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Abstract
Automated Storage and Retrieval System (AS/RS) is driven by multiple motors for loading and unloading the items (z-axis) 
onto the fork or stacker, then moving the items horizontally (x-axis) and vertically (y-axis) at a time. Thus, it is practical to 
determine the speed configuration for each movement. To be responsive, it is reasonable to set the speed as fast as possible. 
However, high speed leads to high energy consumption which is undesirable in the context of green warehousing. Given that 
the speed changes dynamically, it is important to have an advanced optimization model for balancing both objectives and 
providing accurate estimation. This study proposed metamodel-based simulation–optimization (MSO) allowing to jointly 
optimize four speed-related variables namely horizontal speed (x), vertical speed (y), fork or depth speed (z), and acceleration/
deceleration under the dynamicity of AS/RS. A case study was given in a warehouse comprising five cranes and ten racks. 
Using Desirability Function Analysis, the optimal speed configuration is obtained efficiently for minimizing travel time and 
energy consumption of AS/RS. The result also shows that row-based storage provides better responsiveness and energy effi-
ciency than random-based storage. Further, rack design also indicates a significant impact on the AS/RS speed configuration.

Keywords AS/RS · Energy efficiency · Optimization · Simulation · Speed configuration

1 Introduction

The use of Automated Storage and Retrieval System (AS/
RS) in modern and smart warehouses holds a vital role in bet-
ter use of space, accuracy, and efficient picking and replen-
ishment processes [1]. Besides the operational advantages, 
AS/RS also offers safety such as resistance to earthquakes, 
avoidance of product damage, and enhanced occupational 
health of laborers [2]. Thus, AS/RS has gained popularity, 
especially in the current growth of e-commerce and the need 
for urban logistics [3]. Global e-commerce also has shifted 
customer behavior where responsiveness is a key for busi-
ness competition [4]. In the context of AS/RS, it has a direct 
relation with travel time. At the same time, the need for green 

warehouses is also necessary right now due to global warm-
ing [5], whereas, AS/RS consumes a lot of energy to move 
and load heavy items [6]. Thus, AS/RS should be designed 
as responsive as possible towards energy efficiency which 
strongly affects operational cost and emission.

The trade-off between responsiveness and energy effi-
ciency becomes clearer in AS/RS where speed configura-
tion plays a key role function. AS/RS speed drives the overall 
movement velocity in AS/RS including vertical movement, 
horizontal movement, loading, and unloading, where the 
speed changes dynamically due to acceleration and decel-
eration. The speed needs to be set as fast as possible for being 
responsive, but high speed leads to high energy consump-
tion. Due to the variety of movements, this leads to multi-
speed configuration problem which is quite complex amidst 
trade-off objectives. Further, due to the complexity of AS/
RS operation and dynamic nature of warehouse environment, 
optimizing the multi-speed AS/RS can be complicated [7].

Most prior researches assumed AS/RS to move at constant 
speeds, neglecting the acceleration and deceleration in real-
ity [8]. It is in line with the approach used namely analytical 
model for AS/RS [9] where the linearity plays an impor-
tant property. However, the acceleration and deceleration 
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significantly influence AS/RS performance [10], whereas, 
neglecting practical application of AS/RS due to simplifi-
cations and assumptions can result to bias and inaccurate 
representation of real-world AS/RS operations [11]. Further-
more, most previous studies in AS/RS considered only speed 
for horizontal (x) and vertical (y) directions [8, 9] without 
considering depth (z) direction that is done by fork of AS/RS 
which can influence the loading/unloading process. In fact, 
each direction can have different motors resulting in different 
speed configuration leading to significantly different overall 
performance. Thus, there is a need of optimization frame-
work for multi-speed configuration by balancing the energy 
efficiency and responsiveness of AS/RS.

This study aims to develop a near optimal and practical 
multi-speed configuration model for green AS/RS, enhanc-
ing accuracy and alignment with real-world AS/RS opera-
tions. A Metamodel-based Simulation–Optimization (MSO) 
framework is proposed and built through the factorial design 
experiments as a decision-making tool. Compared to general 
simulation–optimization method such as Simheuristics, MSO 
emphasizes on computational efficiency of global optimiza-
tion process due to metamodel built while still considering the 
dynamicity, complexity, and uncertainty captured from simu-
lation experiments. Further, the conflicting objectives are uni-
fied through composite Desirability Function Analysis (DFA) 
enabling to solve the trade-off. To the best of our knowledge, 
there is no previous study investigating the influence of AS/
RS multi-speed configuration on responsiveness and energy 
consumption. The proposed optimization framework and the 
experimental results are expected to provide useful method 
and practical information for researchers and practitioners. 
This issue is particularly relevant since speed configuration 
has taken place at the strategic level of any material handling 
systems, specifically with the effort to maintain customer sat-
isfaction towards green warehousing.

The remainder of this study is organized as follows. In 
Section 2, the literature review regarding the AS/RS speed, 
including their modeling techniques, is reviewed to gener-
ate the state of the art of this study. In Section 3, the pro-
posed methodology to optimize for multi-speed AS/RS 
is explained in detail. In Section 4, the process of AS/RS 
simulation modeling is outlined allowing for experimenting 
different speed of AS/RS. In Section 5, MSO with DFA was 
performed under specific case study. Finally, conclusion and 
future directions are given in Section 6.

2  Literature review

AS/RS offers flexibility in its operations with various com-
plex decisions [7, 9]. Each decision is applied through com-
puter-controlled programs in the Warehouse Management 
System (WMS) such that AS/RS can load, unload, and move 

both horizontally and vertically served by the S/R machine 
working in the middle of the racks [8]. Thus, speed determi-
nation in AS/RS plays an important role since it drives the 
overall movement velocity. AS/RS speed generally denotes 
the maximum speed of each movement, including vertical, 
horizontal, and loading/unloading, where the speed changes 
dynamically due to acceleration and deceleration. Further-
more, proper configuration of these parameters is crucial, 
particularly when prioritizing the consideration of AS/RS 
energy consumption [12] and responsiveness, e.g., travel 
time [13].

There are very limited studies investigating the speed 
configuration of AS/RS in the literature. While most pre-
vious studies assumed constant speed, the study by [14] 
proposed a travel-time model for AS/RS that took into 
account real-world speed profiles under random-based 
storage assignment. Continuing this research, a subsequent 
study proposed an analytical model by considering accel-
eration and deceleration with different speed profiles and 
command cycle type under class-based and full-turn-over-
based storage focusing on travel time [10]. Another study 
proposed an AS/RS travel time model with random stor-
age under different speeds with the focus on optimizing 
storage rack design [11]. Most other studies have focused 
on storage assignment [15], dwell-point positioning [16], 
physical design [17], and scheduling [18] with maximum 
speed given. This is reasonably clear if the research objec-
tive only studies the time-related performances such as 
travel time [19] and response time [20]. However, in the 
context of green-related performances, speed becomes an 
important decision factor consuming energy. Thus, speed 
configuration plays a key role in balancing energy and 
responsiveness of AS/RS.

