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Abstract
Geometric error is a crucial factor influencing the spatial accuracy of CNC machine tools. A novel methodology for mod-
eling, measuring, and identifying geometric errors in multi-axis machine tools is proposed in this paper. Firstly, a synthetic 
volumetric error model is established by utilizing dual quaternions for multi-axis CNC machine tools. To characterize the 
relative position relationship between the tool and the workpiece, the kinematics model automatically incorporates the com-
plex coupling between position and orientation motion in an implicit way, enabling a concise and compact representation 
of the kinematics. Secondly, measure path planning includes candidate measurement positions which are screened to obtain 
the optimal position group by using observation indices and the modified Detmax method. Thirdly, a parametric modeling 
method based on exponential cosine fitting is proposed for representing both angular and linear errors, and an improved 
sparrow search algorithm and nested parameter uncertainty optimization are established to process curve fitting–based opti-
mization of the geometric error term. The fitting of the exponential cosine model is quantified with model uncertainty, and 
the nested uncertainty optimization method is employed to improve geometric error terms with a poor fitting effect. Finally, 
the effectiveness is demonstrated through experimental comparisons. The geometric error of a single axis has an average 
decreased of 69.7%, and the compensation rate of roundness driven by two-axis synchronization is an average of 68.7%. 
This method offers the advantage of quantifying the minimum optimal number of measurements and positions, improving 
the efficiency of parametric modeling.
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1  Introduction

High-precision manufacturing has emerged as an una-
voidable trend in the ongoing evolution of the equipment 
manufacturing industry [1, 2]. Industries such as aviation, 
automotive, and medical manufacturing are placing ever-
growing demands on machine tool manufacturing for high 
precision and efficiency. As intelligent design and preci-
sion machining technology rapidly advance, the design and 

manufacturing accuracy of components have seen signifi-
cant enhancements, and the geometric accuracy now per-
vades the entire manufacturing process of machine tools 
and stands as a pivotal factor in determining the quality 
of machine tool accuracy [3, 4]. The significance of error 
compensation in guaranteeing machining accuracy on CNC 
machine tools and optimizing the performance of in-service 
machine tools is steadily gaining prominence [5]. Therefore, 
improving the quasi-static accuracy of the machine tool has 
become a research focus of the machine tool manufacturing 
industry today.

Geometric error serves as a quantitative indicator reflect-
ing quasi-static accuracy, and these errors can be classified 
into two types: position-dependent geometric errors (PDGEs) 
and position-independent geometric errors (PIGEs) [6, 7]. 
PDGEs are mainly caused by manufacturing defects in the 
feed system itself, while PIGEs are mainly caused by the 
assembling of machine tool manufacturers [8]. PDGEs are 
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referred to as component errors according to ISO 230–7 [9]; 
scholars have also proposed many similar terms to define 
PIGEs, such as location error, link error parameter, kinematic 
error, and systematic deviation [10]. Geometric errors are 
related to the shape and position accuracy of machine tool 
components, with good repeatability, strong quasi-static char-
acteristics, and high systematicity. The influence of geomet-
ric errors on machine tool accuracy will be more significant 
when the environmental temperature with a little fluctuation 
[11]. Therefore, to address geometric errors by adopting a 
systematic approach for improving, the accuracy of CNC 
machine tools has become a crucial problem. Error compen-
sation is more suitable for improving accuracy in the process 
of application of machine tools compared to error prevention 
[12]; a modeling method effectively and succinctly, precise 
measurement and identification scheme, and parameterized 
representation of the error element are the core of construct-
ing error compensation strategies.

Geometric error modeling serves as the cornerstone of 
error compensation technology, which includes two compo-
nents: error synthesis modeling and error term parameteriza-
tion modeling. Establishing an error comprehensive model is 
a prerequisite for error measuring and compensating of each 
error term, and parameterized modeling of individual errors 
is a means to achieve error characterization. The motion 
chain of the machine tool is abstracted into a multi-body sys-
tem, and its motion characteristics can be described based on 
kinematic theory. The conventional methods for establishing 
error synthesis models include the D-H method, homogene-
ous transformation matrices (HTMs), and the multi-body 
system theory method [13]. Some novel modeling methods 
have been adopted which include screw theory, differen-
tial motion matrix method, dual quaternions, and so on. 
Ding et al. [14] proposed a summation operation rule for 
geometric error modeling based on the HTM method, in 
which higher-order error terms are avoided effectively by 
using a summation operator. Chen et al. [15] constructed 
the positional relationship between the ideal coordinate 
vector and the actual coordinate vector of the motion axis 
under the combined influence of linear and angular errors 
and proposed an error expression for the single-axis screw 
transformation matrix based on the screw theory. Chen et al. 
[16] developed a modeling method based on the improved 
Jacobian-Torsor method to describe the relationship between 
the machining geometric tolerance range, and the continu-
ous expression of non-uniformly distributed of geometric 
errors at different motion positions in the spatial domain 
was proposed. Yao et al. [17] presented the measurement 
error model consisting of a toolchain and workpiece chain by 
using the dual quaternion, which reduces the computational 
time and calculation costs of matrix multiplication. Fu et al. 
[18] established a vector component expression function for 
positional independent geometric errors of the double rotary 

table type five-axis machine tool based on the exponential 
product theory. The NURBS curves have strong local control 
ability on control points, which can achieve high-precision 
fitting of irregular data of geometric error elements [19]. 
Peng et al. [20] characterized the curve shape of PDGEs 
with a limited number of control points, PDGEs are fitted 
into B-spline curves, and the PDGE of the rotation axis is 
identified through unbounded constraint optimization algo-
rithms. Tian et al. [21] established a high-order polynomial 
model of PDGEs of a three-axis machine tool, and the order 
of the polynomial model is determined through the ridge 
regression method. Fan et al. [22] adopted orthogonal poly-
nomials to express the geometric error term, and the fitting 
accuracy of the geometric error term was improved by trans-
forming orthogonal polynomial fitting into a multi-linear 
regression problem. Dual quaternions evolved from even 
numbers theory and quaternions theory, due to the advan-
tages of considering both the rotary and translate motion of 
rigid bodies and high computational efficiency, which have 
been widely used in fields such as robot kinematics, inertial 
navigation, spacecraft rendezvous and attitude determina-
tion, and biomedical. Dual quaternions are the most efficient 
and compact method for expressing screw displacement in 
terms of expression and computational efficiency compared 
with screw theory [23]. The general motion of a rigid body 
in space can be represented by helical motion based on Cha-
sles’ theory, which makes it an effective tool for describing 
spiral motion and performing pose transformations. It offers 
advantages such as clear physical meaning, fewer param-
eters, global singularity-free representation, and a concise 
and compact form [24].

