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Abstract
While incremental sheet metal forming offers the potential for producing sheet metal parts in small lot sizes, the relatively
low forming accuracy prevents widespread industrial use. For improving the forming accuracy, research institutes are using
machine learning techniques to predict the geometric accuracy and modify the toolpath based on the prediction. A critical
challenge is it to ensure the generalizability of the prediction model as only a small amount of process data is available to
train the model due to the lack of industrial collaborations. This publication presents a highly transferable feature engineering
approach where surface representations of the part’s geometry around each toolpath point are transferred into a standardized
coordinate system. Several artificial neural networks were trained and used for predicting the forming accuracy andmodifying
the toolpath. During the validation experiments, the forming errors of parts which were independent of the training process
were reduced by up to 68.5 %. The framework for computing the surface representations alongside with several pre-trained
artificial neural networks is publicity available for download.
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Abbreviations
ANN Artificial neural network

AutoML Automatic machine learning
DPIF Duplex incremental forming
DSIF Double sided incremental forming
FDB Full database
FEA Finite element analysis
ISF Incremental sheet forming
LPS Chair of production systems
ML Machine learning
ROI Region of interest
SPIF Single point incremental forming
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TCP Tool center point
TPIF Two point incremental forming

Nomenclature
i Point counter
j Initial value
n Number of points
P Prediction
s Smoothed

1 Introduction

Forming sheet metal components without the need for part-
specific tooling can be done by incremental sheet forming
(ISF). It is an ideal process for producing sheet metal com-
ponents in small batches, such as required in prototyping,
because the part is shaped by a hemispherical tool and the
driven toolpath, which allows for easy modifications of the
created geometry.However, a broad industrial use is hindered
by the process’s limited geometrical accuracy. To reduce the
forming error by predicting it and modifying the toolpath
according to the expected error, a lot of research focuses
on finite element analysis (FEA) [1]. Despite the extensive
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research by numerous research institutes, FEA is currently
not capable of simulating the ISF process with sufficient
accuracy while also exhibiting the disadvantage of a time-
consuming modeling and computing phase. The main cause
for the low simulation accuracy is the various process param-
eters and their complex nonlinear relationships with each
other [2]. Recently, researchers have focusing on the appli-
cation of machine learning (ML) techniques for predicting
several process-specific dimensions [3]. These include form-
ing accuracy [4], surface quality [5], tool load [6], forming
temperature [7], the pillow effect [8] and the material flow
curve [9]. Due to the lack of industrial ISF production lines,
the data used for training the ML models has to be gath-
ered by the research institutes themselves. This limits the
amount of available data and therefore the transferability of
the ML models. To enable generalizability, we present a fea-
ture engineering approach where the local geometry around
each toolpath point is transformed into a standardized coor-
dinate system and mathematical surface representation. An
overview of the individual steps of the approach is given in
Fig. 1. Afterward, the surface representations were used to
train artificial neural networks (ANN) which exhibit a good
prediction performance on independent parts. The predic-
tion of the forming error was used to adjust the toolpath
and decrease the forming error accordingly. To enable other
researchers, the application of the approach, the trained
ANNs, and the framework capable of computing the sur-
face representations alongside various other functionalities
is published for download [10].

2 Machine learning in ISF

The recent artificial intelligence hype led to numerous novel
applications in almost all scientific fields. In ISF, researchers
used ML algorithms for predicting various aspects of
the forming process such as the forming accuracy [11].
Although, Nagargoje et al. [3] and Harfoush et al. [12] inde-
pendently of each other concluded that more process data
is a necessity for increasing the prediction accuracy of the
ML approaches, while reviewing the state-of-the-art. Most
publications used only a handful of geometries with slight
variations for establishing a process database because of the
experimental expenditure. Therefore, a portion of the authors
used a cluster analysis approach to build up a database of
70 individual and diversified forming experiments (see sec-
tion 3.1) [13] that is the foundation for ML training in this
publication.While this is currently the largest ISF database it
still only contains a fraction of data compared to datasets of
real-world production lines with thousands of parts [14] or
the extensively labeled datasets for self-driving vehicles [15].
Therefore, it is crucial to use feature engineering for gath-