In the context of AS/RS modeling, many previous stud-
ies developed a mathematical model to estimate the AS/RS 
travel time as performance evaluation [21, 22]. Regardless 
of inherent strict assumptions, analytical models allow for 
reaching travel time optimality [9]. However, the static and 
certain condition assumptions lead to impracticality of AS/
RS real-world applications [9]. Thus, a simulation model 
has been applied to evaluate AS/RS performance with the 
flexibility performance measures under uncertainties [23, 
24]. Despite the advantages of a simulation model, reaching 
optimality with a simulation-based experiment is a tedious 
task [25]. Therefore, a simulation–optimization (SO) has 
been proposed for efficient sampling schemes in optimizing 
a stochastic system via simulation with highly complex and 
non-linear characteristics [26]. Several studies have success-
fully used SO by integrating simulation with metaheuristics 
for AS/RS optimization such as Ant Colony Optimization 
(ACO) for request sequencing [27], Genetic Algorithm (GA) 
for storage assignment [15], and Whale Optimization Algo-
rithm (WOA) for scheduling [18]. However, this approach 
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can be computationally expensive when a direct simulation 
evaluation is used extensively especially if the search space 
is too large and the probability to stuck on local optimal is 
high.

Instead of using simulation with a direct evaluation 
extensively, a MSO methodology has been proposed [28]. 
In this context, a metamodel or a surrogate model is an 
abstraction form of the simulation model that has explicit 
form, deterministic output, and affordable computation 
to evaluate [29]. The metamodel is also transferable and 
understandable from a practical point of view when it is 
built through a regression model [30]. In AS/RS litera-
ture, there is one previous study that has used simulation 
metamodeling to measure the energy demand of AS/RS 
without performing optimization [17]. However, MSO has 
been successfully used in different material handling sys-
tems such as Automated Guided Vehicle (AGV) [31] and 
semiconductor manufacturing Automated Material Han-
dling System (AMHS) [32].

Potrč et. al. [33] introduced simulation-based travel 
time models for AS/RS with a randomized storage assign-
ment, considering single and multi-shuttle systems. This 
research implements “Strategy x” in establishing the 
relationship between average travel times and throughput 
capacity across various high storage racks and velocity 
profiles of the S/R machines. In 2014, Lerher et al. [34] 
introduced a mathematical model for energy efficiency of 
mini-load AS/RS under randomized storage assignment 
and adjacent I/O point. The model took into account fac-
tors such as total travel time, throughput capacity, engine 
power, energy consumption, and  CO2 emissions. The deci-
sion factors in the model were the velocity profile includ-
ing horizontal speed, vertical speeds, and acceleration/

deceleration, the mass of AS/RS, and hoisted carriage. 
This research concluded that higher AS/RS velocity 
resulted in higher energy consumption and  CO2 emissions.

Finally, the related works are summarized and compared 
with this study according to some protocols such as the 
AS/RS performance, multi-speed variables considered, 
the approaches used, and the settings of Input/Output (I/O) 
point and storage assignment. The related works are sum-
marized as presented in Table 1. In essence, most of previ-
ous studies have considered a variety of speeds in AS/RS, 
but they set them as fixed values, instead of investigating 
the multi-speed configuration as the decision point. Thus, 
there is no clear information for logistics or warehouse 
managers on optimally setting the AS/RS speed for each 
movement. Apart from that, only a few studies consider the 
green aspect in AS/RS. In this study, energy consumption 
is considered one of the objectives towards sustainability. 
Further, the trade-off between energy and responsiveness 
is also studied. In terms of approach, some studies have 
utilized SO in AS/RS applications, but this study enhances 
the use of SO by utilizing metamodel with DFA such that 
efficiency and optimality can be reached amidst the trade-
off performances.

3  Methodology

This study consists of three main stages as an effort to 
fully optimize the multi-speed configuration of AS/RS as 
presented in Fig. 1. The detailed explanation is described 
point-by-point as follows.

Table 1  Related works considering AS/RS multi-speed configuration

Hor. horizontal speed, Ver. vertical speed, Acc./Dec. acceleration and deceleration

Done by Performance Multi-speed variables Approach Decision point(s)

Energy Respon-
siveness

Hori-
zontal 
(x)

Vertical (y) Fork (z) Acc./dec

[15] ✓ - ✓ ✓ - - SO Storage Assignment
[10] - ✓ ✓ ✓ - ✓ Analytical Command Cycle, Hor., Ver
[11] - ✓ ✓ ✓ - ✓ Analytical Rack Design, Hor., Ver
[14] - ✓ ✓ ✓ ✓ Analytical Hor., Ver., Acc./Dec
[17] ✓ - ✓ ✓ - ✓ MSO Physical Design
[18] ✓ - ✓ ✓ ✓ ✓ SO Scheduling
[27] ✓ - ✓ ✓ - - Heuristics Request Sequencing
[33] - ✓ ✓ ✓ - ✓ Simulation Rack Design, Hor., Ver., Acc./Dec
[34] ✓ ✓ ✓ ✓ - ✓ Analytical Hor., Ver., Acc./Dec., Mass, Hoisted Carriage
Our ✓ ✓ ✓ ✓ ✓ ✓ MSO-DFA Multi-speed and storage assignment
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3.1  Simulation modeling and performance 
formulation stage

First, the real system of AS/RS should be modeled via com-
puter simulation model. Using discrete-event simulation, 
the complexity, dynamicity, and uncertainty of AS/RS can 
be considered which can lead to accuracy and practicality 
of the model. Then, simulation model passes the verifica-
tion and α validation processes, ensuring that the simulation 
model represents the real system without error recognized. 
The credible simulation model was then used for experi-
ment. Given that AS/RS can move in different axes, i.e. hori-
zontal (x), vertical (y), and depth by fork (z), each axis is 
driven by different motors. Thus, it is important to determine 
the maximum speed for each. Further, each speed changes 
dynamically based on acceleration and deceleration vari-
able. Thus, in this study, the four factors representing AS/
RS multi-speed configuration are considered namely accel-
eration and deceleration which are seen as the same factor, 
horizontal speed for horizontal movement, vertical speed for 
vertical movement, and fork speed for loading and unloading 
movements, as shown in Fig. 2.

This stage also includes to formulate mathematical 
models for measuring two conflicting objectives namely 
travel time per unit ( TT  ) and total energy consumption 
(EC). The expected TT can be measured through Eq. 1, 

where TTL is the time for traveling loaded, TTE is the 
time for traveling empty, TL is the loading time, TU is the 
unloading time, and N  represents the total throughput or 
requests fulfilled, both storage and retrieval tasks.

