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Abstract
Modeling and compensating for geometric errors are important steps for improving the accuracy of three-axis machine tools. 
The kinematic link between the tool and the workpiece is established with a series of homogeneous transformation matrices 
(HTMs). The volumetric error and compensation values are then calculated based on the pre-measured geometric errors and 
the pre-built kinematic model. Conventionally, all 21 geometric errors are considered simultaneously in the kinematic model, 
necessitating a careful HTM construction process to avoid unexpected errors during the derivation of the final simplified 
formula for compensation. For the possible 24 configurations for three-axis machine tools, this computational process has 
to be done individually. To solve these time-consuming and inefficient processes, we present a unified error model capable 
of generating error vectors applicable to all configurations. Instead of considering all geometric errors simultaneously, the 
proposed method analyzes the errors in subgroups and recombines the error terms at the final step. The advantage of this 
approach lies in clarifying the impact of geometric errors on volumetric errors, as well as expressing error and compensa-
tion vectors for various machine tools through a unified model. The proposed unified model is theoretically demonstrated by 
applying it to both vertical and horizontal three-axis machine tools. Furthermore, the effectiveness of the proposed method 
is confirmed by conducting experimental validation on a vertical three-axis testbed.

Keywords Geometric error · Unified error model · Kinematic model · Three-axis machine tools · Compensation

1 Introduction

In modern manufacturing to improve machining accuracy 
it is necessary to reduce the volumetric error of machine 
tools by identifying, measuring, and compensating for geo-
metric errors [1–4]. The volumetric error is composed of 

the position and orientation errors of the tool tip relative to 
the workpiece; however, due to the inability to compensate 
for the orientation error of the tool tip in three-axis machine 
tools, the volumetric error should be considered as primarily 
the position error. Typically, the position of the tool tip can 
be described in the workpiece coordinate system (WCS) by 
adopting rigid-body kinematics [5–8]. Different approaches 
have been employed to build kinematic links from the tool to 
the workpiece using screw theory [9], the exponential model 
[10, 11] or the Denavit–Hartenberg matrix [12]. Given its 
straightforward approach, the kinematic model that utilizes 
serial homogeneous transformation matrices (HTMs) has 
recently become a popular choice [13, 14].

To establish the aforementioned model, we first con-
sider the geometric errors. In general, the 21 geometric 
errors are categorized as 3 position-independent geometric 
errors (PIGEs) and 18 position-dependent geometric errors 
(PDGEs) [15–18], which can be measured using direct or 
indirect methods [19–21]. Typically, a laser interferom-
eter system is utilized to accurately measure the geometric 
errors. After the measurements, the values obtained can be 
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re-inserted, together with machine commands, into the pre-
built kinematic model, which gives the actual position of 
the tool tip in the WCS. The error vector, therefore, can be 
calculated based on the difference between the actual and 
ideal coordinates of the tool tip.

Conventionally, all geometric errors are considered 
simultaneously in the kinematic model, which requires a 
careful HTM construction process. In this process, unex-
pected errors may arise, particularly during the elimination 
of higher-order terms to simplify the final form of the error 
vector. Actually, there are 24 possible configurations for 
three-axis machine tools. When considering the six primary-
secondary-third (P-S-T) orders of three axes, a total of 144 
kinematic models are required. This construction process 
has to be done individually and repeatedly for all configura-
tions, and the final formulas should be saved in the compen-
sator of the CNC. This process is obviously time-consuming 
and inefficient. Moreover, memory and speed issues may 
occur when too many formulas are stored in the compensa-
tion modules.

It is necessary to construct a unified error model that 
can be used for all possible configurations of the three-axis 
machine tools to solve these problems. Although some stud-
ies have developed unified models using a singular func-
tion, it is applicable to only four fundamental configurations 
(FXYZ, XFYZ, XYFZ, and XYZF) [22, 23]. The singu-
lar function is merely employed for distinguishing among 
these four configurations and does not hold any physical sig-
nificance. As a result, understanding how geometric errors 
affect the volumetric error within the modeling process of 
this unified model proves to be challenging. To our knowl-
edge, no study has considered generating the error vectors 
of all 24 configurations considering the six reference axis 
orders.

In this paper, we present a new approach to compute the 
error vectors for all kinematic configurations, while also 
clarifying the impact of error components as well as support-
ing the implementation of compensation values. The advan-
tage of this method lies in its ability to represent errors and 
compensation vectors for various machine tools through a 
unified model, making it usable as a universal compensator. 
The generated formulas are applicable to any types of three-
axis machine tools: horizontal and vertical types. Moreover, 
because serial calculation of HTMs is not required, the com-
putational cost is minimized.

The remainder of this paper is organized as follows. Sec-
tion 2 shows the essential set-up conditions for the error 
matrices and the selection of coordinate systems for the con-
ventional and proposed methods. This section explains in 
detail the procedure of the conventional method considering 
all geometric errors and a typical example. Section 3 demon-
strates the step-by-step procedure of the proposed method by 
reasonably dividing the geometric errors into smaller groups, 

analyzing their error impacts, and ultimately re-combining 
them. The unified error model is derived conveniently and 
is applicable to all 24 configurations of three-axis machine 
tools. Section 4 describes the theoretical verification of the 
unified model, and the compensation strategy. Section 5 pre-
sents the experimental validation of the proposed method on 
a vertical three-axis testbed. Section 6 summarizes the main 
points of the paper.

2  Conventional method for kinematic 
modeling

2.1  Description of geometric error

Geometric errors of three-axis machine tools are often clas-
sified into two groups: PIGE and PDGE.

A PIGE, or location error, is considered as an error in 
the assembly process, in which the axes are not perpendicu-
lar to each other. Each axis has two squareness errors with 
the other two axes, resulting in six error terms in total. To 
minimize the number of redundant errors, PIGE is typically 
defined based on the order of reference axes (primary, sec-
ondary, and third axis). The primary axis coincides with 
the actual movement axis, eliminating squareness errors 
for the other axes. The secondary axis has one error with 
respect to the primary axis, while the third axis has two 
errors with respect to the remaining axes. Consequently, 
only three PIGEs are required in total. An example of PIGEs 
is shown in Fig. 1, where X is selected as the primary axis, 
Y is the secondary axis, and Z is the third axis. {R} stands 
for right-handed reference coordinate system, and {X}, {Y}, 
{Z} respectively denote the local coordinate systems for the 
X, Y, and Z-axes.

A PDGE, on the other hand, is the error induced in the 
moving process of axes. PDGE consists of linear and angu-
lar errors. As each axis has 6 PDGEs, there are 18 PDGEs 

Fig. 1  Typical combination of three position-independent geometric 
errors (PIGEs) of three-axis machine tools (primary axis: X, second-
ary axis: Y, third axis: Z)
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in total, including 9 linear errors and 9 angular errors. An 
example of the six PDGEs of the X-axis is shown in Fig. 2. 
The PDGEs of the Y and Z-axes can be defined in a similar 
manner.

The 21 geometric errors are summarized in Table 1 and 
shown visually in Fig. 3, where the positive directions of the 
PIGEs and PDGEs are specified.