ering the maximum amount of information from the limited
available process data. While it seems intuitive to rasterize
the part geometry two-dimensionally with the height of the
grid field as input for the artificial neural network analog
to the brightness of the individual pixels when processing
pictures, this would cause several problems. To achieve a pre-
cise prediction for the whole part, the individual grid fields
need to have dimensions of distinctively under a millimeter
what would result in a high resolution, even for small parts.
In combination with the small amount of data, this would
lead to the curse of dimensionality [16]. Therefore, a more
efficient mathematical description of the parts with a lower
dimensionality than the rasterization is needed. Typically,
non-uniform rational B-splines are used in CAD for describ-
ing part geometries. These have the disadvantage that their
non-linearity results in long computation times and complex
implementations when used in ML [17]. One technique used
in ISF is the dissection of the part into individual geometry
features such as radii or planar surfaces [18]. Behera et al.
combined geometry feature detection algorithms with multi-
variate adaptive regression splines for toolpath optimization
[19]. Although, the use of geometry features limits the trans-
ferability of the approach as free-form surfaces can not be
properly categorized. In their studies, they concluded that
the forming error is strongly dependent on the geometry fea-
tures close by and therefore the local geometry [20]. Forces
and torques which are induced by forming are absorbed
by the sheet surrounding the tool and have therefore only
a neglectable influence on distant sheet areas. Therefore,
the amount of available process data could be increased by
dividing the part into different fields and rasterizing these
afterward. This yields more individual data sets while also
decreasing the necessary resolution of the rasterizationwhich
counteracts the curse of dimensionality. Khan et al. built up
on this idea and introduced local geometrymatrices formath-
ematically describing the local geometry [21]. El Salhi et al.
expanded the concept by only considering a few points on
the surface and weighting their influence according to the
distance [22]. However, using a fixed rasterization still has
several disadvantages. The prediction itself is only valid for
the center of the grid field. Furthermore, for improving the
forming accuracy the CAD file needs to be altered accord-
ing to the prediction. It is mathematically challenging to
modify the part in a way that it is still possible to calcu-
late a valid toolpath. To solve this problem, we present an
approach where the local geometry around every toolpath
point is transformed into a standardized coordinate system.
The description of the local geometry resembles the model
input and the forming error of the toolpath points in the nor-
mal direction of the model output. Therefore, the toolpath
can be directly adjusted while also ensuring a good training
performance due to the standardized coordinate system and
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Fig. 1 Flowchart of the
individual steps of the feature
engineering approach where
local surface representations of
the geometry surrounding every
toolpath point are used to train
artificial neural networks

therefore great transferability. To improve the prediction of
the trained ANNs, several different local surface representa-
tion were implemented.

3 Forming setup

Numerous variations of the ISF process were developed over
time. These can be categorized by the kind and quantity of
tools, the machinery, toolpath strategies, and auxiliary com-
ponents like heated elements and unique clamping arrange-
ments.A roboforming systemwas used to conduct the studies
(see Fig. 2). Roboforming is part of duplex incremental
forming (DPIF), also referred to as double-sided incremental
forming (DSIF) [24]. In DSIF, the sheet is actively formed

Fig. 2 Forming setup at the chair of production systems (LPS). The
forming experiments were carried out by two KUKA KR600 robots,
each driven by KRC4 controller (background)[23]

123

4925The International Journal of Advanced Manufacturing Technology (2024) 133:4923–4938



by a tool that is usually hemispherical, with assistance from
a second tool on the sheet’s reverse. In the roboforming pro-
cess, these tools are driven by industrial robots. Therefore, the
large workspace, broad distribution, great kinematic flexibil-
ity, and comparatively cheap investment costs of industrial
robots are all advantageous to the process. Conversely, indus-
trial robots’ open kinematic chains result in low system
stiffness and deflections as a result of forming forces, neces-
sitating stiffness compensation during the process [23]. The
two distinct tools being used enable DSIF-specific process
parameters. The tool center point of the supporting tool on
the backside can be rotated around the forming tool to a
specific degree, known as the supporting angle, while the
forming tool’s position is fixed during the forming process
based alongside the pre-calculated toolpath. Together with
the second distinct roboforming process parameter, the sup-
porting force, the supporting angle demonstrates its benefits.
On the reverse side of the sheet, the supporting tool applies a
set supporting force in a specific direction using force control.
This results in superimposed stress, which positively affects
material flow, enhances the forming accuracy, and increases
the maximum formable wall angle [25].