Compared to the homogeneous transformation matrix 
method, the screw theory and exponential product formula 
modeling methods only require the establishment of the 
tool workpiece and reference coordinate system without 
more local coordinate systems needing to be established; 
however, the matrix multiplication method is still used 
in the calculation process, which is more complex in 
representation and has lower computational efficiency. 
Therefore, it is necessary to propose a geometric error 
model that is concise in representation and computation-
ally efficient. For the modeling of geometric error terms, 
the polynomial fitting form is simple relatively, and with 
the degree gradually increases of polynomial, the fitting 
effect improves gradually. However, there are still some 
areas that need to be processed: (1) polynomial fitting will 
result in unstable results when ill-conditioned matrices 
have the potential to appear during solving; (2) the con-
ventional fitting evaluation parameters cannot characterize 
the distribution of deviation between predicted and actual 
values with small numerical differences, and further opti-
mization of the model is needed when the fitting effect of 
the model is poor.
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Geometric error measurement and identification are 
the core of error compensation technology; the geometric 
error of machine tools can be measured for each motion 
axis directly, which can also be measured using calibrated 
workpieces indirectly, machined workpieces [25]. The 
indirect measurement method is to obtain the compre-
hensive error of the machine tool through the multi-axis 
motion synchronously and then obtain the individual error 
through mathematical methods [26]. It is often achieved 
through machining testing or setting preset trajectories for 
error decoupling [27]. The direct measurement method 
involves measuring the geometric error of a single axis 
using standard samples such as ball and disk arrays, rul-
ers, goniometers, and step gauges directly. In this method, 
all motion axes remain stationary except for the one that 
needs to be measured. This method is directly influenced 
by the accuracy of the benchmark and is influenced by 
external factors such as external forces and temperature, 
which can cause changes in the dimensional and geometric 
tolerance of the standard [28], resulting in measurement 
errors and uncertainty in the results. Among the direct 
and indirect measurement methods mentioned above, laser 
interferometers, laser trackers, and tracking interferom-
eters are commonly used as specialized instruments that 
can calibrate the accuracy of machine tools based on the 
principle of linear propagation and the wavelength of light 
[29, 30]. Maruyama et al. [31] and Ibaraki et al. [32] pro-
posed a scheme in just one laser interferometer based on 
a set of distance measurements to identify all two-dimen-
sional PDGEs of two linear axes in a plane. To measure 
the positioning error of two linear axes directly, it is also 
possible to identify the two-dimensional error motion 
of two linear axes by conducting only one tracking test. 
Peng established three non-collinear measurement paths 
for identifying the six geometric errors of the linear axis 
of the machine tool; the optimal installation parameters 
were obtained based on sensitivity analysis and studied the 
impact of each installation parameter on the identification 
results [33]. Zhang et al. [34] proposed a modeling method 
for the spatial geometric error of CNC machine tools based 
on analyzing the principle of two-dimensional angle error, 
and a laser Doppler interferometer was used to measure 
the diagonal error of CNC machine tools before and after 
compensation. Tang et al. [35] used the 12-line method 
with a Renishaw laser interferometer to measure and 
identify five PDGEs on each linear axis of the multi-axis 
grinding machine except for rolling errors, and six PDGEs 
of the rotary axis are identified by using DBB indirectly. 
Zhong et al. [36] proposed a new method for measuring 
and identifying squareness errors in multi-axis machine 
tools based on the XM-60 interferometer, which solves 
the problem of inaccurate measurement results caused by 
geometric error coupling between the two motion axes.

Optimizing measurement paths or constructing redundant 
measurement schemes are effective methods for enhancing 
the precision and efficiency of geometric error measure-
ments. Brosed et al. [37] proposed a precision calibration 
model for machine tools with a telescopic rod. Interference 
sensors are utilized to automatically track targets for dis-
tance measurement. Simultaneously, three high-precision 
telescopic instruments are used for multipoint positioning 
and optimized using uncertainty estimation. Data collection 
time is reduced, and measurement accuracy is enhanced. 
Experimental results demonstrate the effectiveness of this 
equipment and method for calibrating machine tool preci-
sion. Zhou et al. [38] utilized the condition number of the 
identification matrix to describe the perturbation of motion 
parameters using the DBB continuous path. Constrained by 
the feasibility and collision-free requirements of measuring 
positions, measurement trajectories based on two-parameter 
splines were constructed; continuous measurements without 
collisions or abrupt changes are achieved. Wang et al. [39] 
proposed a synchronized motion trajectory measurement 
method based on DBB with dual rotating axes. To address 
the asynchrony between data sampling and motion during 
DBB movement, a spherical measurement trajectory was 
constructed by directly balancing trajectory lengths. Addi-
tionally, a synchronization matching algorithm between 
the ball bar instrument sampling and machine tool motion 
was proposed to resolve issues such as variations in the 
distance between the two bases and asynchronous relative 
motion speeds during the ball bar instrument’s trajectory. 
These advancements effectively enhanced the precision of 
error detection experiments. Yang et al. [40] established the 
root mean square error of the geometric error sensitivity 
coefficients for the rotary axis, and a functional relation-
ship between the root mean square error and the workpiece 
geometric error in cylindrical coordinates was established. 
Subsequently, utilizing an adaptive algorithm, these coef-
ficients were minimized, thereby determining the optimal 
measurement path for the R-test. Xu et al. [41] proposed 
a measurement approach for dual five-axis machine tools 
that combines R-testing with milling head motion, sup-
port head motion, and synchronous motion trajectories. By 
transforming the quasi-static and dynamic measurement data 
from these three different trajectories into a unified refer-
ence coordinate system, a measurement process that only 
requires the installation of an R-test once is achieved. This 
effectively avoids the time-consuming repetitive installation 
and calibration processes, while also reducing the influence 
of installation errors on the results. Additionally, this method 
enables the identification of dynamic errors in PIGEs and 
rotary axes. Xu et al. [42] proposed a universal identification 
model for position-dependent geometric errors of the rotary 
axis based on single-axis drive. The feasibility of the identi-
fication model is determined by the rank of the identification 
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matrix, and a variable-height trajectory measurement pattern 
is constructed to achieve stable identification of position-
independent geometric errors.

As the most effective specialized instrument for measur-
ing geometric errors for machine tools, laser interferometers 
have two different measurement methods when measuring 
straightness errors, which is entirely dependent on relative 
motion between the interferometer and reflector. The cou-
pling components of angle error do not include measure-
ment data of straightness when the reflector is fixed and 
the interferometer moves, due to the interferometer being a 
Wollaston prism and not affected by vertical angle changes. 
If the interferometer is fixed and the reflector is moved, the 
reflector is more sensitive to changes in the pitch angle gen-
erated by the vertical direction of the machine tool. When 
an extremely small pitch angle is generated by the reflector, 
the length of the incident and reflected light between the 
interferometer and the reflector will also change relatively. 
Therefore, a small nonlinearity value will be coupled in the 
straightness error data, which is a function of the distance 
between optical arrays and the pitch angle. This means that 
there is error coupling in the measurement and identification 
by using a laser interferometer measurement. Besides, some 
current drawbacks of geometric error measurement need to 
be improved exist as follows: (1) Better parameter estima-
tion can be further achieved through redundant measure-
ment, but it reduces measurement efficiency and introduces 
uncertainty caused by installation; (2) the formation of a 
measurement position matrix based on the identification 
equation focuses more on the non-singularity of the matrix; 
the impact of different measurement position combinations 
on measurement and identification accuracy was not be con-
sidered comprehensively.

The advantages in this paper are listed as follows: (1) A 
new error modeling is proposed for multi-axis CNC machine 
tools in the global coordinate system based on dual quater-
nions, achieving spatial transformation of geometric error 
terms without singular representation in Euclidean space. (2) 
Parametric modeling is implemented, and the fitting accu-
racy of error terms is optimized based on the evaluation of 
uncertainty. (3) Optimal measuring points are proposed to 
ensure identification accuracy through selection based on the 
quantity of measurements and measurement locations, rather 
than simply constructing non-singular matrices or selecting 
measurement positions blindly.