2.2  Kinematic modeling

To describe the position of the tool tip relative to the work-
piece, a tool coordinate system (TCS, {t}) was selected at the 
tool tip, and a WCS ({W}) was attached to the workpiece. 
The local coordinate system of the X, Y, Z-axes is attached 

to each respective axis. Then, the kinematic link relating the 
TCS to the WCS can be defined by a series of HTMs that 
describe the coordinate transformation among local coor-
dinate systems. A fixed reference coordinate system (RCS) 
is often used as a reference when connecting the TCS and 
the WCS.

Fig. 2  Six position-dependent geometric errors (PDGEs) of the 
X-axis

Table 1  The 21 geometric 
errors of 3-axis machine tools

PIGE: position-independent geometric error; PDGE: position-dependent geometric error

PIGEs sxy Squareness of the Y-axis to the X-axis
sxz Squareness of the Z-axis to the X-axis
syz Squareness of the Z-axis to the Y-axis

PDGEs δxx Linear error of the X-axis in the X-direction (position error)
δyx Linear error of the X-axis in the Y-direction (horizontal straightness error)
δzx Linear error of the X-axis in the Z-direction (vertical straightness error)
εxx Angular error of the X-axis around the X-direction (roll)
εyx Angular error of the X-axis around the Y-direction (pitch)
εzx Angular error of the X-axis around the Z-direction (yaw)
δxy Linear error of the Y-axis in the X-direction (horizontal straightness error)
δyy Linear error of the Y-axis in the Y-direction (position error)
δzy Linear error of the Y-axis in the Z-direction (vertical straightness error)
εxy Angular error of the Y-axis around the X-direction (pitch)
εyy Angular error of the Y-axis around the Y-direction (roll)
εzy Angular error of the Y-axis around the Z-direction (yaw)
δxz Linear error of the Z-axis in the X-direction (horizontal straightness error)
δyz Linear error of the Z-axis in the Y-direction (vertical straightness error)
δzz Linear error of the Z-axis in the Z-direction (position error)
εxz Angular error of the Z-axis around the X-direction (pitch)
εyz Angular error of the Z-axis around the Y-direction (yaw)
εzz Angular error of the Z-axis around the Z-direction (roll)

Fig. 3  21 geometric errors and positive directions
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Fig. 4  YFXZ configuration

To illustrate the kinematic modeling, a typical YFXZ 
machine type was used, as shown in Fig. 4. First, the TCS, 
WCS, RCS, and local coordinate system of each axis were 
selected as right-handed coordinate systems. The initial ori-
gins of all coordinate systems were set to coincide, such that 
the offset distance between the coordinate systems was not a 
consideration. This tends to make kinematic modeling very 
simple. The ideal kinematic link was created as follows.

The matrices representing the movement of each axis X, 
Y, and Z are described in HTM form as follows, where x, y, 
and z denote the respective amounts of movement:

The ideal transformation matrix from TCS to WCS, (
W�t

)
ideal

 , is established accordingly. 

(1)

�
X
=

⎡
⎢
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⎣
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where R�W represents the transformation matrix from WCS 
to RCS, and the other transformation matrices are defined 
in a similar manner. Y�W and Z�t are the identity matrices.
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The actual kinematic link considering all geometric 
errors, when the PIGEs and PDGEs are small enough to be 
approximated and stacked into HTM form, is presented as 
follows:    

(3)
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,

where �X , �Y , and �Z are the PDGE matrices of the X, Y, 
and Z-axes, respectively. 
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where �XY , �YX , �ZX , �XZ , �ZY , and �YZ are the PIGE matri-
ces. By selecting the P-S-T order, only three of the matrices 
are required.

Typically, P-S-T should be chosen to simplify the link 
between the WCS and the RCS. That is, the primary, second-
ary, and third axes are set in order of closeness to the work-
piece. For example, in the YFXZ machine type shown, Y is 
selected as the primary axis, X is the secondary axis, and Z is 

the third axis. Therefore, the three required PIGEs are syx , syz , 
and sxz and their corresponding PIGE matrices are �YX , �YZ , 
and �XZ , respectively.

For the movement of a particular axis considering geomet-
ric errors, the HTM link is created by sequentially multiply-
ing the three matrices of PIGE, axis movement, and PDGE. 
Accordingly, the actual kinematic transformation from the 
TCS to the WCS for the YFXZ machine type is as follows:

(5)

(
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)
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)
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(
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)−1
× �YX�X�X × �YZ�XZ�Z�Z

The matrix VE, which represents the error of the tool 
tip relative to the workpiece, is expressed by Eq. (6). It is 
a 4 × 4 matrix, in which the first three columns are orien-
tation errors, and the fourth column is the position error 
of the tool tip with respect to the workpiece.

For three-axis machine tools, the volumetric error is 
actually the position error of the tool tip relative to the 
workpiece, because the orientation error of the tool tip cannot 
be compensated. Therefore, after removing the higher-order 
terms manually or using programming software such as 
MATLAB for the fourth column, the error vectors Ex,Ey,Ez 
of the tool tip can be obtained as follows:
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(
W�t

)−1
ideal
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)
actual
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1

⎤
⎥
⎥
⎥
⎦

By setting up the kinematic model, the error vector can 
be calculated completely. However, as discussed briefly in 
Section 1, there are two drawbacks.

(1) The derivation of the final simplified formulas for com-
pensation requires great care in the kinematic modeling 
process, such as the definition of geometric errors, the 
stacking order of the HTMs, and the elimination of 
higher-order terms.

(2) For all 24 configurations of three-axis machine tools with 
six selections of P-S-T order, the calculation process must 
be done repeatedly for the 144 cases. For a universal com-
pensator, it would be not efficient when saving all of these 
error vectors for the compensation process.

In Section 3, we propose a method that can solve these 
issues effectively.

3  Unified error modeling method for all 
configurations of three‑axis machine tools

3.1  General concepts

3.1.1  General concepts

In general, the PIGE and PDGE have almost no impact on each 
other. Therefore, instead of considering all error components 
simultaneously, as in the conventional approach, herein the 
21 geometric errors are divided into subgroups and the error 

impact of each group is analyzed separately. The derived results 
are then combined for the final unified error model of all 24 
configurations. The procedure diagram is shown in Fig. 5.

Typically, there are 24 possible configurations of three-axis 
machine tools. Based on the stacking order of axes, these 24 
configurations can be classified as forward CS (XYZ type) 
and backward CS (XZY type), as shown in Table 2.

The proposed method is applied for the first four fundamen-
tal configurations, FXYZ, XFYZ, XYFZ, and XYZF (first col-
umn in Table 2), and then extended to generate the error model 
for all remaining configurations (columns 2–6 in Table 2).
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3.1.2  Rules for deriving the error terms

There are two main components of error terms in the uni-
fied error model: the raw error terms and the sign of each 
raw error term. As we divided the geometric errors into 
subgroups, the raw error terms are first determined based 
on the properties of the separated errors, which are PIGE, 
PDGE-linear error, and PDGE-angular error. After the raw 
error terms have been determined, their signs (impact) can 
be addressed using the following rules.