3.1 Process database

The training of the ANNs was carried out with the DB4ISF
databasewhichwas createdwith the same forming setup [13].
Störkle et al. laid the foundation for establishing this database
[26]. They carried out 35 individual forming experiments. In
all the experiments, they used the same base geometry (see
Fig. 3G6). The geometry exhibits awide range of convex and
concave radii to cover a lot of process states and enable a gen-

eralization of the approach. Furthermore, the geometry was
extruded with different wall angles ranging from 30 to 60◦
in 5◦ steps. Additionally, to the part’s geometry, the general
process parameters (step depth, supporting force, support-
ing angle) were varied in the experiments. Latin hypercube
sampling was used to conduct the experimental design [26].
Even though the database consisted of 35 forming experi-
ments with varying parameters and 526,734 toolpath points
in total, the data was still too similar for a good general-
ization. Möllensiep et al. extended the database by forming
five new parts which consist of various different geometry
features (see Fig 3 G1–G5) [36]. These were systematically
derived with a cluster analysis approach where gaps respec-
tively missing geometry features in the initial database were
detected. The corresponding geometry features in the gaps
were automatically generated and assembled to the new part
geometries. Furthermore, the process parameterswere varied
during the 35 new forming experiments, similar to the initial
experimental design. During the forming experiments, three
parts cracked and were removed from the database. In total,
DB4ISF consists of 67 successful forming experiments with
982,806 toolpath points which were used for training the
ANNs. The data of the validation experiments of this publi-
cation was added to the database afterward.

4 Surface representations

To enable a direct modification of the toolpath according to
the prediction, the part’s geometry surrounding every tool-
path point is used as input for the ANNs. As only the near
environment of the toolpath point has a direct influence on
its accuracy, a region of interest (ROI) is specified in the first

Fig. 3 Overview of the part geometries that were used for establishing a database. The geometries G1–G5 were conducted by a cluster analysis
approach based on the initial geometry G6
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step. Every portion of the geometry outside of a square with
a definable length around the toolpath point is cut off. After-
ward, the part geometry is transformed into a standardized
coordinate system as the part orientationwould have an influ-
ence on the prediction results while being inconsequential
for the forming process. The center of the coordinate system
is the toolpath point. The coordinate system’s Y -axis points
toward the next toolpath point while the Z-axis maintains its
orientation in the main forming direction. The X-axis ori-
entation is set accordingly. After transforming the local part
geometry, the local surface representations can be computed.
As it is not possible to estimate their prediction performance
prior to the training process, their required amount of vari-
ables should be limited to around 100 as the best surface
representation has to be determined by computation-heavy
trial-and-error. Furthermore, the number of variables and the
resolution of the representation should be scalable to further
improve the prediction results and be able to adjust to new
part sizes. We’ve developed five different surface representa-
tions: compensation planes, intersection curves, point series,
point cloud rings, and a curvefit grid. They are computed
based on an stl-file of the part. For most of the local surface
representation, the same pre-processing steps are required.
The mesh of the stl is refined where the parameter subsam-
ple distance specifies the maximum distance between two
connected nodes. This is required for intersection operations
with the edges as they could be outside the ROI without
refinement. Furthermore, some of the surface representa-
tions require a grid with equally spaced nodes along the
XY-plane. Here, the parameter grid stepsize specifies the dis-
tance between the grid lines.

4.1 Compensation planes

The idea behind the compensation planes surface represen-
tation is it to approximate the surface with several individual

planes. To do so, the ROI is divided into a grid and a plane
is fitted for every grid field (see Fig. 4, all following dis-
played surface representations are computed for the same
ROI). Every patch is specified by its center and normal vector.
For the center, only the Z-value is considered as the position
is fixed in themiddle of the patch. The number of patches can
be specified with a parameter. One problem arises during the
computation of all surface representations. At the base of the
part, the ROI could extend over the edge of the part. There-
fore, the surface representations can not be calculated in these
areas. However, it is mandatory to provide all input variables
to theANN. To be able to compute these, the edges of the part
are extended with a constant height if this is the case. This
has the possibility to lead to bad prediction accuracies. The
resulting planar surface is identical to unformed areas in the
base sheet. These are typically the areas with one of the high-
est inaccuracies as they are not actively formed and therefore
not work-hardened. This is the complete opposite of areas at
the edge of the stl-file. Here, the sheet is clamped and does
not move at all. To differentiate between these, the prolon-
gation of the part can be translated in negative Z-direction
by the parameter extension offset. Even though this would
be advantageous for all surface representations, only in the
case of the compensation planes the representation can be
computed without approximation problems.