For expected EC, it is measured based on force and work 
principles. A recent study [35] provides detail explanation 
where each AS/RS movement has specific energy consump-
tion. However, it still lacks on considering comprehensive 
mass of AS/RS where only masses of shuttle and item are con-
sidered. In fact, different AS/RS movement will lift different 
part of AS/RS which can lead to different mass as presented 
in Fig. 3 comprising crane for horizontal movement, shuttle 
for vertical movement, fork for loading and unloading, and 
item loaded by fork. This study improves the previous energy 
consumption formulation by providing a more accurate cal-
culation. Table 2 shows the nomenclature for EC formulation, 
and Eq. 2 provides a formula for calculating EC in kilojoules 
(kJ). It includes five components related to AS/RS movement: 
horizontal movement energy (EMH) , vertical upward move-
ment energy (EMVU) , vertical downward movement energy 
(EMVD) , loading energy with items (EL) , and unloading energy 
without items (EU) , presented in Eqs. 3–7, respectively. When 
AS/RS moves horizontally, it lifts all masses of AS/RS. When 

(1)Min �[TT] =
TTL + TTE + TL + TU

N

Fig. 1  Generic process of AS/
RS metamodel-based simula-
tion–optimization
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AS/RS moves vertically only, it lifts all masses except for 
crane. When AS/RS loads or unloads, it lifts only fork and 
item loaded. Additionally, it is crucial to look whether each 
movement reaches maximum velocity or not. If the maximum 
velocity ( Vtop = Vmax ) is reached, energy is needed for accel-
eration, steady state, and deceleration. Otherwise, steady-state 
energy is not considered. All equations are finally embedded 
in the simulation program.

(2)
Min �[EC] =

1

1000

∑N

n=1
(E

MH(
n)

+ E
MVU(

n) + E
MVD(

n) + 2E
OI(

n) + 2E
OE(

n))

Fig. 2  AS/RS multi-speed 
configuration framework

Fig. 3  Different masses (m) of AS/RS

Table 2  Nomenclature for AS/RS energy consumption formulation

○ mit = Mass of item (kilogram or kg)  
○ mcr = Mass of crane or vehicle (kg)  
○ mshu = Mass of shuttle (kg)  
○ mfr = Mass of fork (kg)  
○ t

1
= Time needed in acceleration∕decceleration (s)  

○�cr = Efficiency of crane

○ �shu = Efficiency of shuttle

○ �fr = Efficiency of fork

○ frc = Resistance factor of crane

○ frs = Resistance factor of shuttle

○ frf = Resistance factor of fork

○�fc = Friction coefficient of crane

○ �fs = Friction coefficient of shuttle

○ 
�ff = Friction coefficient of fork

○ 
g = Gravitational constant

(

m

s2

)

○ 
a = Acceleration and decceleration (

m

s2
)

○ 
Vhmax = Maximum horizontal speed

(

m

s

)

○ Vvmax = Maximum vertical speed
(

m

s

)

○ Vfmax = Maximum fork speed
(

m

s

)

○ Vhtop = Last speed reached of horizontal movement
(

m

s

)

○ Vvtop = Last speed reached of vertical movement
(

m

s

)

○Vftop = Last speed reached of fork movement
(

m

s

)
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(3)EMH =

⎧

⎪

⎨

⎪

⎩

Vhtop < Vhmax;(mit + mfr + mshu + mcr)
�

(afrc + g𝜇fc)
Vhtopt1

𝜂cr

+ (afrc − gμfc)
Vhtopt1

𝜂cr

�

Vhtop = Vhmax;(mit + mfr + mshu + mcr)
�

(afrc + g𝜇fc)
Vhtopt1

𝜂cr

+ (afrc − gμfc)
Vhtopt1

𝜂cr

+ g𝜇fc

Vhmaxt2

𝜂cr

�

(4)

EVU =

⎧

⎪

⎨

⎪

⎩

Vvtop < Vvmax;(mit + mfr + mshu)
�

2(afrs + g)
Vvtopt1

𝜂shu

�

Vvtop = Vvmax;(mit + mfr + mshu)
�

2(afrs + g)
Vvtopt1

𝜂shu

+ g
Vvmaxt2

𝜂shu

�

(5)

EVD =

⎧

⎪

⎨

⎪

⎩

Vvtop < Vvmax;(mit + mfr + mshu)
�

2(afrs)
Vvtopt1

𝜂shu

�

Vvtop = Vvmax;(mit + mfr + mshu)
�

2(afrs)
Vvtopt1

𝜂shu

+ gμfs
Vvmaxt2

𝜂shu

�

(6)EL =

⎧

⎪

⎨

⎪

⎩

Vshutop < Vshumax;(mit + mfr)
�

(afrf + g𝜇ff )
Vftopt1

𝜂fr

+ (afrf − g𝜇ff )
Vftopt1

𝜂fr

�

Vshutop = Vshumax;(mit + mfr)
�

(afrf + g𝜇ff )
Vftopt1

𝜂fr

+ (afrf − g𝜇ff )
Vftopt1

𝜂fr

+ g𝜇ff

Vfmaxt2

𝜂fr

�

(7)EU =

⎧

⎪

⎨

⎪

⎩

Vshutop < Vshumax;(mfr)
�

(afrf + g𝜇ff )
Vftopt1

𝜂fr

+ (afrf − g𝜇ff )
Vftopt1

𝜂fr

�

Vshutop = Vshumax;(mfr)
�

(afrf + g𝜇ff )
Vftopt1

𝜂fr

+ (afrf − g𝜇ff )
Vftopt1

𝜂fr

+ g𝜇ff

Vfmaxt2

𝜂fr

�

3.2  Metamodeling stage

Given the set of the inputs of decision factors and the set 
of outputs of objective functions or performance measures 
from previous simulation-based experiment, regression-
based metamodel is then developed with second-degree 
polynomial and two-interaction term for each performance 
measure ( yo ) considered. The generic form is shown in Eq. 8 
where �

0
 is a constant term, �i is the main effect of factor i, 

�ij is the interaction effect of factor i and j, �i2 is the quadratic 
effect of factor i, and k is number of factors considered. This 
metamodel is significantly more efficient for optimization 
purpose without requiring expensive simulation evalua-
tion, allowing to explore the global optimization for mul-
tiple decision factors. Further, the white-box form allows 
for transparency and flexibility. The metamodel accuracy 
is assessed through statistical test, i.e., analysis of variance 
(ANOVA) to see the significancy of main and interaction 
effects among all factors. Thus, the insignificant variables 
can be taken out from the metamodel. Finally, legitimize the 
developed metamodel against simulation result via β vali-
dation which measures the mean absolute percentage error 
(MAPE) as presented in Eq. 9 where yS is the yield of simu-
lation, yM is the yield of metamodel, and n is the number of 
data being compared.

3.3  Metamodel‑based simulation–optimization 
stage

The valid metamodel is then used to perform optimization 
by first unifying all conflicting objectives into single objec-
tive via desirability function analysis (DFA). DFA aims to 
find the best solution by maximizing desirability score (D) 
[36]. In order to calculate D, each yo is first transformed 
into individual desirability function (do

(

yo
)

) . For minimiza-
tion objective, Eq. 10 is used as a transformer where To is a 
small enough value for the objective o, so is a weight, and 
Uo is the desired upper value. This transformation implies 
that if yo is entirely undesirable, then do

(

yo
)

= 0 . Otherwise, 
do
(

yo
)

= 1 representing the perfect value. Finally, unification 
for each do

(

yo
)

 is done by the geometric mean represented 
in Eq. 11 where l is the number of objectives which can be 
optimized as a maximization problem.