Rule 1. The basics when there is no axis attached to the work‑
piece side 

1a. Rule for the PIGE term: The PIGE term has two 
elements: the squareness error and the axis that combines 
with that error, affecting the other axis lying in the plane 
of the squareness error. Herein, the right-handed CS is 
chosen and the positive direction of the measured PIGE 
is counterclockwise. Therefore, the sign (impact) of the 
PIGE term of the Z-axis on the Y-axis, the Y-axis on the 
X-axis, and the X-axis on the Z-axis is negative, while the 
reverse-order ones are positive. The impact of the PIGE 
term of the Y-axis on the X-axis is shown in Fig. 6.
1b. Rule for the PDGE-linear term: The PDGE-linear 
term has only one element: the linear error itself along the 
three axes. Therefore, the basic sign (impact) of the linear 
term can be determined based on the positive direction 
of the three axes.
1c. Rule for the PDGE-angular term: The PDGE-angu-
lar term also has two components: the PDGE-angular 
error and the axis coupling with that error. Typically, the 
positive direction of the measured PDGE-angular error is 

selected as counterclockwise. Therefore, the basic rule for 
the PDGE-angular term can also be defined in the same 
way as that of the PIGE term. For example, the PDGE 
angular error of the Z-axis around the Z-axis, εzz (causing 
error on the XOY plane), has the same effect as the PIGE 
between the X and Y-axes, as shown in Fig. 6.

Rule 2. The change in error impact when there is at least one 
axis attached to the workpiece side 

2a. Rule for the PIGE term: When an axis changes its 
attaching position to the tool or workpiece side, the sign 
of the PIGE relating to that axis is unchanged. This is due 
to the property of the PIGE in which the location error 
occurs before the axes move. The signs do not change 
regardless of the positions of the moving axes, whether 
attached to the workpiece or not. Therefore, the sign of 
the PIGE term needs to be changed only for movement of 

Fig. 6  Impact of the PIGE of the Y-axis on the X-axis

Table 2  Classification of 24 
configurations

Forward CS Backward CS

XYZ group YZX group ZXY group XZY group ZYX group YXZ group

FXYZ FYZX FZXY FXZY FZYX FYXZ
XFYZ YFZX ZFXY XFZY ZFYX YFXZ
XYFZ YZFX ZXFY XZFY ZYFX YXFZ
XYZF YZXF ZXYF XZYF ZYXF YXZF

Fig. 5  General concepts of the proposed method
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the axis combining with the PIGE. As a result, the PIGE 
term may need to be multiplied by −1 once.
2b. Rule for the PDGE linear term: When the axis 
is attached to the tool side, the tool moves relative to 
the workpiece. The measured linear error is therefore 
unchanged. However, when the axis is attached to the 
workpiece side, the workpiece moves relative to the tool. 
The effect of linear error is therefore reversed. In other 
words, the linear error is multiplied by −1.
2c. Rule for the PDGE angular term: When an axis 
changes its attaching position to the tool or workpiece 
side, the sign of the PDGE angular error related to that 
axis changes as well. This is because the PDGE is related 
to the motion error occurring during movements of the 
axes. The signs change when the axes change the attach-
ing position to the tool or workpiece side. As a result, the 
change of sign of the PDGE term must be considered for 
both PDGE angular error and the movement of the axis 
combining with that error. In other words, the PDGE term 
may need to be multiplied by −1 twice.

3.2  Generation process of error vector by PIGEs

Here, we assume that the PIGEs are isolated and observed. 
All 24 configurations have six possible P-S-T orders, result-
ing in 144 kinematic calculations. For example, for a con-
figuration of FXYZ, by selecting P-S-T axes in the order of 
X–Y–Z, X–Z–Y, Y–X–Z, Y–Z–X, Z–X–Y, Z–Y–X, a total 
of 6 kinematic models can be obtained.

Because the measured PIGEs in the identification step 
and the selected PIGEs in the modeling step may differ, 
conversion of the PIGE based on the symmetry can be done 
here.

As mentioned in the previous section, the two components 
of interest are the error terms and their signs. Herein, the 
X-axis is selected as the primary axis, the Y-axis is the second-
ary axis, and the Z-axis is the third axis. The X-axis is an ideal 
axis, in that does not cause error on the other axes. The Y-axis 
is an actual axis located on the XOY plane, causing error on 
the X-axis while moving. The Z-axis is an arbitrary axis that 
impacts both the X and Y-axes. The three errors are sxy , sxz , 
and syz , in which the first subscript denotes the error direction 
and the second subscript indicates the error axis.

(8)szy = −syz, szx = −sxz, syx = −sxy

In the unified error model, the three identified PIGEs ( sxy , 
sxz, syz) are used for describing the error vectors of all four fun-
damental configurations, FXYZ, XFYZ, XYFZ, and XYZF, 
and the same procedure can be applied again for the remaining 
configurations. The detailed process is outlined in Fig. 7.

Step 1: Define the error terms (based on Fig. 3 and the 
P-S-T order):

Step 2: Apply Rule 1a—Section 3.1.2 (basic error impact) 
for the FXYZ configuration:

Step 3: Apply Rule 2a—Section 3.1.2 (change of error 
impact) to update the sign of the error term:

Herein, the basic sign of the error terms is first determined 
based on Rule 1a (Section 3.1.2). Configurations FXYZ 
and XFYZ share the same formula, because the positions of 
the error axes remain unchanged (the Y and Z-axes are still 
attached to the tool side). Then, in the next configurations, 
XYFZ and XYZF, because the Y and Z-axes are attached to 
the workpiece side, the inverse effect is applied as Rule 2a.

For each P-S-T order, there is a combination of three 
required PIGEs. For the results derived from Eqs. (10)–(13), 
using one parameter, Ka,b,c =  ± 1, accounting for the change 
of sign of PIGE terms, with a, b and c denoting the primary, 

(9)Raw error vector =

⎡
⎢
⎢
⎣

(±)sxz�(±)sxy�

(±)syz�

0

⎤
⎥
⎥
⎦

(10)Error vector of FXYZ =

⎡
⎢
⎢
⎣

(+)sxz�(−)sxy�

(−)syz�

0

⎤
⎥
⎥
⎦

(11)

Error vector of XFYZ (unchanged because X is primary axis) =

⎡
⎢
⎢
⎢
⎢
⎣

sxz� − sxy�

−syz�

0

⎤
⎥
⎥
⎥
⎥
⎦

(12)Error vector of XYFZ (updated sign of Y−axis) =

⎡
⎢
⎢
⎢
⎢
⎣

sxz�(+)sxy�

−syz�

0

⎤
⎥
⎥
⎥
⎥
⎦

(13)Error vector of XYZF (updated sign of Z−axis) =

⎡
⎢
⎢
⎢
⎢
⎣

(−)sxz� + sxy�

(+)syz�

0

⎤
⎥
⎥
⎥
⎥
⎦

Fig. 7  Procedure for defining 
the error vectors
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secondary and third axes, respectively, the unified error vec-
tor form can be represented as follows:

For a unified error model considering all six P-S-T orders, 
one more parameter, λa,b,c = 0 or 1, is required for choosing 
the three PIGE terms appropriately. The vector form of the 
PIGE terms is rewritten as follows:

3.3  Generation process of error vector by PDGEs

Due to the difference in error properties, the PDGEs are 
divided into two groups of nine linear errors and nine angu-
lar errors.