4.2 Intersection curve

To compute the intersection curve approximation, the XY -,
XZ-, and YZ-plane are intersected with the part’s geometry
(see Fig 5a). As they pass through the origin and therefore
the toolpath point, they cover the most important area and
neglect the far-off corners of the ROI. The intersection curve
consists of the intersection points of the planes with the stl-

Fig. 4 Depiction of the ROI of one toolpath point with all toolpath points inside it (a) and the corresponding compensation planes surface
representation (b)
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Fig. 5 Intersection curve consisting of the intersection points between the stl-mesh and the basic planes (a) and the corresponding division into
segments with an arithmetic mean and mean vector (b–d)

Fig. 6 Rasterization into a grid with the arithmetic mean of the indi-
vidual grid fields of the point series approximation

mesh.While these intersection curves could be approximated
by polynomials, this could lead to the need for more com-
plex ANNs, especially in the case of polynomials of large
degree [27]. Therefore, it’s approximated in another way.
The intersection curve has also the problem, that its length
varies depending on the part geometry. As the amount of
input variables for the ANN needs to be constant, one can
not simply take the coordinates of the intersection points
along the curve. Instead, the curve is divided into a specified
amount of segments (point groups, see color separation in
Fig. 5). The segments are described by the arithmetic mean
of the individual points in the segment and the mean vec-
tor to their next point along the curve (see Fig. 5b–d). As
the points are not evenly spaced along the curve, this could
distort the approximation. Therefore, intersection distance
specifies the maximum distance between two points. If the
distance between two points is too large, new points are inter-
polated.

123

4928 The International Journal of Advanced Manufacturing Technology (2024) 133:4923–4938



Fig. 7 Depiction of the point cloud rings approximation by intersecting cylinders with the geometry (a) and their division into linearly interpolated
segments (b)

4.3 Point series

The point series approximation is similar to the approach by
El Salhi et al. [22]. It is a simplified version of the compen-
sation planes surface representation. The ROI is rasterized
into a grid where the number of patches can be specified as a
parameter as well. On the contrary, only the arithmetic mean
of the patch is consideredwithout the normal vector of a fitted
plane (see Fig. 6). As the position of the patch and its mid is
fixed, only one parameter, the Z-value, is enough to describe
the patch. Therefore, a higher amount of patches can be con-
sidered compared to the compensation planes approximation
without having as much input variables for the ANNs.

4.4 Point cloud rings

The point cloud rings approximation is similar to the inter-
section curve approximation. Instead of planes, cylinders
around the origin with different radii are used for the inter-

section with the stl-mesh. The result of the intersections
is ring-shaped curves composed of individual points (see
Fig. 7a). The different cylinders have a parameterizable dis-
tance between each other (ringcurves stepsize) until they fill
out the ROI. The analogy to the intersection curve, the rings
are divided into different segments (number of segments).
Afterward, the individual segments are interpolated linearly
according to their degree around the center and their Z-value.
The coefficients of the interpolation are used as ANN input.

4.5 Curvefit grid

Lastly, the curvefit grid approximation is also based in inter-
sections. Planes in the XZ- and YZ-plane are intersected
with the part geometry (see Fig. 8a). They are evenly spaced
according to the curfefit grid stepsize parameter. In contrary
to the intersection curve approximation, the individual inter-
section curves can not be approximated in an equal level of
detail due to their higher number. Instead, they are approx-

Fig. 8 Evenly spaced intersection curves of the curvefit grid approximation due to intersections between the part and planes in the XZ- and YZ-plane
(a) and their second-degree polynomial approximation (b)
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Table 2 Accuracy of the trained ANNs and the chosen structure

Surface re- MSE MAE Optimizer ANN hidden Learning
presentation [mm2] [mm] layer structure rate