The structure of the paper is as follows: Sect. 2 “Geomet-
ric error modeling based on dual quaternion” introduces dual 
quaternion representations of PIGEs, and PDGEs for multi-
axis CNC machine tools were constructed, and a compre-
hensive error model for multi-axis CNC machine tools was 
established using dual quaternion in the global coordinate 
system. Section 3 “Geometric error measuring and identifi-
cation” introduces the measurement path and identification 

method for geometric errors of linear axes are established 
errors. Section 4 “Parametric modeling of geometric error 
terms and uncertainty optimization” introduces the method 
of parametric modeling and uncertainty optimization. Sec-
tion 5 “Case study” introduces experiments on a three-axis 
precision machine to verify the effectiveness of modeling, 
measurement, and identification, as well as the compensa-
tion. Section 6 “Conclusion” concludes the main findings 
and conclusions of this research, the disadvantages, and 
future research direction.

2 � Geometric error modeling based on dual 
quaternion

2.1 � Basic theory of dual quaternion

The rotary and translation vectors are not the exclusive 
expressions of rigid body motion in three dimensions, nor 
are they the sole representations of linear transformations. 
A more effective method for representing spiral motion 
involves utilizing dual quaternions to express spatial points, 
which can also be employed for motion parameter calcula-
tions. Any pair of dual numbers in the distributed domain is

where a is the real part of the dual number, a0 is the dual part 
of the dual number, and ɛ is the dual operator. The conjuga-
tion of the dual number is

Dual numbers can be expressed as a function obtained 
through Taylor expansion:

Quaternion is an extension of complex numbers on the 
four-dimensional real space ℝ4 . The set of quaternions is 
denoted as

where i, j, and k are complex units, and a more compact 
expression of quaternion is

where q0 and q =
[
q1, q2, q3

]T are referred to as the scalar 
and vector parts of quaternions, respectively.

The relative orientation between two coordinate sys-
tems can be described with unit quaternion, as well as the 
projection of vector in different coordinate systems. For 

(1)â = a + εa0

(2)a = a − �a
0

(3)f
(
a + εa0

)
= f (a) + �a0f �(a) + ε2

a0
2

2!
f
��

(a) +⋯

= f (a) + �a0f �(a)

(4)ℕ =
{
� ∶ � = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ ℝ

}

(5)� =
[
q0, q1, q2, q3

]T
=
[
q0, q

T
]T
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example, qxy represents the quaternion of Ƒx coordinate 
system relative to Ƒy coordinate system. For any three-
dimensional vector a ∈ ℝ

3 , the relationship between its 
coordinate projection ax in Ƒx and its coordinate projection 
ay in Ƒy is

Two quaternions and one dual unit of dual quaternions 
are as follows:

where q̇r is the real part of a dual quaternion, representing 
rotary transformation; n is the unit direction vector which 
is the rotary transformation; θ is the rotary angle; q̇t is the 
imaginary part of a dual quaternion, representing a linear 
transformation; and t is the vector of the displacement trans-
formation. The spiral motion of the coordinate system rep-
resented by the unit dual quaternion q̂ is shown in Fig. 1.

Dual quaternions can also be defined as dual angles �̂  , 
in addition to being in the form of Eq. 8, and the dual vec-
tor l̂  of the spiral axis is

where

where p represents the position vector of any point p on the 
rotary axis l.

(6)ax = q∗
xy
⊗ ay ⊗ qxy

(7)

�q = q̇r + 𝜀q̇t

q̇r = q̇δ� =
�
srvr
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=

⎡
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�
θ

2

�
n

cos
�
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2

�
⎤
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st vt
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=
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2
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cos

(
�̂

2

)
sin

(
�̂

2

)
l̂

]T

(9)

{
�̂ = � + �d

l̂ = l + �(l × p)

The expansion of Eq. 7 is represented as two quaternions, 
and the rotary quaternion and translation quaternion can be 
expressed as

where d, n, and m are the four relevant parameters of screw 
theory; n represents the unit vector of the rotary axis; δ is 
the rotary angle; d = t·nδ is the displacement along the rotary 
axis, and m = (p × nδ) is the torque vector of the rotary axis 
relative to the origin of the reference coordinate system.

After the n-th iteration of spiral motion of the motion 
axis, the spatial transformation of Plücker lines from the i-
th coordinate system to the (i + 1)-th coordinate system can 
be expressed as

The utilization of dual quaternions effectively circum-
vented multiplication operations between matrices in error 
modeling, leading to reduced computational time and clearer 
expression.

2.2 � Modeling of volumetric errors of multi‑axis 
machine tool

For multi-axis CNC machine tool based on the rigid body 
assumption, each motion axis has 6 degrees of freedom in 
its motion space; therefore, each motion axis has 6 PDGEs. 
There is a difference in the representation of PIGEs between 
motion axes. In accordance with ISO 230–1 standards [43], 
the PIGEs and PDGEs of the machine tool are displayed in 
Table 1, represented using dual quaternions.

The three-axis machine tool consists of X-, Y-, Z-, and 
spindle-axes. The cutting tool at the end of the tool chain, 
the workbench at the end of the workpiece chain, and the 
schematic and structure of the machine tool are shown in 
Fig. 2.
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Fig. 1   Spiral motion of the coordinate system

Table 1   Geometric errors of three-axis machine tool

Motion axis PDGEs PIGEs

Linear error Angle error Angle error

X-axis EXX, EYX, EZX EAX, EBX, ECX EC0X, EA0Z, EB0Z

Y-axis EXY, EYY, EZY EAY, EBY, ECY

Z-axis EXZ, EYZ, EZZ EAZ, EBZ, ECZ
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The reference coordinate system was established as for 
describing the spatial positions. The tool coordinate sys-
tem TCS and the workpiece coordinate system WCS are 
located on the tool tip and workpiece, respectively. The 
coordinate system of the X-, Y-, and Z-axes of the CNC 
machine tool is defined by ISO 230-1 as Cartesian coor-
dinate system.

The orientation of the Plücker line representation for 
each motion axis is based on the reference coordinate sys-
tem of the machine tool, and the representation method of 
the Plücker line is detailed in Table 2.

Where xw, yw, zw is the position deviation of the tool 
coordinate system relative to the machine tool reference 
system and xt, yt, zt is the position deviation of the WCS 
relative to the machine tool reference system.

In the two motion chains of a three-axis machine tool, 
the tool motion chain is represented as the i-th motion axis 

system except for the tool, while the workpiece motion 
chain is represented as the j-th motion axis system except 
for the tool end. The smaller the values of i and j, the 
closer of motion axis is to the tool end and the workpiece 
end, and i = 3, j = 2.