3.3.1  PDGEs — linear errors

The linear errors can be attained as follows; their impacts are 
shown as in Fig. 3. Each axis is affected by its three linear terms 
and the two remaining axes. By regrouping, the linear error 
terms can be found without difficulty. Then, by applying Rules 
1b and 2b from Section 3.1.2, the basic sign can be found and 
updated when the axis changes its attaching position to the tool 
or workpiece side. The details are given in the following.

Step 1: Defining the error terms:

Step 2: Apply Rule 1b—Section  3.1.2 (basic error 
impact) for all four configurations:

Step 3: Apply Rule 2b—Section 3.1.2 (change of error 
impact) to update the sign of the error term:

(14)
⎡
⎢
⎢
⎣

EPIGE−a

EPIGE−b

EPIGE−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Kcsac� − Kbsab�

−Kcsbc�

0

⎤
⎥
⎥
⎦

(15)
⎡
⎢
⎢
⎣

EPIGE−a

EPIGE−b

EPIGE−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

λcKcsac� − λbKbsab�

λaKasba� − λcKcsbc�

λbKbscb� − λaKasca�

⎤
⎥
⎥
⎦

(16)Raw error vector =

⎡
⎢
⎢
⎣

(±)δxx(±)δxy(±)δxz
(±)δyx(±)δyy(±)δyz
(±)δzx(±)δzy(±)δzz

⎤
⎥
⎥
⎦

(17)Error vector of FXYZ =

⎡
⎢
⎢
⎣

δxx + δxy + δxz
δyx + δyy + δyz
δzx + δzy + δzz

⎤
⎥
⎥
⎦

(18)

Error vector of XFYZ

(updated error related to the X−axis) =

⎡
⎢
⎢
⎢
⎣

(−)δxx + δxy + δxz

(−)δyx + δyy + δyz

(−)δzx + δzy + δzz

⎤
⎥
⎥
⎥
⎦

To establish the unified form, one parameter, La,b,c =  ± 1, 
with a, b, and c denoting the primary, secondary and third 
axes, respectively, is sufficient for modeling the change of 
sign of PDGE-linear terms. The vector form is as follows:

3.3.2  PDGEs—angular errors

In total, there are nine angular errors that can combine with 
each axis and produce error terms on the other axes. For 
convenience in further analysis, these nine angular errors 
are categorized into three subgroups according to their 
properties.

• Zero group (including three errors) – causes no error 
term while an axis is moving.

• Normal group (including four errors) – causes error 
terms regardless of the attaching position of the axis.

• Special group (including two errors) – only causes 
error terms when the axis is attached to the workpiece 
side.

As visualized in Fig. 3, considering the X-axis (the Y and 
Z-axes are treated in the same manner), the error effect can 
be categorized as follows (Fig. 8):

• Zero group: Errors εxx, εxy, and εxz rotate around the 
X-axis and therefore do not cause error on the X-axis.

• Normal group: Errors εyy and εyz can be combined with 
the X-axis to generate error terms on the Z-axis, and 
errors εzy and εzz can be combined with the X-axis to 
cause errors on the Y-axis.

• Special group: Only if the X-axis is attached to the 
workpiece side, can errors εyx and εzx (belonging to the 
X-axis) be combined with the movement of the X-axis 
(its own axis) and cause errors on the Z and Y-axes, 
respectively.

(19)

Error vector of XYFZ

(updated error related to the Y−axis) =

⎡
⎢
⎢
⎢
⎣

−δxx(−)δxy + δxz

−δyx(−)δyy + δyz

−δzx(−)δzy + δzz

⎤
⎥
⎥
⎥
⎦

(20)

Error vector of XYZF

(updated error related to the Z−axis) =

⎡
⎢
⎢
⎢
⎣

−δxx − δxy(−)δxz

−δyx − δyy(−)δyz

−δzx − δzy(−)δzz

⎤
⎥
⎥
⎥
⎦

(21)
⎡
⎢
⎢
⎣

EPDGE−linear−a

EPDGE−linear−b

EPDGE−linear−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Laδaa + Lbδab + Lcδac
Laδba + Lbδbb + Lcδbc
Laδca + Lbδcb + Lcδcc

⎤
⎥
⎥
⎦
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Because the normal angular error is PDGE, it is con-
sidered to have occurred after its axis moves, and its sign 
changes when the axis changes its attaching position to the 
tool or the workpiece side. On the other hand, the “special 
angular error” only has an effect when its axis attaches to the 
workpiece side; therefore, its sign is unchanged.

Normal angular errors Using a procedure similar to that 
applied for deriving the PIGE and PDGE-linear terms, the 
error vector for the PDGE-normal angular error can be 
obtained using the following steps:

Step 1: Determine the error terms:
Since the coordinate transformation using HTM is a relative 
transformation, matrix multiplication is performed from 
the left in the order in which the coordinate transformation 
occurred. Thus, for the FXYZ configuration, the movement 
starts with the X-axis closest to the workpiece (the leftmost 
axis in the kinematic link). At this time, the Y and Z-axes 
have not yet moved. Therefore, the X-axis will not combine 
with the four normal angular errors belonging to the Y and 
Z-axes ( εyy, εzy, εyz, εzz) . When the Y-axis (the second clos-
est axis to the workpiece) moves, it can only combine with 
the normal angular errors of the X-axis, resulting in two 
error terms εzx� and εxx� . Finally, when the Z-axis moves, it 
can combine with angular errors of both the X and Y-axes, 
resulting in four error terms εyx�, εxx�, εyy�, and εxy� . By 
stacking the six derived error terms properly, the raw error 
vector can be obtained as follows:

(22)Raw error vector =

⎡
⎢
⎢
⎣

(±)εyx�(±)εyy�(±)εzx�

(±)εxx�(±)εxy�

(±)εxx�

⎤
⎥
⎥
⎦

Step 2: Apply Rule 1c – Section 3.1.2 (basic error impact) 
for all four configurations:

Step 3: Apply Rule 2c – Section 3.1.2 (change of error 
impact) to update the sign of the error term:

Herein, the sign of the PDGE-normal angular terms 
depends on both the error and the position of the axis com-
bining with that error. Therefore, two parameters are required 
to model the impact of PDGE-normal angular terms. One 
parameter, R1 =  ± 1, is accounted for the angular error, while 
the other parameter, R2 =  ± 1, is accounted for the moving 
axis. However, these two parameters can be represented in 

(23)Error vector of FXYZ =

⎡
⎢
⎢
⎣

+εyx� + εyy� − εzx�

−εxx� − εxy�

+εxx�

⎤
⎥
⎥
⎦

(24)

Error vector of XFYZ

(updated sign and error related to the X−axis) =

⎡
⎢
⎢
⎢
⎢
⎣

(−)εyx� + εyy�(+)εzx�

(+)εxx� − εxy�

(−)εxx�

⎤
⎥
⎥
⎥
⎥
⎦

(25)

Error vector of XYFZ

(updated sign and error related to the Y−axis) =

⎡
⎢
⎢
⎢
⎢
⎣

−εyx�(−)εyy�(−)εzx�

+εxx�(+)εxy�

(+)εxx�

⎤
⎥
⎥
⎥
⎥
⎦

(26)