ANN1 1.2423 0.8247 Adam 512-32-1024 0.001

ANN2 0.7216 0.6603 Adam weight decay 256-1024-512 0.001

ANN3 0.6815 0.6405 Adam weight decay 64-256-1024 0.001

ANN4 0.7767 0.6805 Adam weight decay 1024-512-32 0.001

ANN6 1.2455 0.8943 Adam weight decay 128-1024 0.001

ANN7 1.2348 0.8580 Adam weight decay 128-64 0.001

ANN8 1.3219 0.8944 Adam 256-512-32 0.001

ANN9 1.1040 0.8104 Adam weight decay 256-512-512 0.001

ANN10 1.2087 0.8245 Stochastic gradient decent 512-128-dropout (0.25 %) 0.01

ANN11 1.4545 0.9551 Adam weight decay 1024-64 0.0001

ANN12 1.3006 0.9052 Adam 64-1024-256 0.001

ANN13 1.1686 0.8495 Adam 32-256-32 0.001

ANN14 1.4960 0.9368 Adam 128-1024-32 0.001

ANN15 1.5420 0.9794 Adam weight decay 128-1024-32 0.001

ANN16 1.2863 0.8905 Adam 512-256-128 0.0001

ANN17 1.8955 1.1421 Adam weight decay 1024-64-32 0.001

ANN18 1.5196 0.9821 Adam weight decay 512-1024 0.001

ANN19 1.3007 0.9044 Adam weight decay 1024-256-32 0.001

ANN20 1.4284 0.9595 Adam 512-256-1024 0.001

ANN21 1.5325 0.9009 Adam weight decay 512-512-512 (batch normalization) 0.001

ANN22 1.7611 1.0313 Adam weight decay 32-1024-256 0.001

ANN23 1.4335 0.9575 Adam 1024-1024-256 0.0001

ANN24 0.9234 0.7484 Adam weight decay 32-1024-128 0.001

ANN25 1.0904 0.8256 Adam weight decay 512-1024 0.001

ANN26 2.1810 1.2566 Adam weight decay 512-16 0.001

imated by a polynomial of the second degree (see Fig. 8b).
Therefore, every intersection curve can be described by the
three polynomial coefficients.

5 Automatic machine learning

The surface representations are afterward used as the input
variables during the training process to predict the form-
ing error in the normal direction of every toolpath point.
As it is unclear what representation is a suitable input, the

training process is standardized by using automatic machine
learning (AutoML). Software-wise, TensorFlow [28], Keras
[29] and AutoKeras [30] are used because their ANNs can
be imported easily into the pre-existing pathplanning pro-
grams for roboforming written in MATLAB. Due to the
excessive computation times of several hours for one sur-
face representation of one toolpath, only a fraction of the
DB4ISF data is used in the first step. Three experiments of
G1-G5 each and four of G6 are used, resulting in 19 exper-
iments and 280,070 toolpath points (E02, E04, E06, E09,
E11, E13, E16, E18, E20, E23, E25, E27, E30, E32, E34,
E38, E48, E58, E68). Alongside the surface representation,

Table 3 Prediction accuracy of the former three best ANNs, now trained with the full database excluding the majority of part G6 to prevent
overrepresentation

Representation MSE [mm2] MAE [mm] ANN structure Optimizer Learning rate

Intersection curve (ANN3FDB) 0.6695 0.6302 1024-1024-1024 Adam weight decay 0.0001

Compensation planes (ANN9FDB) 1.0772 0.8018 512-1024-512 Adam weight decay 0.001

Curvefit grid (ANN24FDB) 0.9327 0.7635 1024-1024-128 Adam weight decay 0.0001
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Fig. 9 Depiction of the two circulations each at three different spots of
Fig. 10, starting from the outside

Fig. 11 Principle of the toolpath adjustment in the opposite direction
of the prediction of the ANN

Fig. 10 Comparison between the prediction of ANN3FDB and the measured forming error of experiment E02 of part G1 which was used as part
of the test data

Table 4 Influence of the smoothing parameters on the accuracy of the prediction of ANN3FDB on E02

Distance [mm] Iterations MSE before [mm2] MSE after [mm2] Variance before [mm2] Variance after [mm2]