The models of the tool motion chain and the workpiece 
motion chain can be obtained respectively based on the 
spatial position relationship between adjacent axes of the 
motion chain under ideal motion conditions; the kinematic 
model of the toolchain is

The kinematic equation of the workpiece chain is

Based on the principle of dual quaternion space transfor-
mation, the Plücker line orientation expression of the actual 
axis of the machine tool motion axes in the machine tool 
reference coordinate system is obtained. The Plücker line 
parameters of the ideal axis in the model are replaced, and 
the actual motion error model of the machine tool is estab-
lished. The actual kinematic model with geometric error, 
representing the workpiece relative to the tool, is denoted as

(13)

{
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Fig. 2   Machine tool schematic 
and kinematic chain

Table 2   Plücker line representation for each motion axis

Coordinate system ni
δ

ti mi

X [100]T [000]T [000]T

Y [010]T [000]T [000]T

Z [001]T [000]T [000]T

WCS [010]T
[
xwywzw

]T [
zw0 − xw

]T
TCS [010]T

[
xtytzt

]T [
zt0 − xt

]T
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The error terms in Table 1 are substituted into the kin-
ematic equation mentioned above, and the kinematic model 
is expanded as follows:

(16)

⎛
⎜⎜⎜⎜⎜⎜⎝

Δx = −EXX − EXY + EXZ − y ⋅ ECX − z ⋅ EBX − z ⋅ EBY + z ⋅ EB0Z + yT ⋅
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�
− zT ⋅
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EBX + EBY − EBZ

�
Δy = −EYX − EYY + EYZ + x ⋅ ECX + z ⋅ EAX + z ⋅ EAY + x ⋅ EC0X − z ⋅ EA0Z − xT ⋅�
ECX + ECY − ECZ

�
+ zT ⋅

�
EAX + EAY − EAZ

�
Δz = −EZX − EZY + EZZ − x ⋅ EBX + y ⋅ EAX + y ⋅ EAY + xT ⋅

�
EBX + EBY − EBZ

�
−yT ⋅

�
EAX + EAY − EAZ

�

Equation 16 can be further reduced to a more condensed 
matrix form, as follows:

where [Ji] is the identification matrix consists of installation 
parameters and motion command and [Ei] is the geometric 
error vector.

Based on the geometric error representation defined by 
dual quaternions, the geometric error model of the three-
axis CNC machine tool is established. Dual quaternions 
were utilized to represent the singularity-free space trans-
formation in Euclidean space, which only the machine 
tool coordinate system and workpiece coordinate system 
require, and local coordinate systems are not required. 
Hence, the geometric error terms can be expressed in the 
absolute coordinate system, and this effectively ensures 
consistency with the definitions of PDGEs within ISO 
230–1. The orientation of each motion axis of the machine 
tool is represented by Plücker, geometric error modeling 
will be more convenient, and functional relationship 
expression between the motion axis and the comprehen-
sive orientation will be achieved intuitively.

3 � Geometric error measuring 
and identification

3.1 � Optimal selection of measurement quantity

When the quantity of measurement equals the number of 
error terms to be identified and the identification matrix 
that [Ji] as expressed in Eq. 17 is not singular, geometric 
errors can be identified. The optimal selection of measure-
ment quantity is based on the identification matrix of the 
parameters and motion axis parameters. Specifically, this can 
be reflected in the observability index of the identification 
Jacobian matrix. The larger the observability index of the 
identification matrix, the greater the impact of the machine 
tool’s geometric error terms on the spatial error vector.

(17)ΔR =
[
Ji
][
Ei

]

Before optimizing measurement positions, it is neces-
sary to determine the minimum quantity of measurements. 
Observational indices of the identification coefficient matrix 
can be used to select the measurement position and also 
to determine the quantity of measurements. The compro-
mise between measurement accuracy and efficiency can be 
achieved by determining the minimum number of measure-
ments where the identification accuracy is no longer signifi-
cantly improved. The identification matrix is decomposed by 
a singular value, and the observability index is listed based 
on the singular value combination. Subsequently, the opti-
mal number of measurements is selected.

The observability index is defined as the ratio of the mini-
mum to the maximum of all singular values of the discern-
ible Jacobian matrix [Ji], i.e.,

where γi and γk are the maximum and minimum values of the 
singular values of the identification matrix [Ji], respectively.

The observability index is used to optimize the minimum 
number of optimal measurement positions, denoted as Oin, 
ensuring good performance. This implies that the observ-
ability index can converge to the maximum value with fewer 
measurement positions. When the observability index is 1, it 
indicates that all singular values of the Jacobian matrix are 
equal, and the measurement position group exhibits strong 
observability for geometric error terms.

The steps of optimal selection of measurement quantity 
are as follows:

1.	 The initial measurement position set U1 consists of N1 
randomly selected measurement positions from the com-
plete set of measurement positions UG.

2.	 The position ψi in the set of remaining positions Ur is 
traversed, and a temporary set Ui

N+1
 is constituted by 

ψi and the set of N measurement positions UA
N

 . All the 
positions in the temporary set are used to compute the 
identification Jacobian matrix, and then singular value 
decomposition is performed.

(18)Oin =
γk

γi
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3.	 The observability index corresponding to the set is calcu-
lated, and the maximum value of the observability index 
is iteratively and continuously updated. At the same time, 
the corresponding measurement position is recorded.

4.	 After the traversal is completed, the position correspond-
ing to the maximum value of the observability index is 
assigned to ψA, and Un+1 is established by combining it 
into a new set UA

N+1
 along with the existing positions. 

Simultaneously, a “row block” is added to the identifica-
tion Jacobian matrix.

5.	 The addition operation stops when the number of posi-
tions in U1 reaches the specified upper limit.

6.	 The variation of the observability index can be observed 
as positions are added. The minimum number of meas-
urement positions, Nr, is determined when there is no 
significant change in the condition curve.

In the above operation, the measurement points for x, y, 
and z are located within their respective effective ranges, i.e., 
x ∈ [− 300, 300], y ∈ [− 210, 210], and z ∈ [− 260, 260] of the 
identification matrix, with values taken as random points 
within this range, steps (2) to (4) are defined as additional 
position operations. The observability index can be obtained 
through the selection of optimal measurement times, and the 
condition curve is shown in Fig. 3.

According to the optimization method for number of 
measurements, the number of measurements is 19, and 
the observability index did not increase significantly and 
reached a stable peak; specifically, the number of measure-
ments required for a single motion of the X-, Y-, Z-axes is 
5, 4, and 3, respectively; number of measurements of two-
axis simultaneous motion for X–Y, Y–Z, and Z-X-axes are 
assigned twice, and three-axis simultaneous motion needs 
to be done once.

3.2 � Selection of measurement stroke based 
on modified D‑optima

After determining the optimal number of measurements 
for the motion axis, the direct identification of geometric 
error terms becomes challenging. Furthermore, the accuracy 
of machine tool error identification is influenced by vary-
ing measurement positions and trajectories. Consequently, 
screening the measurement positions is imperative to achieve 
enhanced identification accuracy. The optimal measurement 
position selection method addresses the challenge of identi-
fying measurement positions reachable by a set of machine 
tool motion axes, which can minimize interference from 
unmodeled error sources and measurement disturbances in 
identifying machine tool geometric error terms.