(8)yo = �
0
+

k
∑

i=1

�ixi +

k
∑

i=1

k
∑

j=1

�ijxixj +

k
∑

i=1

�i2x
2

i

(9)MAPE =
1

N

N
∑

n=1

|

|

yS − yM
|

|

yS
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4  Simulation‑based experiment 
and discussion

4.1  Case description and experimental design

The warehouse system given by [35] is adopted as a case 
study. There are five aisles in the warehouse, each con-
trolled by one unit-load AS/RS. Each aisle is located in 
the middle of two racks. Thus, it contains ten single-deep 
racks, each with 40 columns and six layers, totaling 240 
cells per rack. Each AS/RS is dedicated to handle two 
racks. Entering products are delivered to the warehouse 
via conveyor. AS/RS can move vertically and horizontally 
simultaneously, following a Chebyshev distance. Only one 
unit load or pallet can be transported at a time for retrieval 
or storage or single batching. There are 20 different prod-
uct types considered, with turnover rates uniformly dis-
tributed and each product having different weights. Each 
rack stores two different product types, one light and one 
heavy. There is no weight constraint in the racks, only a 
slot space constraint. For AS/RS setting, a hybrid cycle is 
used. Request Sequencing follows First Come First Serve 
(FCFS) rule. Dwell Point Positioning is based on the last-
visited. Input and Output configuration is opposite or two-
side docking.

Design of Experiment (DoE) was shown in Table 3. It 
can be seen that all four factors related to speed variables 
are in the form of continuous values which the ranges are 
different depending on the speed type. Practically speak-
ing, horizontal speed can reach higher maximum speed 
among others, followed by vertical, and fork speeds, while 
acceleration and deceleration are generally set the same. 
In addition to multi-speed variables, storage assignment 

(10)do
�

yo
�

=

⎧

⎪

⎨

⎪

⎩

1.0 if yo(x) < To
�

yo(x)Uo

To−Uo

�so
if To ≤ yo(x) ≤ Uo

0 if yo(x) > Uo

(11)D =
k

√

(d
1

(

y
1

)

∗ ... ∗ dl
(

yl
)

)

is also included to learn the impact of different storage 
methods. Using full factorial design principle, there will 
be 108 scenarios.

4.2  Simulation model construction

Since the focus of this study is for configuring AS/RS multi-
speed, the logical process of how AS/RS configure differ-
ent speed is shown in Figure 4. It can be seen that when 
request is arrived, either storage or retrieval, it is important 
to assess the distance measuring different positions of AS/
RS and the request location whether it differs horizontally 
only, vertically only, or both. This is particularly relevant 
because AS/RS’s moves are driven by different motors and 
AS/RS can move horizontally and vertically at a time fol-
lowing Chebyshev metric. After it has been determined, 
AS/RS starts to move in empty loaded. If the distance is 
quite far, AS/RS performs acceleration first until it reaches 
maximum velocity, then moving in steady-state speed, and 
finally deceleration until it stop. If the distance is close, AS/
RS performs acceleration first; before it reaches maximum 
speed, deceleration is performed directly. Then, the load-
ing process is performed where the speed depends on fork 
speed. Afterwards, similar idea is used to deliver request to 
the desired location with additional mass due to item loaded. 
Finally, the unloading process is done. This logical process 
is embedded in simulation software.

In this study, FlexSim as discrete-event simulation soft-
ware is used. The simulation model is built under two dif-
ferent setting namely random-based storage and row-based 
class assignment as shown in Fig. 5, respectively. It can be 
noticed that the item placement is totally different. Any 
request whether storage (supply) or retrieval (demand) is 
generated randomly under normal distribution with mean 
19 and standard deviation 4 in second unit, representing the 
real situation where both variables are uncertain. For ini-
tialization phase, it is programmed so that the states are in 
a steady-state condition, instead of performing warming up 
for efficiency purpose. It can be done by directly generating 
products, tasks, and AS/RS locations in the warehouse ran-
domly under specific policy used. To maintain the availabil-
ity of products in warehouse, capacity maintenance rule is 
applied instead of adopting certain inventory control which 
can avoid stockout and overstock in the warehouse, leading 

Table 3  Experimental design Factors Variable type Level Values Unit

Max. horizontal speed Continuous 3 {1, 2.5, 4} m/s
Max. vertical speed Continuous 3 {1, 2, 3} m/s
Max. fork speed Continuous 3 {1, 1.5, 2} m/s
Acceleration and deceleration Continuous 2 {0.5, 1} m/s2

Storage assignment Discrete 2 {Random, Class} -
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Fig. 4  Logical process of multi-
speed configuration
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Fig. 5  Simulation model under 
different storage assignment

(a) Row-based Storage (b) Random-based Storage

Fig. 6  Programming of AS/RS speed configurations in FlexSim software
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to unbiased assessment [35]. For transparency purpose, the 
programming showing how AS/RS is configured in terms 
of multi-speed is presented in Fig. 6. It can be seen that all 
speed-related variables are stored in Global Table first which 
link with simulation experiment control. These variables are 
updated whenever AS/RS is reset by using “setProperty” 
function. The corresponding variable is also used in energy 
consumption formulation which is embedded in Process 
Flow, corresponding to AS/RS movement. In Fig. 6, it shows 
for measuring energy consumption in vertical movement 
which only considers the masses of item, fork, and shuttle.

After developing the simulation model, validation and 
verification were conducted to ensure its accuracy in rep-
resenting the real system without any programming errors. 
Verification involved a structured walk-through-based 
debugging process. For validation, two techniques were 
used. Firstly, animation was employed to visually inspect 
the operational behavior in the model step-by-step [37]. 
Secondly, extreme conditions were tested to observe the 
model’s behavior and output under extreme inputs [38]. 
The study compared system utilization by varying the 
number of requests under normal and extreme conditions, 
expecting that AS/RS states would be extremely higher with 
extremely higher number of requests. Verification confirmed 
the absence of errors or exceptions in the simulation pro-
gram. Validation through animation confirmed that the AS/
RS moved logically based on predetermined logic and entity 
flow was tracked accurately. The model also performed as 
expected under extreme conditions. Therefore, the simula-
tion model was considered verified and validated.

4.3  Metamodel‑based optimization results 
and discussion

Since we cope with stochastic simulation in order to con-
sider request arrival uncertainties, each scenario is evaluated 
under ten independent replications and average value will 
be taken as expected objectives. The warehouse is simu-
lated for eight operating hours. These output data will be 
used to create the meta-model. Common Random Number 
(CRN) principle is applied for reducing variance between 

scenario. All parameters needed are summarized in Table 4 
where some values are adopted from the literature [35] and 
some are from the observation. For convenient purpose, the 
experimental result is classified into two groups based on the 
storage assignment used.