Error vector of XYZF

(updated sign and error related to the Z−axis) =

⎡
⎢
⎢
⎢
⎢
⎣

(+)εyx�(+)εyy� − εzx�

(−)εxx�(−)εxy�

+εxx�

⎤
⎥
⎥
⎥
⎥
⎦

Fig. 8  Categorization of angular 
errors



2662 The International Journal of Advanced Manufacturing Technology (2024) 134:2653–2673

the same form as Ra,b,c =  ± 1, with a, b, and c denoting the 
primary, secondary, and third axes, respectively. This leads to 
the derivation of the unified vector form as follows:

Special angular errors Only when attaching to the work-
piece side can an axis combine with its angular errors, 
causing errors on the other axes. This is because, when the 
axis attaches to the tool side, the special angular errors only 
affect the tool orientation, not the tool position in the WCS. 
However, when the axis attaches to the workpiece side, the 
special angular errors can change the relative position of 
the WCS with respect to the tool, and lead to a change in 
position of the tool in the WCS. A demonstration of X-axis 
coupling with special angular errors is shown in Fig. 9.

As in the case of the X-axis in Fig. 9, the six error terms 
caused by special angular errors and their own axes can be 
deduced and listed in vector form, as follows:

(27)

⎡
⎢
⎢
⎢
⎣

EPDGE−normal angular−a

EPDGE−normal angular−b

EPDGE−normal angular−c

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

RaRcεba� + RbRcεbb� − RaRbεca�

−RaRcεaa� − RbRcεab�

RaRbεaa�

⎤
⎥
⎥
⎥
⎦

(28)X(

⎡
⎢
⎢
⎣

0

+εzx�

−εyx�

⎤
⎥
⎥
⎦
),Y(

⎡
⎢
⎢
⎣

−εzy�

0

+εxy�

⎤
⎥
⎥
⎦
),Z(

⎡
⎢
⎢
⎣

+εyz�

−εxz�

0

⎤
⎥
⎥
⎦
)

Distributing these terms together with the pre-defined 
error vector of the normal angular errors in previous parts, 
the complete version of the error vector caused by the 
PDGE-angular errors is as follows:

(29)Error vector of FXYZ (no update) =

⎡
⎢
⎢
⎢
⎢
⎣

+εyxz + εyyz − εzxy

− εxxz − εxyz

+ εxxy

⎤
⎥
⎥
⎥
⎥
⎦

(30)

Error vector of XFYZ

(added special error of the X−axis) =

⎡
⎢
⎢
⎢
⎣

−εyx� + εyy� + εzx�

+εxx� − εxy� + (εzx�)

−εxx� + (−εyx�)

⎤
⎥
⎥
⎥
⎦

(31)

(32)

Error vector of XYZF

(added special error of the X,Y, and Z−axes)

=

⎡
⎢
⎢
⎣

+εyx� + εyy� − εzx� + (−εzy�) + (+εyz�)

−εxx� − εxy� + (εzx�) + (−εxz�)

+εxx� + (−εyx�) + (+εxy�)

⎤
⎥
⎥
⎦

Fig. 9  Impact of special angular 
errors when the axis attaches to 
the workpiece

Error vector of XYFZ

(added special error of the X and Y − axes) =

⎡
⎢
⎢
⎢
⎢
⎣

−εyx� − εyy� − εzx� + (−εzy�)

+εxx� + εxy� + (εzx�)

+εxx� + (−εyx�) + (εxy�)

⎤
⎥
⎥
⎥
⎥
⎦
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Herein, one parameter, Wa,b,c = 0 or 1, is sufficient for mod-
eling the impact of special angular errors, with a, b, and c 
denoting the primary, secondary, and third axes, respectively. 
Then, the unified vector form is as follows:

3.4  Unified error model

The error vectors were obtained in Sects. 3.2 and 3.3. For 
the sake of convenience of visualization and comparison, 
by placing the determined PDGE-linear terms, PDGE-
normal angular terms, PDGE-special angular terms, and 
PIGE terms in square brackets, adding one more parameter 
( Φ ) accounting for the forward and backward CS groups, 
and re-organizing appropriately, the unified error model 
can be formulated completely. The details are given below:

(33)
⎡
⎢
⎢
⎣

EPDGE−special angular−a

EPDGE−special angular−b

EPDGE−special angular−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Wcεbc� −Wbεcb�

Waεca� −Wcεac�

Wbεab� −Waεba�

⎤
⎥
⎥
⎦

The notations are as follows.

For PDGE — linear error:
La,b,c = −1 when the a, b, or c axis is between the WCS 

and the RCS (attached to the workpiece side).
La,b,c = +1 when the a, b, or c axis is between the RCS 

and the TCS (attached to the tool side).

For PDGE — normal angular error:
Ra,b,c = −1 when the a, b, or c axis is between the WCS 

and the RCS (attached to the workpiece side).
Ra,b,c = +1 when the a, b, or c axis is between the RCS 

and the TCS (attached to the tool side).

For PDGE — special angular error:
Wa,b,c = +1 when the a, b, or c axis is between the WCS 

and the RCS (attached to the workpiece side).
Wa,b,c = 0 when the a, b, or c axis is between the RCS 

and the TCS (attached to the tool side).

(34)

⎡
⎢
⎢
⎣

Ea

Eb

Ec

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

EPDGE−linear−a

EPDGE−linear−b

EPDGE−linear−c

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPDGE−normal angular−a

EPDGE−normal angular−b

EPDGE−normal angular−c

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPDGE−special angular−a

EPDGE−special angular−b

EPDGE−special angular−c

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPIGE−a

EPIGE−b

EPIGE−c

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−linear−a

EPDGE−linear−b

EPDGE−linear−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Laδaa + Lbδab + Lcδac
Laδba + Lbδbb + Lcδbc
Laδca + Lbδcb + Lcδcc

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−normal angular−a

EPDGE−normal angular−b

EPDGE−normal angular−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
RaRcεbac + RbRcεbbc − RaRbεcab

�

− Φ
�
RaRcεaac + RbRcεabc

�

Φ
�
RaRbεaab

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−special angular−a

EPDGE−special angular−b

EPDGE−special angular−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
Wcεbcc −Wbεcbb

�

Φ
�
Waεcaa −Wcεacc

�

Φ
�
Wbεabb −Waεbaa

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPIGE−a

EPIGE−b

EPIGE−c

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
λcKcsacc − λbKbsabb

�

Φ
�
λaKasbaa − λcKcsbcc

�

Φ
�
λbKbscbb − λaKascaa

�

⎤
⎥
⎥
⎦

For PIGE:
Ka,b,c = −1 When the a, b, or c axis is between the WCS 

and the RCS (attached to the workpiece side).
Ka,b,c = +1 when the a, b, or c axis is between the RCS 

and the TCS (attached to the tool side).

λa,b,c = 0 when the axis is the primary axis, or when the 
axis is the secondary axis and λa,b,c is located in the third 
axis term.

λa,b,c = 1 when the axis is the third axis, or when the axis 
is the secondary axis and λa,b,c is located in the primary axis 
term.