Fig. 3   State curve of the observed index and the quantity of measurements
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An improvement strategy to the D-optimal algorithm with 
a single iteration was proposed to optimize the initial meas-
urement position set. This strategy involves updating posi-
tions rather than simply replacing them. Leveraging existing 
D-optimal algorithm improvement strategies and methods 
for determining the minimum number of measurement 
positions, we introduce an Improved D-optimal Algorithm 
(IDOA) for selecting the minimum optimal measurement 
positions in this paper. The algorithm process is illustrated 
in Fig. 3, and the primary steps of IDOA for measuring posi-
tion optimization are outlined as follows:

1.	 Initialization: The process begins with the calculation 
of the initial position number, N1. Subsequent positions 
are then assessed until the minimum measurement pose 
number, NT, is determined.

2.	 Random selection: A random combination is employed 
to choose N1 measurement positions from the complete 
set UG of selected measurement positions. This selection 
forms the initial measurement position set UO. Subse-
quently, multiple remaining measurement position sets, 
UR, are generated accordingly.

3.	 Position update operation: Following the execution of 
additional position selection, the delete position opera-
tion is employed to optimize the N1 positions within the 
initial measurement set UO. The delete position opera-
tion unfolds as follows: A temporary dataset, Ui

N
 , is 

obtained by eliminating ψA from the set after traversal 
UA

N+1
 . The Jacobian matrix for error identification is 

computed using all positions within the temporary 
dataset. Subsequently, a singular value decomposition 
is conducted on this matrix to determine the observabil-
ity index value pertaining to the set. Continuously, the 
maximum observability indicator value is updated, and 
the corresponding pose is concurrently recorded. Upon 
traversal, the position corresponding to the maximum 
observability indicator is designated as ψR. This position 
is then removed from the set UA

N+1
 to formulate a fresh 

set UR
N

 , while simultaneously removing a “row block” 
from the identification Jacobian matrix.

4.	 Add position operation: The additional position operation 
serves to augment the number of poses within the posi-
tion set UO until the minimum required number of meas-
ured positions, TN, as stipulated in step 1, is attained.

5.	 Replacement position operation: The replacement posi-
tion operation utilizes both the additional position and 
delete position operations to optimize the NT positions 
within the updated optimal measurement position set 
UO, as determined in the preceding step.

6.	 Replace position operation: The NT positions within the 
updated optimal measurement position set UO from the 
preceding step are optimized using both additional posi-
tion and delete position operations.

7.	 Multi-source parallel search: Steps 3–6 are concurrently 
executed to compute the K optimal measurement posi-
tions within a single iteration set UO corresponding to 
the observability index value, with the set yielding the 
highest value being recorded.

8.	 Global optimal solution: The algorithm attains its global 
optimal solution through iterative execution of steps 
2–6.

Upon selecting the optimal stroke, the chosen meas-
urement position set is determined by the optimal indi-
cator value. Subsequently, each position within the cur-
rent optimal pose set undergoes sequential replacement, 
resulting in the selection of optimal measurement point 
positions.

3.3 � Measurement and identification strategy

In accordance with the chosen optimal quantity of meas-
urement positions, distinct error measurement paths can be 
formulated using a comprehensive geometric error model. 
Table 3 enumerates the selected measurement points for the 
motion axis measurement stroke, guided by the inverse dis-
tance of observability analysis (IDOA).

In the measurement of X-axis motion, the coordinates of 
the smallest and largest measurement points are selected, 
mirroring the approach taken for the Y- and Z-axes. The 
measurement path is illustrated in Fig. 4.

To enhance measurement efficiency, the research group 
employed a sensorless measurement method developed 
by them to gauge positioning errors [44], while angle and 
straightness measurements were conducted using laser 
interferometry. The measurement and identification process 
is illustrated in Fig. 5. The fundamental concept of their 
measurement and identification strategy involves utilizing 

Table 3   The selected measurement points based on improved D-optimal

Motion axis Key measurement points

X-axis P1(− 253.6, − 204.1, − 152.5); P2(53.1, − 204.1, 52.8); P3(− 250.6, − 195.4, − 152.5); 
P4(100.1, − 34.7, 60.5); P5(92.4, 149.7, − 152.5)

Y-axis P6(− 253.6, − 204.1, − 152.5); P7(− 100.7, − 90.6, 0); P8(− 50.4, − 82.2, 100); P9(90.6, 147.5, 58.3)
Z-axis P10(− 253.6, − 204.1, − 152.5); P11(98.5, − 204.7, 150.9); P12(− 253.2, 201.4, 151.7)
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the sensorless measurement method to assess the positioning 
error of the X-axis, alongside laser interferometry for meas-
uring two straightness errors, two angle errors, and roll error.

For the Y-axis, positioning errors are measured using the 
sensorless measurement method, while straightness errors in 
the Z-direction and two angle errors (excluding rolling) are 
measured with the laser interferometry.

The positioning errors of the Z-axis are measured using 
the sensorless measurement method, and the two roll angle 
errors are measured with laser interferometry. Finally, posi-
tioning errors are measured on the face diagonal and body, 
along with the rolling angle and three straightness errors, 
including squareness error, which will be identified. For the 
X-axis, the positions of the measurement lines are all parallel 
to the X-axis. The starting point for measuring the position 
error (EXX) is P1. The starting point for measuring the angle 
error (EBX) along the Y-axis is P2, and the starting point for 
measuring the angle error (ECX) along the Z-axis is P3. P4 is 
the starting point for measuring the straightness error (EYX) 
in the Y-direction, and the starting point for measuring the 
straightness error (EZX) along the Z-direction is P5.

The positioning error is identified based on two non-
rolling errors, and the coordinates of the starting point of 
the measurement line are determined using the sensorless 
measurement method:

For measurement of the moving straightness interferom-
eter, when both z4 and y5 are 0, then straightness can be iden-
tified with the measured straightness error, two non-rolling 

(19)EXX = Δx1(x) + ECXy1 − EBXz1

errors, and the coordinates of the starting point of the meas-
urement line:

The actual straightness of the reflector’s motion can be 
identified using the measured straightness and two non-
rolling errors:

For the Y-axis, the positions of the measurement lines 
are all parallel to the Y-axis. The starting point for the 
positioning error EYY is designated as P6. Additionally, 
the measurement starting points for angle errors are as 
follows: EAZ at P7 and ECY at P8. The starting point for 
assessing straightness error, EZY, is identified as P9. Con-
cerning the Z-axis, the positions of the measurement lines 
align parallel to it. The measurement starting point for the 
positioning error EZZ is assigned to P10. Furthermore, the 
starting points for angle errors are specified as follows: 
EAZ around the X-axis begins at P11, while EBZ around the 
Y-axis commences at P12.

The positioning error of the three diagonal lines is meas-
ured in the XZ, XY, and YZ planes. Specifically, the posi-
tioning error of diagonal line l13 in the XZ plane is assessed 
from point P13.

