such as  u1 and  u2 exhibit symmetrical distribu-
tions within specified tolerance limits, showcasing precise 
and consistent values around the averages. The low standard 
deviation and narrow confidence intervals indicate high con-
trol and stability. Similarly,  u3 demonstrates a narrow tolerance 
range with a remarkably low standard deviation, emphasizing 
a highly controlled and consistent parameter.  u4 and  u6 have 
averages precisely at the midpoint of their tolerance limits, 
with  u4 showing stability and  u6 having a wider dispersion. 
 u5, with a negative average, exhibits a well-defined and nar-
row confidence interval, indicating consistent deviation within 
specified limits. Overall, the bootstrap standard deviation and 
confidence intervals provide valuable insights into the preci-
sion and consistency of each parameter, highlighting effective 
control within their respective tolerance constraints.

The functional requirement in direction X can be calcu-
lated as

According to Ghie [2009] [4], the dispersion can be cal-
culated as

The functional requirement with uncertainty ( FRu ), 
derived through statistical analysis, is determined as:

To enhance the reliability of this result, the mean and 
standard deviation of FRu undergo a thorough bootstrap 

(13)
FRc = 0.025 + 0.025 + 0.009 + 0 − 0.0385 + 0 = 0.0205

(14)�FRc =

6�
i=1

�i√
N

=
�1 + �2 + �3 + �4 + �5 + �6√

N

�FRc =
0.0015 + 0.0015 + 5.63 × 10

−4 + 0.0011 + 0.0014 + 0.0032√
10000

�FRc = 9.26 × 10
−5

FRu = 0.0205 ± 9.26 × 10
−5

Fig. 6  Bootstrap process for SDT components
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process through 10,000 iterations, resulting in a comprehen-
sive confidence interval (CI) illustrated in Fig. 7. Employing 
a large sample size in this statistical distribution process 
ensures conformance to a normal distribution, as visually 

represented in the same figure. It is important to emphasize 
that a specified rejection rate of 5% has been consistently 
applied throughout these calculations.

Table 3  Summary of the bootstrap confidence interval and the bootstrap distribution for the mean of each functional element

FE Tolerance 

limits

Average Bootstrap 

Standard 

deviation

95% bootstrap 

confidence 

interval

Bootstrap distribution

[0.0, 0.05] 0.025 0.0015 [0.022, 0.028]

[0.0, 0.05] 0.025 0.0015 [0.022, 0.028]

[0.0, 0.018] 0.009 [0.0077, 0.0099]

[-

0.0175,0.0175]

0 0.0011 [-0.0024, 0.0019]

[-0.006, -

0.017]

-0.0385 0.0014 [-0.0409, -0.0354]

[-0.05, 0.05] 0 0.0032 [-0.0062, 0.0065]
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The resulting confidence interval, graphically depicted 
in Fig. 6, showcases the range within which the true value 
of FRu is likely to fall based on statistical considerations.

To evaluate the effectiveness of the chosen method, a 
comparative study was conducted using four techniques: 
bootstrap, stratified sampling, Bayesian statistics, and the 
analytical method. This analysis aimed to identify the most 
suitable approach for managing uncertainties in our data, 
considering not only the mean and confidence intervals but 
also additional statistical moments such as standard devia-
tion and the proportion of non-conformance (P(NC)). The 
results are summarized in Table 4 and visually represented 
in Fig. 8.

Results show that, all four methods yielded nearly identi-
cal means (approximately 28.218) and confidence intervals, 
demonstrating a high level of consistency. The confidence 
intervals are also very similar, ranging from approximately 
28.173 to 28.264, which indicates that each method can 

Fig. 7  Bootstrap simulation applied to functional requirement FR

Table 4  Summary of statistical analysis methods

Method Mean CI_Lower CI_Upper Std_Dev P(NC) Best use case

Bootstrap 28.218 28.173 28.264 8.503 0.160 Small/complex datasets, unknown distribution
Stratified sampling 28.217 28.173 28.262 8.501 0.161 Heterogeneous populations with well-defined strata
Bayesian statistics 28.218 28.174 28.262 8.504 0.160 Incorporating prior knowledge, iterative updates
Analytical method 28.218 28.174 28.262 8.500 0.160 Large datasets with known distributions

Fig. 8  Comparison of histogram distributions for different statistical analysis methods
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estimate the central tendency with similar precision. This 
consistency is clearly illustrated in Fig. 8 and Table 4.