4.3.1  Random‑based storage

The second-order regression-based metamodels are first 
developed for both objectives in random-based storage set-
ting and later for row-based storage. The metamodels for 
energy consumption (EC) and travel time (TT) are shown 
in Eqs. 12 and 13, respectively, where HS represents hori-
zontal speed, VS represents vertical speed, FS represents 
fork (depth) speed, and AD represents acceleration and 
deceleration. The feature selection has been done through 
backward stepwise selection with minimum α = 0.05 while 
always maintaining the basic single variables for assessing 
their impacts. These white-box models have good perfor-
mance indicated by high Predicted R2 namely 99.46% for EC 
and 99.92% for TT. The β validation is done by calculating 
MAPE on 15 unseen data that are randomly selected. The 
obtained MAPE is 4.5% for EC and 3.1% for TT. The model 
is considered to be accurate once the MAPE is less than 5% 
[39]. Thus, the metamodels are considered to be valid. The 
analysis of variance (ANOVA) showing the significancy of 
each variable is presented in Appendix Table 5.

Based on the metamodel built, the response surface can 
be plotted and visualized in Fig. 7a, b for energy consump-
tion and travel time, respectively. It can be seen that the non-
linear relationship appears for both objectives. The positive 
trend is given by the energy consumption which is clearly 
caused by the faster motors move leading to the higher 
energy consumption, whereas, the negative trend is given 
by travel time. This validates that a very fast AS/RS speed 
indeed results in the shorter travel time, but it comes with 
high energy consumption. The interesting result is shown by 
the impact of horizontal speed to travel time. Within around 
1 to 3 m/s horizontal speed can reduce travel time but start-
ing from 3 to 4 m/s, travel time starts to increase. This is 
caused by the fact that the travel time is impacted by the 
combination among all speed variables, not only horizontal 

(12)
EC =32737 + 11309

∗
HS + 2289

∗
VS − 238

∗
FS

− 19944
∗
AD + 1113HS

2 + 24485HS
∗
AD

+ 9358FS
∗
AD

(13)

TT =94.662 − 29.414
∗
HS − 0.0066

∗
VS

− 12.806
∗
FS − 0.930

∗
AD + 4.5364

∗
HS

2

+ 2.849
∗
FS

2 + 0.1104
∗
HS

∗
FS − 3.2904

∗
HS

∗
AD

Table 4  Parameters used Parameters Values Unit

mcr 600 kg
mshu 400 kg
mfr 200 kg
mit 10 ~ 200 kg
�cr , �shu,�veh 0.8 -
frc , frs, frf 1.15 -
μfc , μfs,μff 0.01 -
g 9.8 m/s2
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(a) Energy Consumption

(b) Travel Time

Fig. 7  Surface plot in random-based storage
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speed. When horizontal speed is set high, AS/RS may reach 
the desired horizontal position faster, but AS/RS may not 
reach the desired vertical position yet. Further, multi-speed 
configuration also affects another important decision fac-
tors namely request sequencing since the different speed 
may lead to the different request availability that can affect 
overall performances. This implies that it is important to 
optimize AS/RS multi-speed with other factors concurrently.

Using Minitab software, DFA is performed, and the 
optimal configuration of AS/RS multi-speed is shown in 
Fig. 8. It can be seen that the composite desirability can 
be obtained by 70.7% score where the optimal solution for 
a random-based storage involves implementing horizontal 
speed as 2.5455 m/s, vertical speed as 1 m/s, fork speed 
as 1.8889 m/s, and acceleration/deceleration as 0.5 m/s2. 
This results in 31.03 s TT and 1.015E + 05 kilo Joule EC. 
Figure 8 also indicates that horizontal speed seems to be 
the most significant factors compared other speed variables. 
This is particularly relevant because in this study, the rack 
shape or design is long horizontally but short vertically. 
Thus, it can be concluded that the rack shape has a strong 
correlation with the AS/RS multi-speed configuration.

4.3.2  Row‑based storage

The metamodel is now developed for row-based storage 
setting. The metamodels of energy consumption and travel 
time are shown in Eqs. 14 and 15, respectively. These meta-
models have good performance indicated by high predicted 
R2 namely 99.77% for EC and 99.94% for TT, while the β 

validation shows that the MAPE scores obtained are 4.92% 
for EC and 3.81% for TT. Thus, the metamodels are consid-
ered to be valid. The ANOVA result is shown in Appendix 
Table 6.

The surface plots are also visualized in Fig. 9a, b for EC 
and TT, respectively. Overall, the surface plot in row-based 
storage delivers similar information as shown in the ran-
dom-based storage. The interesting difference is shown in 
the range of objectives instead of the impact of each speed 
variable. The row-based storage provides significantly 
lower EC and TT compared to the random-based storage on 
average. This is reasonable because in row-based storage, 
the heavier items are allowed to be stored in the lower row 
while the lighter items are stored in the higher row leading 
to the lower EC. Further, random-based storage provides 
more back-and-forth movement due to random selection 
leading to higher TT than row-based storage. This indi-
cates that dedicating storage in rows is better than random, 
especially when the different item masses are considered.

(14)

EC =21573 + 11231
∗
HS + 720

∗
VS

+ 1515
∗
FS + 6735

∗
AD + 1492

∗
HS

2

+ 2157
∗
VS

2 − 949
∗
HS

∗
FS

+ 15839
∗
HS

∗
AD − 9238

∗
VS

∗
AD + 9412

∗
FS

∗
AD

(15)

TT =91.712 − 28.3730
∗
HS − 0.0259

∗
VS

− 12.845
∗
FS − 1.706

∗
AD + 4.2787

∗
HS

2

+ 2.774
∗
FS

2 + 0.2129HS
∗
FS − 2.7303HS

∗
AD

Fig. 8  Optimal configuration of 
AS/RS multi-speed in random-
based storage



1723The International Journal of Advanced Manufacturing Technology (2024) 134:1711–1728 

(a) Energy Consumption

(b) Travel Time

Fig. 9  Surface plot in row-based storage
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DFA is then performed to optimize AS/RS multi-speed 
as shown in Fig. 10. The composite desirability can be 
obtained by 70.05% score where the optimal solution for 
a row-based storage involves implementing horizontal 
speed as 2.4848 m/s, vertical speed as 1 m/s, fork speed as 
1.8485 m/s, and acceleration/deceleration as 0.5 m/s2. This 
optimal configuration is different from random-based storage 
only in horizontal speed and fork speed, while others remain 
the same namely setting the VS and AD at the lowest level. 
In addition, TT and EC obtained are 30.07 s and 8.954E + 04 
kilo Joule, respectively. Since both objectives are better than 
random-based storage, it can be concluded that row-based 
storage leads to better responsiveness and energy efficiency 
than random-based storage. However, once the rack design 
and other AS/RS control policies change, the optimal speed 
configuration may be significantly different as well.