In the XZ plane, where motion along the Y-axis is absent, 
the formula is simplified as follows:

(20)
{

EYX = Δx4(x) − ECXx4
EZX = Δx5(x) − EBXx4

(21)
{

EYX = Δy4(x) − ECX

(
x4 − x − L

)
EZX = Δy5(x) − EBX

(
x5 − x − L

)

Fig. 4   Measurement path
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Fig. 5   Measurement and identification process



2978	 The International Journal of Advanced Manufacturing Technology (2024) 133:2967–2994

(22)
⎧⎪⎨⎪⎩

Δx13(x) = EXX − EXZ + zEBX − yt13
�
ECX − ECZ

�
+ zt13

�
EBX − EBZ

�
Δz13(x) = −EZX − EZZ − xEBX − xt13

�
EBX − EBZ

�
+ yt13

�
EAX − EAZ

�
Δx14(x) = EXX − EXZ + zEBX − yt14

�
ECX − ECZ

�
+ zt14

�
EBX − EBZ

�
Δz14(x) = −EZX − EZZ − xEBX − xt14

�
EBX − EBZ

�
+ yt14

�
EAX − EAZ

�

Based on the error model and planar geometric 
relationships,

(23)

⎧
⎪⎨⎪⎩

ΔL13 = Δx13
Lx

Lxz
+ Δz13

Lz

Lxz

ΔL14 = Δx14
Lx

Lxz
+ Δz14

Lz

Lxz

The measurement starting point of positioning error of the 
diagonal line ΔL14 in the XY plane is from P14. The measure-
ment starting point of positioning error of the diagonal line 
ΔL15 in the YZ plane is from P15.

For the XY plane, where there is no motion on the Z-axis, 
the error formula is simplified as follows:

According to the error formula, it can be simplified as 
follows:

The measurement starting point of positioning error of 
the diagonal line ΔL15 in the YZ plane is from P15. For the 
YZ plane, where there is no motion on the X-axis, the error 
formula is simplified as follows:

Based on the error model and planar geometric 
relationships,

The measurement starting point of positioning errors of 
the XYZ diagonal ΔL16 are measured from P16; the angles 
between the diagonal and the X-, Y-, and Z-axes are α, β, and 
γ, by incorporating each measurement position into the error 
model; according to the positioning error of the diagonal, it 
can be inferred that

(24)
⎧⎪⎨⎪⎩

Δx15 = EXX + EXY + y
�
ECX + ECY

�
− yt15

�
ECX + ECY

�
+ zt15

�
EBX + EBY

�
Δy15 = EYX + EYY − xECX + xt15

�
ECX + ECY

�
− zt15

�
EAX + EAY

�
Δx16 = EXX + EXY + y

�
ECX + ECY

�
− yt16

�
ECX + ECY

�
+ zt16

�
EBX + EBY

�
Δy16 = EYX + EYY − xECX + xt16

�
ECX + ECY

�
− zt16

�
EAX + EAY

�

(25)

⎧⎪⎨⎪⎩

ΔL15 = Δx15
Lx

Lxy
+ Δy15

Ly

Lxy

ΔL16 = Δx16
Lx

Lxy
+ Δy16

Ly

Lxy

(26)

⎧⎪⎨⎪⎩

Δy15 = EYY − EYX − zEAY − xt15
�
ECY − ECZ

�
− zt15

�
EAY − EAZ

�
Δz15 = −EZY + EZZ − xt15

�
EBY − EBZ

�
+ zt15

�
EAY − EAZ

�
Δy16 = EYY − EYX − zEAY − xt16

�
ECY − ECZ

�
− zt16

�
EAY − EAZ

�
Δz16 = −EZY + EZZ − xt16

�
EBY − EBZ

�
+ zt16

�
EAY − EAZ

�

(27)

⎧⎪⎨⎪⎩

ΔL15 = Δx15
Lx

Lxy
+ Δy15

Ly

Lxy

ΔL16 = Δx16
Lx

Lxy
+ Δy16

Ly

Lxy

With the measurement path and identification equation, 
all straightness errors and roll angle errors can be obtained 
using the least squares method.

4 � Parametric modeling of error terms 
and uncertainty optimization

4.1 � Parametric modeling of geometric error terms

The established comprehensive error model of machine tools 
comprises individual errors of motion axes, with each axis 
represented as discrete points. Therefore, it is imperative to 
develop modeling methods to parameterize the measured 
individual error data.

Analysis of the error data acquired from measurements 
reveals that positioning error and partial straightness error 
exhibit relatively minor fluctuations, allowing for effec-
tive modeling using low-order orthogonal polynomials. In 
contrast, although angular error values are relatively small, 
they demonstrate significant fluctuations, often manifesting 
in marked periodic oscillations. Consequently, a parametric 
model is proposed that utilizes exponential cosine fitting, 
amalgamating the data characteristics of these three geomet-
ric errors. The model is defined as follows:

(28)ΔL17 = Δx17cos� + Δy17cos� + Δz17cos�

(29)y = a ⋅ eb⋅i ⋅ cos(c ⋅ i) + d ⋅ i + e(i = x, y, z)
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where x represents the position of the guide rail; y represents 
the error value here; and a, b, c, d, and e are undetermined 
parameters.

In the optimization framework, the optimization process is 
bifurcated into two layers, comprising inlay optimization. The 
ISSA is employed to optimize the parametric model of expo-
nential cosine fitting in the outer layer. Utilizing the interval 
method, the range of uncertain objective functions and con-
straint functions is calculated. In the inner layer, the fitness of 
the design variables is determined by resolving the transformed 
objective function. The sequential process unfolds in Fig. 6.

1.	 The initial optimization conditions can be determined 
based on the optimization problem, which includes vari-
ables, uncertain parameters, and parameter space.

2.	 The model for the cosine-exponential product geometric 
error term is constructed according to the optimization 
objective and uncertainty parameters.

3.	 The optimization process involves a two-layer nested 
loop.

4.	 The ISSA is employed to generate the initial population 
of variables for the error model optimization.

5.	 From the current population, a set of values for the 
variables is selected and subjected to inner uncer-
tainty analysis using the interval to model uncer-
tainty.

6.	 The current uncertainty parameter variables are incor-
porated based on the constructed geometric error model, 
and the intervals for the geometric error term and uncer-
tainty constraint function are calculated.

Fig. 6   Optimization process of 
fitting optimization
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7.	 The fitness of the current design variables is evaluated 
using the fitness function.

8.	 Steps 5–7 are iterated until the fitness of all individuals 
in the current population is computed and individual 
fitness is assessed.

9.	 When the convergence criteria are satisfied, the optimi-
zation concludes. The current population is then output 
as the optimization result. If not, the process returns to 
step 4.

Due to its incorporation of low-order polynomials in 
positioning and straightness errors, alongside angle error 
fluctuations, this model embodies typical nonlinear char-
acteristics. However, solving its undetermined parameters 
using numerical methods presents significant computational 
complexity, making optimal parameter identification chal-
lenging. Hence, intelligent optimization algorithms, such 
as the SSA, are considered, which is inspired by sparrows’ 
foraging and anti-predatory behavior and categorizes indi-
viduals as discoverers and followers, with additional recon-
naissance and warning mechanisms. The operation process 
is as follows:

Establishing the parameter search range  In the exponential 
cosine fitting model, a is the exponential cosine monomial 
amplification coefficient, which determined by the maximum 
and minimum values of each geometric error term in actual 
identification; b represents the fluctuation coefficient of the 
exponential function and within [− 1, 1]; c represents the 
expansion factor of the cosine curve and within [0, 2]; d 
represents the degree of divergence of the error fitting curve, 
which determined by the geometric error value at the current 
command position, the minimum and maximum geometric 
errors of the motion axis at the current position and within 
[− 1, 1]; e represents the error value when the motion axis is 
at the initial position, which can be determined based on the 
maximum and minimum values of the input error data, as 
well as the adjustment coefficient k, and within [kymin, kymax].