5 1 0.8079 0.7984 0.1005 0.0636

5 2 0.8079 0.8027 0.1005 0.0514

8 1 0.8079 0.8056 0.1005 0.1196

8 2 0.8079 0.8253 0.1005 0.0951
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the following general process parameters are also used as
input variables: step depth, sheet thickness, tool radii, sup-
port angle, and support force. However, sheet thickness and
tool radii were identical in all experiments and neglected
during the preprocessing. To find the best surface represen-
tation, the training is executed according to an experimental
design (see Table 1). The parameterizable variables of the
representations and common variables like the ROI radius
are varied in fixed steps to make them reusable for other rep-
resentations and reduce computation times. We’ve aimed to
train five different ANNs for every surface representation.
However, the representations for ANN5 could not be fully
computed for thewhole database due to algorithmicproblems
with the high ROI and the intersection. The compensation
planes were trained two additional times to cover the influ-
ence of the extension offset (ANN10, ANN11). In the case of
the curvefit grid representation, one highly detailed parame-
ter combination’s computation was aborted as it would have
taken weeks to finish. As the data of the individual forming
experiments is to some degree similar due to the incremental
nature of the process, no standard train-validation-test-split
was used. Instead, the data of G1 (E02, E04, E06) was used
as test data, and 20 % of the remaining data was used for
validation. All data was normalized to exhibit a mean of 0
and a variance of 1. Tensorflow was used for final training
and AutoKeras for hyperparameter tuning. Stochastic gradi-
ent descent [31], Adam [32] and Adam with weight decay
[33] could be chosen as optimizer. All ANNs had the same
base structure consisting of input for structured data, struc-
tured data block, and a regression head. The structured data
block consisted of variation layers and neurons with optional
dropout- or batch-normalization-layers. The regression head
used the mean squared error (MSE) and was fed with the
forming error in the normal direction of the toolpath point.
While the learning rate couldbevariedduring the training, the
number of epochs and trials was set to 20, and the activation
function to ReLu. When looking at the results (see Table 2),
it can be observed that for most surface representations the
MSE and mean absolute error (MAE) are between 0.9 and
1.6 mm/mm2. The prediction is best for ANN2 and ANN3
and worst for ANN16, ANN22, and ANN26. With regard to
the region of interest, it can be seen that a value of 50mm for
the radius provides the best result for most representations.
Only for the compensation planes are the predictions similar
for all ROIs and for the point series representation the pre-
diction for the ROI radius of 20mm exhibits the best results.
In most cases, varying the other parameters only yields small
differences. The best results are shown for the intersection
curve approximation. With a mean square error of 0.6815
mm2, the prediction for ANN3 is the most accurate. ANN2

also delivers a very good result, while ANN4 is somewhat
less accurate. The prediction is worst for ANN1. The use
of an ROI radius of 20mm therefore appears to produce less
accurate results. The predictions for the compensation planes
are the third best on average. All are in the same range and
achieve an MSE that is approximately 0.5 mm2 worse than
for the intersection curve approximation. ANN9 has the best
result with an MSE of 1.10396 mm2. The extension offset
does not appear to have a positive influence on the predic-
tion and will therefore not be considered in future research.
An offset of 15mm provides similar values for the two rep-
resentations as without the offset. Similarly, no significant
differences can be recognized for a higher or lower resolu-
tion of the ROI point cloud for the four representations based
on it. The predictions for the point series representation are
worse, with only ANN13 achieving a good prediction qual-
ity of 1.1685 mm2 MSE. The point cloud ring representation
delivers similar results. The best result is a mean square error
of 1.3007 mm2 for ANN18. The curvefit grid representa-
tion shows the best prediction for ANN24 with an MSE of
0.9234 mm2. The predictions for the representation with an
ROI radius of 50mm are significantly better than the others.
As the best results are shown for the intersection curve, the
compensation planes and the curvefit grid representations,
ANN3, ANN9, and ANN24 are selected for further analy-
ses.

5.1 Training with the complete database

To improve the prediction accuracy of the three best ANNs
(ANN3, ANN9, ANN24), the training is repeated with a
higher amount of data. For G1-G5 all available data is used.
As G6 resembles half of the DB4ISF database, only 10
individual experiments are used for training to prevent over-
representation. For simplicity, this subset is still referred to
as a full database (FDB) in the following. All in all, 42 form-
ing experiments with 632,380 toolpath points and therefore
input rows are used for training. Identical to before, all exper-
iments of part G1 are used as test data, and 20 % of the
remaining data is used for validation. The amount of trials
is increased to 50, while all other options remained identi-
cal. The accuracy of the newly trained ANNs is presented
in Table 3. Their accuracy is only slightly better than that
with data of only 19 forming experiments. The best result
is again provided by the intersection curve approximation
(ANN3FDB) with an MSE of 0.66953 mm2. Compared to
the ANNs calculated with 19 tests, theMSE for the networks
is about 0.03 mm2 better, only for the curvefit grid represen-
tation the prediction is 0.01 mm2 worse. The fact that no
significantly better predictions are achieved by the exten-
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Fig. 12 Parts used in the validation experiments