For transforming between the forward and backward 
CS groups:

Φ = +1 if the order of a → b → c is in the forward direc-
tion (forward CS).

Φ = −1  if the order of a → b → c is in the backward 
direction (backward CS).
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4  Theoretical verification of the unified 
error model

The unified error model was defined completely in Sec-
tion 3.4. To verify this, two representative examples are pre-
sented: the vertical (YFXZ) type and the horizontal (ZFXY) 
type (Fig. 10).

A flowchart of the error vector-generating process is shown 
in Fig. 11. It is possible to develop software that, upon enter-
ing the configuration name like YFXZ, automatically analyzes 
and computes parameters such as L, R,W, K, λ, Φ. This 
makes it easier to calculate the error vector.

4.1  Example of vertical type configuration (YFXZ)

The error vector of the YFXZ configuration (vertical mill-
ing machine) was derived based on the conventional method 
described in Section 2. The error vector is generated again 
based on the proposed method.

Fig. 11  Procedure for generating the error vector

Fig. 10  YFXZ and ZFXY 
configurations

Step 1: Substitute the characters according to the name 
of the configuration:
a → y; b → x; c → z;

Step 2: Determine the required parameters:
Ly = − 1 (Y-axis is attached to the workpiece side);  Lx = 1; 
 Lz = 1;
Ry = − 1 (Y-axis is attached to the workpiece side);  Rx = 1; 
 Rz = 1;
Wy = 1 (Y-axis is attached to the workpiece side);  Wx = 0; 
 Wz = 0;
Ky = − 1 (Y-axis is attached to the workpiece side); 
 Kx = 1;  Kz = 1;
λy = 0; λx = 0 (in Z-axis error component), λx = 1 (in 
Y-axis error component); λz = 1; (P-S-T order is Y–X–Z).
Φ = − 1 (YFXZ is the backward direction);
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Combining the results:

(37)
⎡
⎢
⎢
⎢
⎣

Ey

Ex

Ez

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

−δyy + δyx + δyz + εxy� − εxx� − εzy� − syz� + syx�

−δxy + δxx + δxz − εyy� + εyx� − εzy� + sxz�

−δzy + δzx + δzz + εyy� + εxy�

⎤
⎥
⎥
⎥
⎦

Step 3: Substitute characters and parameters into the 
unified error model formula:

Converting characters:

(35)

⎡
⎢
⎢
⎣

Ea

Eb

Ec

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Ey

Ex

Ez

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

EPDGE−linear−y

EPDGE−linear−x

EPDGE−linear−z

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPDGE−normal angular−y

EPDGE−normal angular−x

EPDGE−normal angular−z

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPDGE−special angular−y

EPDGE−special angular−x

EPDGE−special angular−z

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

EPIGE−y

EPIGE−x

EPIGE−z

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−linear−y

EPDGE−linear−x

EPDGE−linear−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Lyδyy + Lxδyx + Lzδyz
Lyδxy + Lxδxx + Lzδxz
Lyδzy + Lxδzx + Lzδzz

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−normal angular−y

EPDGE−normal angular−x

EPDGE−normal angular−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
RyRzεxyz + RxRzεxxz − RyRxεzyx

�

− Φ
�
RyRzεyyz + RxRzεyxz

�

Φ
�
RyRxεyyx

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−special angular−y

EPDGE−special angular−x

EPDGE−special angular−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
Wzεxzz −Wxεzxx

�

Φ
�
Wyεzyy −Wzεyzz

�

Φ
�
Wxεyxx −Wyεxyy

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPIGE−y

EPIGE−x

EPIGE−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
λzKzsyzz − λxKxsyxx

�

Φ
�
λyKysxyy − λzKzsxzz

�

Φ
�
λxKxszxx − λyKyszyy

�

⎤
⎥
⎥
⎦

Substituting values:  

(36)

⎡
⎢
⎢
⎣

EPDGE−linear−y

EPDGE−linear−x

EPDGE−linear−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

(−1)δyy + (1)δyx + (1)δyz
(−1)δxy + (1)δxx + (1)δxz
(−1)δzy + (1)δzx + (1)δzz

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−normal angular−y

EPDGE−normal angular−x

EPDGE−normal angular−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

(−1)
�
(−1)(1)εxyz + (1)(1)εxxz − (−1)(1)εzyx

�

− (−1)
�
(−1)(1)εyyz + (1)(1)εyxz

�

(−1)
�
(−1)(1)εyyx

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−special angular−y

EPDGE−special angular−x

EPDGE−special angular−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
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(−1)
�
(0)εxzz − (0)εzxx

�
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�
(1)εzyy − (0)εyzz

�

(−1)
�
(0)εyxx − (1)εxyy

�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPIGE−y

EPIGE−x

EPIGE−z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
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(−1)
�
(1)(1)syzz − (1)(1)syxx

�

(−1)
�
(0)(−1)sxyy − (1)(1)sxzz

�

(−1)
�
(0)(1)szxx − (0)(−1)szyy

�

⎤
⎥
⎥
⎦

The calculation of the error vector of YFXZ using the 
conventional method was shown in Section 2, as follows:

(38)
⎡
⎢
⎢
⎢
⎣

Ex

Ey

Ez

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

δxx − δxy + δxz − εzy� + εyx� − εyy� + sxz�

δyx − δyy + δyz − εzy� − εxx� + εxy� + syx� − syz�

δzx − δzy + δzz + εyy� + εxy�

⎤
⎥
⎥
⎥
⎦
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As shown by the results of Eqs. (37) and (38), the con-
ventional and proposed methods are in perfect agreement. 
Therefore, the use of the unified error model for a vertical 
configuration (YFXZ) has been demonstrated and validated.

4.2  Example of horizontal type configuration (ZFXY)

Herein, the unified error model is utilized again for a hori-
zontal milling machine (ZFXY). The similar procedure is 
described in the following:

Step 1: Input the characters from the name of the con-
figuration:
a → z; b → x; c → y;

Step 2: Determine the parameters:
Lz = − 1 (Z-axis is attached to the workpiece side); 
 Lx = 1;  Ly = 1;
Rz = − 1 (Z-axis is attached to the workpiece side); 
 Rx = 1;  Ry = 1;
Wz = 1 (Z-axis is attached to the workpiece side); 
 Wx = 0;  Wy = 0;
Kz = − 1 (Z-axis is attached to the workpiece side); 
 Kx = 1;  Ky = 1;
λz = 0; λx = 0 (in the Y-axis error component), λx = 1 (in the 
Z-axis error component); λy = 1; (P-S-T order is Z-X-Y).
Φ =  + 1 (ZFXY is the forward direction);
Step 3: Substitute the characters and parameters into 
the unified error model formula:

Substituting values: 

Combining the results:

The procedure of the conventional method is applied to 
calculate the error vector of ZFXY in the same way as the 
calculation of YFXZ, as follows.

The results of Eqs. (41) and (43) again show the agree-
ment between the conventional and proposed methods.

Although only two examples are presented here, it is 
expected that the unified error model can correctly generate 
error vectors for all 24 configurations, regardless of type 
(i.e., vertical or horizontal).