Population initialization  The sparrow population matrix is 
shown in Eq. 30:

where x represents the sparrow population, d repre-
sents the spatial dimension, and n represents the number 
of sparrows.

Calculate fitness values and sort  The objective function 
value is determined by the sum of residual squares, as 

(30)X =

⎛⎜⎜⎜⎝

x1
1
x2
1
⋯ xd

1

x1
2
x2
2
⋯ xd

2

⋯ ⋯ ⋯ ⋯

x1
n
x2
n
⋯ xd

n

⎞⎟⎟⎟⎠

depicted in Eq. 31. A smaller value indicates closer prox-
imity of the sparrow to the food.

A smaller fitness function value signifies a smaller devia-
tion between the predicted and actual values, indicating the 
sparrow’s position is closer to the target value. This sug-
gests that the parameter set is more likely to be the optimal 
solution.

Update the location of the discoverer 

where xt
i,d

 represents the d-th dimensional position of the 
i-th individual in the t-th generation of the sparrow popula-
tion; α is a uniform random number between (0, 1); itermax 
is the maximum number of iterations; Q is the standard nor-
mal distribution random number; R2 represents the warning 
value, which is a uniform random number between [0, 1]; 
and ST represents the safety value, which is within the range 
of [0.5, 1].

When (R2 > ST), the discoverer randomly moves to the 
current position following a normal distribution. Conversely, 
when (R2 < ST), the discoverer moves randomly in a monoton-
ically decreasing exponential manner. With a fixed maximum 
number of iterations, the search range decreases gradually as 
the value increases, a reduction in the sparrow’s dimensional-
ity, with the minimum value converging towards zero.

Update the follower position 

where d represents the spatial dimension, xwt
i,d

 represents 
the worst position in the d-th dimension of the i-th indi-
vidual in the t-th generation of the sparrow population, xbt

i,d
 

represents the d-th optimal position of the i-th individual in 
the t-th generation of the sparrow population, and n repre-
sents the number of sparrows. When i > n/2, the follower’s 
position is determined by multiplying a standard normal 
distribution random number by an exponential function 
with e. This value adheres to the standard normal distri-
bution and tends to converge towards zero. The follower’s 
position acquisition process can be illustrated as follows: 
when i ≤ n/2, it involves randomly searching for a position 
near the current optimal sparrow position. As i increases, 

(31)fit =

m∑
j=1

(
yi − y

)2

(32)xt+1
i,d

=

{
xt
i,d

⋅ e

(
−i

𝛼⋅itermax

)
,R2 < ST

xt
i,d

+ Q,R2 > ST

(33)

xt+1
t,d

=

⎧⎪⎨⎪⎩
Q ⋅ e

(
xwi

i,d
−xt

i,d

i2
)
, i > n∕2

xbt
i,d

+
1

d

∑d

d=1
(rand{−1,1} ⋅ (

���xbti,d − xt
i,d

���)), i ≤ n∕2
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the variance of each dimensional distance from the optimal 
position decreases, leading to convergence towards the opti-
mal position. Moreover, the variance of each dimensional 
distance from the optimal position becomes similar to that 
of other positions.

Update the position of the scout 

The sparrow algorithm employs two methods for updat-
ing its position: jumping to the current optimal position and 
approaching the origin. However, the update strategy of the 
sparrow algorithm may encounter challenges leading to local 
optima. To enhance its capability to find the global optimal 
solution, three improvements have been introduced to the 
sparrow algorithm:

1. The adjustment to the finder positions is executed by 
eliminating operations that draw them closer to the origin, 
prioritizing a leap towards the current optimal position.

2. The update strategy for follower positions entails a 
random movement towards the discoverer position. The 
modification to the formula is delineated in Eq. 36:

3. Elite reverse strategy:

xt
i,d

= (xt
i,1
, xt

i,2
..., xt

i,d
) Is the solution generated by the t-th 

iteration of the sparrow algorithm; then, the inverse solution 
is xt∗

i,d
 . When fit(xt

i,d
) ≥ fit(xt∗

i,d
) , xt

i,d
 is the elite individual of 

the t-th iteration and is denoted as Qt
i,d

 . The reverse solution 
Qt∗

i,d
 can be expressed as Qt∗

i,d
= K ⋅ (�d + �d) − Qt

i,d
 , K is the 

dynamic coefficient with in [0, 1],Qt
i,d

∈ [�d, �d] ; 
ad = min

(
Qt

i,d

)
;�d = max(Qt

i,d
) is a dynamic boundary.

A more efficient search approach can be achieved through 
the implementation of a dynamic boundary algorithm, which 
adjusts according to the optimal solution during the search 
process, particularly in scenarios where the search space is 
constrained. Utilizing SSA to solve geometric error model 
parameters represents a typical single-objective function 
optimization problem.

(34)xt+1
i,d

=

{
xt
i,d

+ � ⋅ (xt
i,d

− xbt
i,d
), fi ≠ fg

xt
i,d

+ � ⋅ (xwt
i,d

− xbt
i,d
), fi = fg

(35)xt+1
i,d

=

{
xt
i,d

⋅ (1 + Q),R2 < ST

xt
i,d

+ Q,R2 > ST

(36)xt+1
i,d

= xbt
i,d

+
1

d

d∑
d=1

(rand{−1,1} ⋅ (
|||xb

t
i,d

− xt
i,d

|||))

4.2 � Optimization method of error term based 
on interval uncertainty

In traditional deterministic optimization problems, all 
parameters within the optimization model are designated 
as constant values. The objective function and constraints 
can be computed for a given variable point. However, when 
dealing with geometric error terms, characterized by uncer-
tainty, both the objective function and constraint function 
become uncertain, transforming the deterministic optimiza-
tion problem into an uncertain one. The interval uncertainty 
optimization method is employed to model and optimize 
error parameters. The general interval uncertainty optimiza-
tion model can be expressed as

where X is an n-dimensional design variable that geometric 
error term with a value range of Ωn, U is the q dimensional 
interval uncertainty variable, UL is the lower boundary, and 
UR is the upper boundary. f and g are continuous functions of 
X and U, respectively, and bIi is the i-th uncertainty constraint.

For the objective function f(X, U), the interval uncertainty 
can be described as

The upper and lower bounds of the objective function can 
be analyzed by interval analysis methods.

The uncertain objective function can be converted into a 
deterministic optimization objective function by handling 
the interval midpoint and interval radius. The optimal vari-
able can then be identified by assessing the deterministic 
objective function. The weighted linear combination of the 
uncertain objective function is depicted in Eq. (41):

where 0 ≤ β ≤ 1 is a multi-objective weight coefficient. fc(X) 
and fw(X) are non-negative compensation coefficients. ϕ and 
ψ are normalized factors as follows:

(37)
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(38)f (X,U) ∈ f I(X) =
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]
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The interval possibility method is employed to address 
the uncertainties associated with both the objective function 
and constraints of variables exhibiting interval uncertainty. 
This method presupposes that the two intervals in question 
are modeled as random variables following a uniform dis-
tribution. Six potential positional relationships exist for the 
intervals denoted as AI and BI, reflecting the various ways 
in which these intervals can intersect or relate to each other. 
The corresponding possibility degree is expressed in Eq. (6):

(42)
P
�
AI ≤ BI

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 BR ≤ AL

BR−AL

2(AR−AL)
BR−AL

BR−BL
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BR−AL

AR−AL
+

BR−BL
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BR−AL

AR−AL
+

AR−BL

AR−AL

BR−AR

BR−BL
+

AR−BL

2(AR−AL)
AR−BL

BR−BL
AL < BL < AR < AR

BR−AR

BR−BL
+

AR−AL

2(BR−BL)
BL ≤ AL < AR < BR

1 AR ≤ BL

The uncertainty constraint function represented by Eq. 42 
can be transformed into the following deterministic inequal-
ity constraint:

where 0 ≤ λi ≤ 1 is the given interval possibility index and 
gIi(X) is the range interval caused by uncertainty at X of the 
constraint function gi(X,U), and gi(X,U) can also be solved 
by interval global optimization method.