sion could be due to the fact that although more forming
experiments are used for training, these describe the same
geometries. The differences between the geometries have
the greatest influence on the deviations of the components.
Although expanding the training data increases the size of the
training table, it does not increase the number of geometric
features that are included in the training. Tuning the hyperpa-
rameters by hand only yielded neglectable results, although
it could be observed that a high learning rate worsened the
prediction accuracy by a lot. Nevertheless, the trained ANNs
still achieve a really good prediction accuracy. When analyz-
ing the prediction of ANN3FDB, which had the lowest MAE
and MSE, for part G1 which was used as test data, it can
be seen that the prediction and measured forming error are
really close together, exemplarily shown for E02 in Fig. 10.
The figure depicts the prediction for two circulations each
at three different points of the geometry, starting from the
outside (see Fig. 9). As it can be seen, the prediction is really
close to the actual trend of the forming error, even at high
peaks. Although, there are some small kinks. These resem-
ble a problem if the toolpath should be modified according
to the prediction. While there are advanced approaches that
use Fourier-transformation [34] or weighting factors [19], it
is still common to offset the toolpath points in the direction
opposite to the prediction, what was also done during this
research (see Fig. 11). This leads to kinks in the toolpath. As
the robots are utilizing a stiffness compensation and force
control, those kinks would stimulate the system and result
in oscillations which would worsen the forming accuracy.
Therefore, the modified toolpath needs to be smoothed.

5.2 Path smoothing

To smooth the toolpath, we have applied a weighted three-
dimensional Laplacian smoothing [35]. All other toolpath
points and their prediction inside a distance around the
smoothed toolpath point are considered. Their influence is
weighted according to their distance toward the smoothed
toolpath point to increase the influence of closer points. Let

there be the prediction of the forming error in normal direc-
tion P with j denoting the initial prediction of theANNand s
denoting the smoothed one, i numbering the toolpath points
inside the smoothed area and n as their total amount, then the
prediction can be smoothed according to following equation:

Pj,s = Pj +

n∑

i=1

Pi
Pj Pi

n∑

i=1

1

Pj Pi

(1)

The smoothing can be repeated to increase its effect.
However, if the smoothing is too strong, the prediction accu-
racy could be decreased.When comparing several smoothing
options, it can be seen that a large smoothing distance has a
negative influence on the prediction accuracy (see Table 4).
While the MSE is almost unaffected by the smoothing, the
variance decreases especially for a smoothing distance of
5mm and two smoothing iterations. The variance is espe-
cially important for a smooth robot movement. Therefore,
these parameters are used to smooth the prediction in the
validation experiments. Amore detailed analysis of the influ-

Table 5 Prediction accuracy of the three best-performing ANNs for the
three validation geometries, formed with standard process parameters

ANN Formed geomtry MSE [mm2] MAE [mm]

Val1 0.7176 0.5571

ANN3FDB Val2 1.9770 1.2542

Val3 0.8925 0.6889

Val1 0.6887 0.5127

ANN9FDB Val2 1.8404 1.1679

Val3 0.9711 0.7682

Val1 0.8527 0.7068

ANN24FDB Val2 1.0871 0.7570

Val3 1.0919 0.8908

123

4934 The International Journal of Advanced Manufacturing Technology (2024) 133:4923–4938



ence of different smoothing parameters should be researched
in the future.