4.3  Conversion between different configurations 
sharing similar structural form

From a pre-derived formula of a configuration (YFXZ), 
another configuration that shares a similar form (ZFXY) 
can be derived under the assumption that the primary axis 
is closest to the workpiece and the third axis is closest to the 

(40)

⎡
⎢
⎢
⎣

EPDGE−linear−z

EPDGE−linear−x

EPDGE−linear−y

⎤
⎥
⎥
⎦
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⎡
⎢
⎢
⎣

(−1)δzz + (1)δzx + (1)δzy
(−1)δxz + (1)δxx + (1)δxy
(−1)δyz + (1)δyx + (1)δyy

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
⎣

EPDGE−normal angular−z

EPDGE−normal angular−x

EPDGE−normal angular−y

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

(1)
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(1)εxzy + (1)(1)εxxy − (−1)(1)εyzx

�
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�
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�

⎤
⎥
⎥
⎦
,

⎡
⎢
⎢
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EPDGE−special angular−z
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⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

(1)
�
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⎤
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⎥
⎦
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⎡
⎢
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⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

(1)
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(1)(1)szyy − (1)(1)szxx

�
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�
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(0)(1)syxx − (0)(−1)syzz

�

⎤
⎥
⎥
⎦

(41)
⎡
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Ez

Ex

Ey

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

−δzz + δzx + δzy − εxz� + εxx� + εyz� + szy� − szx�

−δxz + δxx + δxy + εzz� − εzx� + εyz� − sxy�

−δyz + δyx + δyy − εzz� − εxz�

⎤
⎥
⎥
⎥
⎦
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⎥
⎥
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(43)
⎡
⎢
⎢
⎢
⎣

Ex

Ey

Ez

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
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δxx + δxy − δxz − εzx� + εzz� + εyz� − sxy�

δyx + δyy − δyz − εzz� − εxz�
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⎤
⎥
⎥
⎥
⎦

Converting characters:

(39)

⎡
⎢
⎢
⎣

Ea

Eb

Ec

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Ez

Ex

Ey
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⎥
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⎡
⎢
⎢
⎣

EPDGE−linear−z

EPDGE−linear−x

EPDGE−linear−y
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⎥
⎥
⎦
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⎡
⎢
⎢
⎣

EPDGE−normal angular−z

EPDGE−normal angular−x

EPDGE−normal angular−y
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⎥
⎥
⎦
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⎡
⎢
⎢
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EPDGE−special angular−z
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⎤
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⎥
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⎤
⎥
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⎡
⎢
⎢
⎣

EPDGE−linear−z
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⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Lzδzz + Lxδzx + Lyδzy
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⎤
⎥
⎥
⎦
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⎡
⎢
⎢
⎣

EPDGE−normal angular−z

EPDGE−normal angular−x
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⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

Φ
�
RzRyεxzy + RxRyεxxy − RzRxεyzx

�
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�
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�

Φ
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�

⎤
⎥
⎥
⎦
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⎡
⎢
⎢
⎣

EPDGE−special angular−z
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⎤
⎥
⎥
⎦
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⎣
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�
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⎦
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⎥
⎦
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⎢
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�
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�

Φ
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�

⎤
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⎥
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Combining the results:

The procedure of the conventional method is applied to 
calculate the error vector of ZFXY in the same way as the 
calculation of YFXZ, as follows.

The results of Eqs. (41) and (43) again show the agree-
ment between the conventional and proposed methods.

Although only two examples are presented here, it is 
expected that the unified error model can correctly generate 
error vectors for all 24 configurations, regardless of type 
(i.e., vertical or horizontal).

4.3  Conversion between different configurations 
sharing similar structural form

From a pre-derived formula of a configuration (YFXZ), 
another configuration that shares a similar form (ZFXY) 
can be derived under the assumption that the primary axis 
is closest to the workpiece and the third axis is closest to the 

(40)
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⎢
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⎢
⎢
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⎤
⎥
⎥
⎦
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⎡
⎢
⎢
⎣

EPDGE−normal angular−z
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⎤
⎥
⎥
⎦
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⎡
⎢
⎢
⎣

(1)
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(1)εxzy + (1)(1)εxxy − (−1)(1)εyzx
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− (1)
�
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�
(−1)(1)εzzx
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⎤
⎥
⎥
⎦
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⎢
⎢
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⎣
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�
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⎤
⎥
⎥
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⎦
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⎡
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⎣

−δzz + δzx + δzy − εxz� + εxx� + εyz� + szy� − szx�
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(43)
⎡
⎢
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⎣

Ex

Ey

Ez

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

δxx + δxy − δxz − εzx� + εzz� + εyz� − sxy�

δyx + δyy − δyz − εzz� − εxz�

δzx + δzy − δzz + εxx� − εxz� + εyz� − szx� + szy�

⎤
⎥
⎥
⎥
⎦

Fig. 12  The two steps for 
converting the error vector from 
one configuration to another

tool. Herein, using the rule for determining the Φ parameter, 
the error vector of YFXZ (backward direction configuration) 
can be converted to the error vector of ZFXY (forward direc-
tion configuration), as shown in Fig. 12.

The rule is that when converting the error formula 
of one configuration to another configuration sharing a 
similar form, after swapping the characters appropriately 
(e.g., converting YFXZ to ZFXY, y → z, and z → y), if 
both of these configurations are forward- or backward-
direction configurations, then Φ does not require updat-
ing. However, if they are not the same type, then Φ = − 1 
must be applied. This means that all error terms related 
to PIGEs and PDGE-angular errors must be multiplied 
by − 1. Herein, Φ = − 1 is required, because YFXZ is the 
backward direction type, whereas ZFXY is the forward 
direction type.

Step 1: Swap the characters:
Before the swapping step:

After the swapping step (y → z and z → y):

Step 2: Apply the change in Φ, from Φ = 1 to Φ = − 1 by 
multiplying all error terms relating the PIGEs and PDGE-
angular errors by − 1.

(44)

⎡
⎢
⎢
⎢
⎣

Ey

Ex

Ez

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

−δyy + δyx + δyz + εxy� − εxx� − εzy� − syz� + syx�
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⎤
⎥
⎥
⎥
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(45)
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Ez

Ex

Ey
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⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

−δzz + δzx + δzy + εxz� − εxx� − εyz� − szy� + szx�
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⎤
⎥
⎥
⎥
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The results after applying the change of Φ are as follows:
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⎡
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⎢
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−δzz + δzx + δzy + (−1)εxz� − (−1)εxx� − (−1)εyz� − (−1)szy� + (−1)szx�
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−δzz + δzx + δzy − εxz� + εxx� + εyz� + szy� − szx�

−δxz + δxx + δxy + εzz� − εzx� + εyz� − sxy�
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⎤
⎥
⎥
⎥
⎦

The result in Eq. (47) shows good agreement with the 
result obtained previously in Eq. (41). Once again, the 
availability of the unified error model is confirmed.



2668 The International Journal of Advanced Manufacturing Technology (2024) 134:2653–2673

4.4  Compensation strategy

The error vectors obtained from the unified error model can 
be converted easily into the compensation vectors (Fig. 13). 
The procedure has two steps, as follows:

Step 1: Multiply the error vector by ( − 1) to obtain the 
“raw” compensation vector.
Step 2: Multiply the components of the compensation 
vector in step 1 by ( − 1) if the axis is attached to the work-
piece side.