5  Conclusion

In this study, the multi-speed configuration problem of Auto-
mated Storage and Retrieval System (AS/RS) is addressed. 
Given that AS/RS can move under different axes, this prob-
lem consists of multiple variables namely horizontal speed 
(x), vertical speed (y), fork or depth speed (z), and accelera-
tion/deceleration of AS/RS that needs to be set up concur-
rently. Since the speed changes dynamically, it is important to 
provide a model that can cope with dynamicity for providing 
practical and accurate estimation. A metamodel-based sim-
ulation–optimization (MSO) framework is proposed which 

can be used to optimize conflicting objectives namely energy 
consumption and responsiveness of AS/RS. The trade-off 
between both objectives is addressed via Desirability Func-
tion Analysis (DFA). While higher energy efficiency affects 
the lower cost and greener operation, the higher responsive-
ness affects customer satisfaction and overall efficiency. 
Based on the experiment, the proposed MSO is capable in 
optimizing multi-speed configuration of AS/RS efficiently 
under dynamic uncertainty and conflicting objectives. Thus, 
this study provides a practical optimization model to improve 
AS/RS multi-speed configuration prior implementation 
amidst trade-off condition. While efficient in reducing com-
putational costs and time by approximating complex simula-
tions, the proposed MSO may suffer from the drawback of 
model accuracy and generalizability such as not capturing 
all intricate dynamics of the actual simulation, leading to 
suboptimal or misleading results, thus, ensuring the meta-
model accuracy is crucial. Future research can implement 
multi-speed configuration optimization for different auto-
mated material handling systems such as Autonomous Vehi-
cle Storage and Retrieval Systems (AVS/RS), Shuttle Based 
Storage and Retrieval System (SBS/RS), or improved version 
of AS/RS such as dual-stacker AS/RS that can have different 
speed for each stacker [40]. Another optimization technique 
or machine learning-based metamodel may also improve 
effectivity and efficiency of the algorithm used in this study. 
For enhancing metamodel accuracy, advanced techniques 
like adaptive sampling and incorporating uncertainty quan-
tification such as conformal prediction may better capture 
variability and improve robustness of optimization results.

Fig. 10  Optimal configuration 
of AS/RS multi-speed in row-
based storage
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Appendix 1

Table 5  ANOVA result of 
metamodel in random-based 
storage

ANOVA forECmetamodel
Source DF Adj MS Fvalue Pvalue
Regression 7 1.14671E + 11 16,381,610,298 1647.79 0.000
  HS 1 239,065,548 239,065,548 24.05 0.000
  VS 1 188,543,542 188,543,542 18.97 0.000
  FS 1 51,028 51,028 0.01 0.943
  AD 1 71,917,054 71,917,054 7.23 0.010

HS*HS 1 75,303,181 75,303,181 7.57 0.008
HS*AD 1 3,034,969,122 3,034,969,122 305.28 0.000
FS*AD 1 49,255,833 49,255,833 4.95 0.031
  Error 46 457,311,460 9,941,553
  Total 53 1.15129E + 11

ANOVA for TTmetamodel
Source DF Adj SS Adj MS Fvalue Pvalue
Regression 8 8348.33 1043.54 53,783.29 0.000
  HS 1 1233.12 1233.12 63,553.76 0.000
  VS 1 0.00 0.00 0.08 0.778
  FS 1 13.04 13.04 672.18 0.000
  AD 1 0.56 0.56 29.12 0.000

HS*HS 1 1250.18 1250.18 64,433.30 0.000
FS*FS 1 6.09 6.09 313.85 0.000
HS*FS 1 0.16 0.16 8.48 0.006
HS*AD 1 54.81 54.81 2824.83 0.000
  Error 45 0.87 0.02
  Total 53 8349.21



1726 The International Journal of Advanced Manufacturing Technology (2024) 134:1711–1728

Appendix 2

Acknowledgements This work was supported in part by the Intelligent 
Manufacturing Innovation Center from the Featured Areas Research 
Center Program within the framework of the Higher Education Sprout 
Project by the Ministry of Education in Taiwan.

Author contribution Zakka Ugih Rizqi: conceptualization, methodol-
ogy, software, investigation, writing—original draft, writing—review 
and editing, data curation, validation, visualization. Shuo-Yan Chou: 
resources, funding acquisition, supervision, formal analysis, project 
administration.

Data availability The detailed data are available from the correspond-
ing author upon request. The AS/RS simulation model animation can 
be seen in the following link: https:// www. youtu be. com/ watch?v= 
sLyrk dFwulw.

Declarations 

Competing interests The authors declare no competing interests.

References

 1. Edouard A, Sallez Y, Fortineau V, Lamouri S, Berger A (2022) 
Automated storage and retrieval systems: an attractive solution 
for an urban warehouse’s sustainable development. Sustainability 
14(15):9518. https:// doi. org/ 10. 3390/ su141 59518

 2. Fenercioğlu A, Soyaslan M, Kozkurt C (2011) Automatic storage 
and retrieval system (AS/RS) based on Cartesian robot for liquid 
food industry. In: 12th International Workshop on Research and 
Education in Mechatronics, pp 283–287

 3. Settey T, Gnap J, Beňová D, Pavličko M, Blažeková O (2021) The 
growth of e-commerce due to COVID-19 and the need for urban 
logistics centers using electric vehicles: bratislava case study. Sus-
tainability 13(10):5357. https:// doi. org/ 10. 3390/ su131 05357

 4. Gupta S, Kushwaha PS, Badhera U, Chatterjee P, Gonzalez EDRS 
(2023) Identification of benefits, challenges, and pathways in 
E-commerce industries: an integrated two-phase decision-mak-
ing model. Sustain Oper Comput 4:200–218. https:// doi. org/ 10. 
1016/j. susoc. 2023. 08. 005

Table 6  ANOVA result of 
metamodel in row-based storage ANOVA for EC metamodel

Source DF Adj SS Adj MS Fvalue Pvalue
Regression 10 77,040,537,407 7,704,053,741 2892.68 0.000
  HS 1 179,782,131 179,782,131 67.50 0.000
  VS 1 321,730 321,730 0.12 0.730
  FS 1 1,459,092 1,459,092 0.55 0.463
  AD 1 6,207,007 6,207,007 2.33 0.134

HS2 1 135,296,984 135,296,984 50.80 0.000
VS2 1 55,834,747 55,834,747 20.96 0.000
HS*FS 1 12,155,025 12,155,025 4.56 0.038
HS*AD 1 1,269,996,874 1,269,996,874 476.85 0.000
VS*AD 1 191,999,904 191,999,904 72.09 0.000
FS*AD 1 49,832,851 49,832,851 18.71 0.000
  Error 43 114,521,625 2,663,294
  Total 53 77,155,059,033

ANOVA for TT metamodel
Source DF Adj SS Adj MS Fvalue Pvalue
Regression 8 7687.74 960.97 73,143.95 0.000
  HS 1 1147.34 1147.34 87,330.05 0.000
  VS 1 0.02 0.02 1.84 0.182
  FS 1 13.12 13.12 998.69 0.000
  A/D 1 1.90 1.90 144.64 0.000