6 Validation

To validate the accuracy of the prediction of the ANNs and
their potential to increase the forming accuracy by modify-
ing the toolpath, three new parts were designed that have
not been part of the training process (see Fig. 12). Val1
is a standard geometry that was used in many validation
experiments of the LPS as it features planar surfaces and
convex and concave radii. Val2 resembles a part that is dif-
ficult to form with ISF. The middle section suffers from
large forming errors due to subsequent deformation caused
by forces and torques induced by forming the surround-
ing areas. Lastly, Val3 possesses a plateau that could cause
forming errors as spiral toolpath contain only few toolpath
points in the area. The three formerly best-performing ANNs
(ANN3FDB, ANN9FDB, ANN24FDB) are used to predict
the forming accuracy of these three parts utilizing the stan-
dard general process parameters that were used in most
experimental studies of the LPS (sheet metal: 0.8 mmDC04,
step depth: 0.5 mm, tool radii: 4mm, support force: 250 N,
support angle: 0.95). Afterward, the prediction is smoothed
and the parts are formedwith the aforementioned parameters.
Lastly, the toolpath is modified according to the prediction
of ANN3FDB. The individual toolpath points are shifted in
the opposite direction of the predicted error in the normal
direction of the sheet. Afterward, the three validation parts
are formed utilizing the standard forming parameters without
adjusting the toolpath according to the prediction. Therefore,
these can be used as a reference for validating the achieved
improvements. When comparing the prediction accuracy of
the three ANNs for the validation parts, it can be seen that
none of the ANNs clearly outperforms the others. Instead,
every ANN is able to predict one part more precise that
the others (see Table 5). This indicates that ANN ensem-

Table 6 Forming accuracy of the three validation geometries with stan-
dard forming parameters and with a toolpath modified according to the
prediction of ANN3FDB

Val1 Val2 Val3

MAE [mm] 1.4883 1.7839 1.6320

MAE new toolpath [mm] 0.4701 1.4683 0.6693

Maximum absolute error [mm] 3.9460 11.1944 4.9788

Maximum absolute error new
toolpath [mm]

1.7311 13.6347 4.5871

bles might be a promising approach to research to combine
the advantages of the individual representations and there-
foreANNs. Especially asANN3FDBandANN9FDBexhibit
a similar prediction error, while ANN24FDB clearly out-
performs them for geometry Val2. Despite the differences
between the three ANNs, ANN3FDBwas used to modify the
toolpath to improve the forming result as is had the prediction
accuracy during the training process. The numeric improve-
ment is shown in Table 6 and the distribution of the forming
errors can be seen in Fig. 13. Particularly, the MAE could be
reduced substantially for Val1 (68.5 %) and Val3 (59.0 %).
Contrarily, the reduction for Val2 is minimal (17.7 %). The
reason for this small increase results partly from the worse
prediction performance of ANN3FDB. Although the main
reason is the middle section of the part, close to the lower
end of the geometry (see Fig. 14). Even with a perfect predic-
tion, it would be impossible to increase the forming accuracy
by simply shifting the toolpath points in the opposite direc-
tion of the prediction. This would bring them on the wrong
side of the initial flat sheet so that the tools would have to pull
instead of push at the start of the forming process which is
impossible with ISF. This also caused a crash of the support-
ing tool with the initial sheet. Therefore, this was prevented
by our toolpath planning software where toolpath points can
only be shifted until they reach the initial sheet plane. To fully
utilize the prediction capabilities of the presented ANNs, it is
mandatory to develop advanced methods of toolpath manip-
ulation. Nevertheless, the validation experiments of the parts
Val1 and Val3 demonstrate the already great potential of the
ANNs to predict and improve the forming accuracy.

7 Conclusion

Incremental sheet forming is a process capable of economi-
cally forming sheet metal parts in small batch sizes which
distribution is hindered by its low forming accuracy. To
increase the accuracy, the authors presented a highly trans-
ferable machine-learning approach based on local surface
representations of the sheet area surrounding each toolpath
point. In forming experiments of sheet metal parts that were
not part of the training process, the mean average forming
error could be reduced by up to 68.5 % by modifying the
toolpath according to the prediction of the formerly trained
artificial neural network. To enable it other research insti-
tutes to utilize and further develop the approach, the machine
learning framework, and all experimental data are published
as open-source. The results of the validation experiments
indicate that advanced toolpath modifying and smoothing
algorithms and ensemble deep learning methods are promis-
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Fig. 13 Distribution of the forming accuracy of the three validation geometries with standard forming parameters (left side) and with a toolpath
modified according to the prediction of ANN3FDB (right side)
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Fig. 14 Change of the absolute forming error of the validation geome-
tries formed with a toolpath modified according to the prediction of
ANN3FDB compared to the parts formed with standard parameters

ing approaches to even further increase the prediction and
forming accuracy.
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