For example, in the vertical type configuration of 
YFXZ, the compensation vector should be treated 
in the machine coordinate system (MCS) as follows. 
Δx,Δy, and Δz represent the values that must be addi-
tionally input to the original machine coordinate val-
ues for correction.

In the conventional approach, compensation vectors 
had to be calculated separately, relying on the error vec-
tors for each configuration of the three-axis machine 
tools. However, by utilizing the unified error model 
developed in this study, the calculation of these com-
pensation vectors becomes considerably more straight-
forward (Fig.  14). When configuration names like 
YFXZ are input into the unified error model, it auto-
matically analyzes and computes each parameter, such 
as L,R,W,K, λ,Φ . Ultimately, it generates compensation 
vectors for the machine tools, enabling it to function as 
a universal compensator.

5  Experimental validation

The unified error model was experimentally validated 
through its implementation on a YFXZ type vertical three-
axis testbed, as illustrated in Fig. 15. The testbed employs 
THK linear motion guides (SSR 15&20) and ball screws 
(BNK 1505&2005), and it is driven by a PC-based controller 

(48)
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⎢
⎢
⎢
⎣
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Δy
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⎤
⎥
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⎦
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⎡
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δxx − δxy + δxz − εzy(−1)� + εyx� − εyy� + sxz�

δyx − δyy + δyz − εzy� − εxx� + εxy� + syx� − syz�
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⎤
⎥
⎥
⎥
⎦

(LS Mecapion, MXP V2.0) that supports EtherCAT com-
munication. An encoder incorporated into the motor sup-
plies feedback instead of using a linear scale. The traversal 
distances for the X, Y, and Z-axes are 500 mm, 500 mm, and 
200 mm, respectively.

5.1  Measurement of geometric errors

The three squareness errors were assessed using Renishaw’s 
XK10 alignment laser system. This system includes a launch 
unit equipped with a diode laser and a pentaprism, which 
allows for a 90-degree beam switch. Moreover, an M unit, 
equipped with a 2-axis position-sensitive diode, enables 
position detection. This arrangement permits the meas-
urement of individual axes’ straightness errors as well as 
squareness errors between two axes. The 6 degrees of free-
dom (6-DOF) errors for each axis were measured using Ren-
ishaw’s XM-60 multi-axis calibrator. The XM-60 calibrator 
is composed of a laser launch unit and a receiver, facilitating 
wireless measurement of all 6-DOF motion errors simulta-
neously from a single setup.

Figure 16 offers a photograph depicting the measurement of 
the squareness error between the Y and X-axes, the Y and Z-axes, 
and the X and Z-axes. Figure 17 provides the measurement 
of the 6-DOF motion errors for the X, Y, and Z-axes. The 
corresponding results are illustrated in Fig. 18, with all errors 
being measured three times and then averaged. The assessed 
squareness errors between the Y and X-axes, Y and Z-axes, and 
X and Z-axes were determined to be  syx = 40 μrad,  syz = 558 μrad, 
and  sxz =  − 1238 μrad, respectively. These measured geometric 
errors indicate that the values are relatively large, primarily 
owing to the design characteristics of the testbed.

5.2  Compensation of geometric errors

After measuring the 21 geometric errors, they were utilized 
as inputs for both the error vector and the compensation 
vector, as derived from the unified error model. These vec-
tors were then applied to calculate volumetric errors and 
compensation values at arbitrary 3-dimensional coordinates. 
Following this, we measured and compared the geometric 
errors before and after applying compensation using the PC-
based controller.

Fig. 13  Compensation vector generating procedure
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(a) Conventional approach

(b) Proposed approach

Configuration #1
(FXYZ)

Configuration #2
(XFYZ)

…

Configuration #24
(YXZF)

Compensation vectorError vector

PIGEs

Linear
PDGEs

Angular 
PDGEs

Unified error modeling

Unified
error model

Fig. 14  Comparison of the conventional and proposed approach for compensation vector generation

Fig. 15  Vertical three-axis testbed for experiments

The 6-DOF motion errors were measured within the 
machine coordinate system to calculate the volumetric 
errors. Among these errors, certain linear ones were uti-
lized after eliminating the influence caused by angular 
errors, considering the actual measured location. Fig-
ure 19 visually presents the 3-dimensional volumetric 
errors as a scatter plot within the working volume of the 
three-axis testbed. It can be noted that the volumetric error 
is predominantly influenced by angular errors, encompass-
ing squareness errors. At the position where x = 500 mm, 
y =  − 500 mm, and z = 0 mm, the maximum error recorded 
was 403.3 µm.

Among the various methods available for implementing 
compensation values in the controller, we have elected to use 
the approach of modifying the G-code. While this method does 
not afford real-time compensation, we maintain that it is suf-
ficient to validate the effectiveness of the unified error model.

Following the modification of the G-code based on 
the compensation vector, we measured and compared 
the three squareness errors and nine linear errors to the 
results obtained prior to applying compensation. The 
results, depicted in Fig. 20 and Table 3, reveal that the 

compensation has led to a significant improvement in both 
squareness and linear errors, exhibiting an improvement 
of at least 85%.
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Fig. 16  Measurement of square-
ness errors between three linear 
axes

(a) Y and X-axes

(b) Y and Z-axes

(c) X and Z-axes

Y-axis

Launch unit

M unit

Launch unit

M unit

Pentaprism

X-axis

Launch unit

M unit Pentaprism

Launch unit

M unit

Y-axis

Z-axis

Pentaprism

Launch unit

M unit

Launch unit

M unit

X-axis
Z-axis



2671The International Journal of Advanced Manufacturing Technology (2024) 134:2653–2673 

(a) X-axis        (b) Y-axis (c) Z-axis

Launch

Receiver
Launch Receiver

Launch

Receiver

Fig. 17  Measurement of 6-DOF motion errors
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Fig. 19  Visualization of 3-dimensional volumetric error
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6  Conclusion

This paper presents a new approach for providing a unified 
error model to generate error vectors for all 24 configurations 
of three-axis machine tools, with six selections of primary-
secondary-third orders of axes. Instead of considering all 
geometric errors simultaneously, the proposed method 
systematically analyzes the errors of a few subgroups and 
recombines the error terms in the final step. Thus, this 
approach clearly clarifies the influence of geometric errors. 
By employing the unified error model, the computational 
cost of calculating error and compensation vectors for all 
24 configurations can be minimized, enabling its versatile 
application as a universal compensator.

(1) The proposed unified error model has been theoretically 
verified through comparison with a conventional method for 
two representative three-axis machine tool configurations.

(2) The unified error model can be applied to not only 
generate error vectors for all configurations but also 
to convert error vectors of a particular configuration to 
other configurations sharing the same structural form.

(3) The compensation vectors can be easily obtained from 
the unified error model for all configurations of three-
axis machine tools. As a result, they are expected to be 
valuable in the development of a compensation software 
module aimed at improving the accuracy of three-axis 
machine tools.

(4) The application of the proposed method to a vertical 
three-axis testbed, which has led to a significant improve-
ment in accuracy after offline compensation, has con-
firmed the effectiveness of the proposed approach.    
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