HS2 1 1112.14 1112.14 84,650.69 0.000
FS2 1 5.77 5.77 439.14 0.000
HS*FS 1 0.61 0.61 46.57 0.000
HS*A/D 1 37.74 37.74 2872.46 0.000
  Error 45 0.59 0.01
  Total 53 7688.33

https://www.youtube.com/watch?v=sLyrkdFwulw
https://www.youtube.com/watch?v=sLyrkdFwulw
https://doi.org/10.3390/su14159518
https://doi.org/10.3390/su13105357
https://doi.org/10.1016/j.susoc.2023.08.005
https://doi.org/10.1016/j.susoc.2023.08.005


1727The International Journal of Advanced Manufacturing Technology (2024) 134:1711–1728 

 5. Bartolini M, Bottani E, Grosse EH (2019) Green warehousing: 
systematic literature review and bibliometric analysis. J Clean 
Prod 226:242–258. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 04. 055

 6. Meneghetti A, Dal Borgo E, Monti L (2015) Decision support 
optimisation models for design of sustainable automated ware-
houses. Int J Shipp Transp Logist 7(3):266–294. https:// doi. org/ 
10. 1504/ IJSTL. 2015. 069127

 7. M H, A K, T A (2019) The automatic storage and retrieval system: 
an overview. Int J Comput Appl 177(16):36–43. https:// doi. org/ 
10. 5120/ ijca2 01991 9603

 8. Roodbergen KJ, Vis IFA (2009) A survey of literature on auto-
mated storage and retrieval systems. Eur J Oper Res 194(2):343–
362. https:// doi. org/ 10. 1016/j. ejor. 2008. 01. 038

 9. Gagliardi JP, Renaud J, Ruiz A (2012) Models for automated 
storage and retrieval systems: a literature review. Int J Prod Res 
50(24):7110–7125. https:// doi. org/ 10. 1080/ 00207 543. 2011. 
633234

 10. Wen UP, Chang D, Chen S (2001) The impact of acceleration/
deceleration on travel-time models in class-based automated 
S/R systems. IIE Transactions (Institute of Industrial Engineers) 
33(7):599–608. https:// doi. org/ 10. 1080/ 07408 17010 89368 57

 11. Yang P, Miao L, Xue Z, Qin L (2015) Optimal storage rack design 
for a multi-deep compact AS/RS considering the acceleration/
deceleration of the storage and retrieval machine. Int J Prod Res 
53(3):929–943. https:// doi. org/ 10. 1080/ 00207 543. 2014. 942441

 12. Meneghetti A, Monti L (2013) Sustainable storage assignment and 
dwell-point policies for automated storage and retrieval systems. 
Prod Plan Control 24(6):511–520. https:// doi. org/ 10. 1080/ 09537 
287. 2011. 637525

 13. Yang P, Miao L, Qin L, Xue Z (2013) The impact on design-
ing storage rack for a multi-deep compact AS/RS on the speed 
profile of the storage and retrieval machine. In Proc 2013 6th 
Int Conf Inf Manag Innov Manag Ind Eng ICIII 2013 209–
212.https:// doi. org/ 10. 1109/ ICIII. 2013. 67029 11

 14. Chang DT, Wen UP, Lin JT (1995) The impact of accelera-
tion/deceleration on travel-time models for automated stor-
age/retrieval systems. IIE Transactions (Institute of Industrial 
Engineers) 27(1):108–111. https:// doi. org/ 10. 1080/ 07408 17950 
89367 23

 15. Zhou G, Mao L (2010) Design and simulation of storage location 
optimization module in AS/RS based on FLEXSIM. Int J Intell 
Syst Appl 2(2):33–40. https:// doi. org/ 10. 5815/ ijisa. 2010. 02. 05

 16. Egbelu PJ, Wu CT (1993) A comparison of dwell point rules in an 
automated storage/retrieval system. Int J Prod Res 31(11):2515–
2530. https:// doi. org/ 10. 1080/ 00207 54930 89568 80

 17. Ertl R, Günthner WA (2016) Meta-model for calculating the mean 
energy demand of automated storage and retrieval systems. Logist 
J 2:9–14. https:// doi. org/ 10. 2195/ lj_ NotRev_ ertl_ en_ 201602_ 01

 18. Hsu HP, Wang CN, Dang TT (2022) Simulation-based optimiza-
tion approaches for dealing with dual-command crane schedul-
ing problem in unit-load double-deep AS/RS considering energy 
consumption. Mathematics 10(21). https:// doi. org/ 10. 3390/ math1 
02140 18

 19. Xu X, Gong Y (Yale), Fan X, Shen G, Zou B (2018) Travel-
time model of dual-command cycles in a 3D compact AS/RS 
with lower mid-point I/O dwell point policy. Int J Prod Res 
56(4):1620–1641. https:// doi. org/ 10. 1080/ 00207 543. 2017. 13610 
49

 20. Meller RD, Mungwattana A (2005) AS/RS dwell-point strat-
egy selection at high system utilization: a simulation study 

to investigate the magnitude of the benefit. Int J Prod Res 
43(24):5217–5227. https:// doi. org/ 10. 1080/ 00207 54050 02156 17

 21. Hausman WH, Schwarz LB, Graves SC (1976) Optimal stor-
age assignment in automatic warehousing systems. Manage Sci 
22(6):629–638. https:// doi. org/ 10. 1287/ mnsc. 22.6. 629

 22. Graves SC, Hausman WH, Schwarz LB (1977) Storage-retrieval 
interleaving in automatic warehousing systems. Manage Sci 
23(9):935–945. https:// doi. org/ 10. 1287/ mnsc. 23.9. 935

 23. Bozer YA, White JA (1994) Travel-time models for automated 
storage/retrieval systems. IIE Transactions (Institute of Industrial 
Engineers). https:// doi. org/ 10. 1080/ 07408 17840 89752 52

 24. Zhang Z, Wang X, Yang S, Wu Y, Du J (2020) Simulation and 
Analysis of the complex dynamic behavior of supply chain inven-
tory system from different decision perspectives. Complexity 
2020:7393848. https:// doi. org/ 10. 1155/ 2020/ 73938 48

 25. Dengiz B, Bektas T, Ultanir AE (2006) Simulation optimization 
based DSS application: a diamond tool production line in indus-
try. Simul Model Pract Theory 14(3):296–312. https:// doi. org/ 10. 
1016/j. simpat. 2005. 07. 001

 26. Baghel M, Agrawal S, Silakari S (2012) Survey of metaheuristic 
algorithms for combinatorial optimization. Int J Comput Appl 
58(19):21–31. https:// doi. org/ 10. 5120/ 9391- 3813

 27. Roozbeh Nia A, Haleh H, Saghaei A (2017) Dual command 
cycle dynamic sequencing method to consider GHG efficiency in 
unit-load multiple-rack automated storage and retrieval systems. 
Comput Ind Eng 111:89–108. https:// doi. org/ 10. 1016/j. cie. 2017. 
07. 007