The standard deviation (Std_Dev) is another important 
metric, reflecting data variability. The standard deviations 
for the methods are very close, around 8.5, suggesting that 
all methods capture the data’s variability effectively. The 
slight variations in Std_Dev highlight how each method 
manages sample fluctuations, which is depicted in the 
figure.

The proportion of non-conformance measures the likeli-
hood that a product fails to meet specifications. The P(NC) 
values are almost identical across all methods, around 
0.160. This uniformity indicates that each method is 
equally effective in predicting defect likelihoods or devia-
tions from desired specifications, as shown in the figure.

Each method has specific scenarios where it excels:

• Bootstrap is particularly beneficial for small or complex 
datasets where the underlying distribution is unknown. 
Its flexibility and non-parametric nature make it highly 
adaptable.

• Stratified sampling is optimal for heterogeneous popu-
lations with well-defined strata, ensuring appropriate 
representation of each subgroup and enhancing estimate 
precision.

• Bayesian statistics is ideal when prior knowledge is avail-
able and iterative updates are necessary, allowing for the 
incorporation of previous information to improve predic-
tion accuracy.

• Analytical method is suitable for large datasets with 
known distributions, requiring fewer computational 
resources and providing quick, reliable estimates when 
the underlying distribution is well understood.

Despite the similar results in terms of mean, confidence 
intervals, standard deviation, and proportion of non-con-
formance across all four methods, the Bootstrap method 
stands out for its flexibility and suitability for small or 
complex datasets with unknown distributions. Its non-
parametric nature and ability to handle diverse data sce-
narios make it a strong candidate for tolerance analysis in 
manufacturing processes.

Given these metrics and the specific applications for 
each method, the bootstrap method emerges as the most 
effective choice for this context. It offers both reliability 
and adaptability in managing the uncertainties inherent in 
the manufacturing of cam-clamping devices.

Conclusively, after an extensive series of calculations 
and analyses, the dimensions and tolerances depicted 
in Fig. 3 underwent a meticulous update. Subsequently, 
each component was precisely machined utilizing a CNC 
machine tool, ensuring the accurate implementation of the 
refined specifications. The various machined parts were 
systematically assembled to construct the final cam-clamp-
ing device, a culmination of the rigorous engineering and 
precision adjustments made during the tolerance redesign 
process. The resulting assembled cam-clamping device, 
showcased in Fig. 9, stands as a tangible embodiment of 
the iterative synthesis methodology applied to achieve 
optimal tolerances. This visual representation not only 
underscores the successful implementation of the refined 
specifications but also serves as a testament to the effec-
tiveness of the integrated approach, harmonizing the uni-
fied Jacobian–Torsor model with Monte Carlo simulation 
and the bootstrap technique.

7  Conclusion

In the design phase, precise tolerance analysis is essential 
for ensuring that components meet geometric and dimen-
sional constraints, thereby optimizing performance and 
achieving quality standards efficiently. This study intro-
duces a novel approach to precision engineering through 
the integration of the unified Jacobian–Torsor model with 
Monte Carlo simulation and the Bootstrap technique.

A comparative evaluation of four statistical methods—
bootstrap, stratified sampling, Bayesian statistics, and the 
analytical method—demonstrates that while all methods 
yield similar means, confidence intervals, and standard 
deviations, the bootstrap technique emerges as particularly 
advantageous. With nearly identical results across meth-
ods, the bootstrap technique’s flexibility and non-paramet-
ric nature make it especially suited for handling small or 
complex datasets with unknown distributions.

Fig. 9  Fabricated cam-clamping device



2335The International Journal of Advanced Manufacturing Technology (2024) 134:2319–2336 

The application of this integrated methodology to a 
cam-clamping device illustrates its practical efficacy. 
By refining and updating dimensions and tolerances 
through iterative statistical analysis, this approach not 
only achieves optimal tolerances but also highlights the 
importance of uncertainty management in precision engi-
neering. This study advances the field of statistical tol-
erance redesign and provides a valuable framework for 
design engineers seeking to optimize tolerances in com-
plex mechanical assemblies. The successful application in 
real-world scenarios attests to the approach’s robustness 
and practical utility in manufacturing processes.
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