 28. Soares do Amaral JV, Montevechi JAB, de C. Miranda R, de 
S. Junior WT (2022) Metamodel-based simulation optimiza-
tion: a systematic literature review. Simul Model Pract Theory 
114:102403. https:// doi. org/ 10. 1016/j. simpat. 2021. 102403

 29. Barton RR (2020) Tutorial: metamodeling for simulation. 
In: Proceedings - Winter Simulation Conference, pp 1102–1116. 
https:// doi. org/ 10. 1109/ WSC48 552. 2020. 93840 59

 30 Parnianifard A, Azfanizam AS, Ariffin MKA, Ismail MIS, Ale 
Ebrahim N (2019) Recent developments in metamodel based 
robust black-box simulation optimization: an overview. Decis 
Sci Lett 8(1):17–44. https:// doi. org/ 10. 5267/j. dsl. 2018.5. 004

 31. Chen JC, Chen TL, Teng YC (2021) Meta-model based simula-
tion optimization for automated guided vehicle system under 
different charging mechanisms. Simul Model Pract Theory 
106:102208. https:// doi. org/ 10. 1016/j. simpat. 2020. 102208

 32. Kuo Y, Yang T, Peters BA, Chang I (2007) Simulation meta-
model development using uniform design and neural networks 
for automated material handling systems in semiconductor 
wafer fabrication. Simul Model Pract Theory 15(8):1002–1015. 
https:// doi. org/ 10. 1016/j. simpat. 2007. 05. 006

 33. Potrč I, Lerher T, Kramberger J, Šraml M (2004) Simulation 
model of multi-shuttle automated storage and retrieval sys-
tems. J Mater Process Technol 157:236–244. https:// doi. org/ 
10. 1016/j. jmatp rotec. 2004. 09. 036

 34. Lerher T, Edl M, Rosi B (2014) Energy efficiency model for 
the mini-load automated storage and retrieval systems. Int J 
Adv Manuf Technol 70(1–4):97–115. https:// doi. org/ 10. 1007/ 
s00170- 013- 5253-x

 35. Rizqi ZU, Chou SY, Khairunisa A (2024) Multi-objective simu-
lation-optimization for integrated automated storage and retrieval 
systems planning considering energy consumption. Comput Ind 
Eng 189:109979. https:// doi. org/ 10. 1016/j. cie. 2024. 109979

 36. Harrington EC (1965) The desirability function. Ind Qual Control 
21(10):494–498

https://doi.org/10.1016/j.jclepro.2019.04.055
https://doi.org/10.1504/IJSTL.2015.069127
https://doi.org/10.1504/IJSTL.2015.069127
https://doi.org/10.5120/ijca2019919603
https://doi.org/10.5120/ijca2019919603
https://doi.org/10.1016/j.ejor.2008.01.038
https://doi.org/10.1080/00207543.2011.633234
https://doi.org/10.1080/00207543.2011.633234
https://doi.org/10.1080/07408170108936857
https://doi.org/10.1080/00207543.2014.942441
https://doi.org/10.1080/09537287.2011.637525
https://doi.org/10.1080/09537287.2011.637525
https://doi.org/10.1109/ICIII.2013.6702911
https://doi.org/10.1080/07408179508936723
https://doi.org/10.1080/07408179508936723
https://doi.org/10.5815/ijisa.2010.02.05
https://doi.org/10.1080/00207549308956880
https://doi.org/10.2195/lj_NotRev_ertl_en_201602_01
https://doi.org/10.3390/math10214018
https://doi.org/10.3390/math10214018
https://doi.org/10.1080/00207543.2017.1361049
https://doi.org/10.1080/00207543.2017.1361049
https://doi.org/10.1080/00207540500215617
https://doi.org/10.1287/mnsc.22.6.629
https://doi.org/10.1287/mnsc.23.9.935
https://doi.org/10.1080/07408178408975252
https://doi.org/10.1155/2020/7393848
https://doi.org/10.1016/j.simpat.2005.07.001
https://doi.org/10.1016/j.simpat.2005.07.001
https://doi.org/10.5120/9391-3813
https://doi.org/10.1016/j.cie.2017.07.007
https://doi.org/10.1016/j.cie.2017.07.007
https://doi.org/10.1016/j.simpat.2021.102403
https://doi.org/10.1109/WSC48552.2020.9384059
https://doi.org/10.5267/j.dsl.2018.5.004
https://doi.org/10.1016/j.simpat.2020.102208
https://doi.org/10.1016/j.simpat.2007.05.006
https://doi.org/10.1016/j.jmatprotec.2004.09.036
https://doi.org/10.1016/j.jmatprotec.2004.09.036
https://doi.org/10.1007/s00170-013-5253-x
https://doi.org/10.1007/s00170-013-5253-x
https://doi.org/10.1016/j.cie.2024.109979


1728 The International Journal of Advanced Manufacturing Technology (2024) 134:1711–1728

 37. Beck A (2008) Simulation: the practice of model development and use. 
J Simul 2(1):67–67. https:// doi. org/ 10. 1057/ palgr ave. jos. 42500 31

 38. Sargent RG (2010) Verification and validation of simulation mod-
els. In: Proceedings - Winter Simulation Conference, pp. 166–183. 
https:// doi. org/ 10. 1109/ WSC. 2010. 56791 66

 39. Chen J, Chou SY, Yu THK, Rizqi ZU, Hang DT (2022) System 
dynamics analysis on the effectiveness of vaccination and social 
mobilization policies for COVID-19 in the United States. Plos 
One. https:// doi. org/ 10. 1371/ journ al. pone. 02684 43

 40. Rizqi ZU, Chou S-Y, Choon SS (2023) Performance of 
dual stacker automated storage and retrieval system (AS/
RS) with double-deep configuration. In: 2023 IEEE 5th 

Eurasia  Conference  IOT  Communication and Engineer-
ing (ECICE). IEEE, pp 683–687. https:// doi. org/ 10. 1109/ ECICE 
59523. 2023. 10383 137

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1057/palgrave.jos.4250031
https://doi.org/10.1109/WSC.2010.5679166
https://doi.org/10.1371/journal.pone.0268443
https://doi.org/10.1109/ECICE59523.2023.10383137
https://doi.org/10.1109/ECICE59523.2023.10383137

	Multi-speed configuration of ASRS amidst responsiveness and energy efficiency trade-off: metamodel-based simulation–optimization
	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Simulation modeling and performance formulation stage
	3.2 Metamodeling stage
	3.3 Metamodel-based simulation–optimization stage

	4 Simulation-based experiment and discussion
	4.1 Case description and experimental design
	4.2 Simulation model construction
	4.3 Metamodel-based optimization results and discussion
	4.3.1 Random-based storage
	4.3.2 Row-based storage


	5 Conclusion
	Appendix 1
	Appendix 2
	Acknowledgements 
	References