The possibility P(gIi(X) ≤ bIi) of the constraint can be 
derived using the interval possibility model once gIi(X) 
is obtained. Subsequently, the assigned possibility can be 
evaluated, leading to the transformation of the uncertainty 
constraint into a deterministic one through this process. Fol-
lowing the conversion using the linear weighted combination 
method and possibility model, the original uncertain optimi-
zation problem evolves into a deterministic multi-objective 
optimization problem. The constraint conditions can then be 
handled using the penalty function method, thereby trans-
forming it into an unconstrained optimization problem:

where σ is the penalty factor.
Mean deviation e, root mean square error RMSE, and good-

ness of fit R2 are commonly utilized to assess and compare the 
efficacy of different models in fitting. However, these indica-
tors exhibit three limitations. Firstly, the impact of the discrete-
ness in geometric error data on prediction stability is neglected. 
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The circular trajectory before and after compensation is 
shown in Fig. 16.

It can be seen from Fig.  16 that a notable deviation 
between the circular trajectory before compensation and 
the standard circular trajectory, with a substantial improve-
ment observed after compensation. The circular trajectory 
post-compensation aligns closely with the standard circular 

Secondly, when evaluation parameters of distinct models lack 
significance, the distribution of deviations between the pre-
dicted and actual values cannot be directly reflected. Thirdly, 
evaluation parameters of modeling have not been employed 
for optimization to enhance fitting effectiveness. As a result, 
addressing model uncertainty enhances the geometric error 
model’s fitting, which may initially be suboptimal.

Assuming (λi, φi) represents the position and identification 
error values of the motion axis at the i-th measurement point 
and (λi,′i) signifies the position and prediction error values 
of the motion axis at the i-th measurement point, the sum of 
uncertainties for all measurement points can be derived using 
the Bessel formula in the uncertainty principle, and the sum 
of uncertainties for all measurement points can be obtained as

where N is the total number of measurement points and σ 
is the sum of the uncertainties of all measurement points. e 
is the average deviation value of the fitted model, as shown 
in Eq. 46.

The uncertainty of the fitting model can be calculated 
with Eq. 47:
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Fig. 7   Algorithm convergence curve

Table 4   Comparison of uncertainty parameter of X-axis geometric 
error model

Error terms ECFM OPFM

σ e σ′ e′

EXX/(µm) 0.21 0.18 0.41 0.31
EYX/(µm) 0.03 0.02 0.09 0.08
EZX/(µm) 0.58 0.47 0.26 0.21
EAX/(µm/mm) 1.57 × 10−4 1.32 × 10−4 5.98 × 10−5 4.25 × 10−5

ECX/(µm/mm) 1.00 × 10−4 7.61 × 10−5 1.40 × 10−4 1.12 × 10−4

EBX/(µm/mm) 3.10 × 10−4 2.50 × 10−4 3.51 × 10−4 2.84 × 10−4

EXY/(µm) 0.06 0.05 1.26 1.07
EYY/(µm) 0.20 0.14 0.42 0.32
EZY/(µm) 0.01 0.01 0.03 0.03
ECY/(µm/mm) 3.40 × 10−5 3.39 × 10−5 5.54 × 10−5 5.25 × 10−5

EBY/(µm/mm) 3.14 × 10−5 2.82 × 10−5 1.67 × 10−4 1.50 × 10−4

EAY/(µm/mm) 1.21 × 10−4 1.04 × 10−4 2.76 × 10−4 2.02 × 10−4

EXZ/(µm) 0.02 0.02 0.03 0.02
EYZ/(µm) 0.05 0.04 1.39 0.08
EZZ/(µm) 0.83 0.66 1.12 0.90
EBZ/(µm/mm) 5.99 × 10−5 4.56 × 10−5 7.38 × 10−5 5.64 × 10−5

EAZ/(µm/mm) 3.84 × 10−5 3.37 × 10−5 1.62 × 10−4 1.39 × 10−4

ECZ/(µm/mm) 1.84 × 10−4 1.50 × 10−4 3.08 × 10−4 2.26 × 10−4

A larger deviation between the predicted value and the 
true value corresponds to poorer predictive performance and 
signifies higher uncertainty within the model.

5 � Case study

This experiment utilizes the VDL-600A three-axis verti-
cal machining center, equipped with the FANUC 0i system. 
Each of the three motion axes is fitted with high-precision 
ball screw pairs, guaranteeing both positioning accuracy 
and repeated positioning accuracy of the machining center. 
Geometric error measurements are performed by carefully 
selecting optimal measurement times and determining the 
measurement stroke based on modified D-optimal criteria.

5.1 � Parametric modeling of geometric error terms

Based on the measurements and identification results of geo-
metric errors, parametric modeling of geometric errors is 
conducted following the modeling flow outlined in Sect. 3. 
Taking the modeling of the exponential cosine for the posi-
tioning error on the X-axis as an example, the population 
size of the ISSA is set to 50, with 50 iterations. The propor-
tions of investigators, discoverers, and followers are set to 
0.6, 0.8, and 0.3 respectively, with these proportional param-
eters remaining constant throughout the iterations. The itera-
tion curve of the ISSA is depicted in Fig. 7.

It can be seen from Fig. 7 that the enhanced sparrow 
search algorithm (SSA) surpasses the standard SSA in both 
search efficiency and accuracy. The six geometric error data 
points for the X-axis, identified and fitted using the measure-
ment method outlined in Sect. 3, undergo post-processing 
with the ISSA. The uncertainty of the fitting curve is calcu-
lated using Eqs. 36 and 37, as presented in Table 4.

It can be inferred from Table 4 that the uncertainty σ and 
average deviation e of the exponential cosine fitting model for 
the geometric error terms EZX and ECX are larger than those 

of the orthogonal polynomial fitting model. It reveals that the 
uncertainty σ and average deviation e of the ECFM are lower 
compared to those of the OPFM. This observation suggests 
that the ECFM model offers superior error prediction accu-
racy compared to the OPFM model. Hence, the ECFM model 
proves to be more suitable for fitting and forecasting geo-
metric errors in machine tools. It also indicates the model’s 
fitting performance is inadequate, resulting in lower predic-
tion accuracy compared to the orthogonal polynomial fitting 
model. Consequently, there is a need for further optimization 
of the model based on the uncertainty optimization method. 
Monte Carlo sampling was employed to simulate parameter 
ranges. The search intervals for the optimized parameters of 
EZX and ECX are illustrated in Fig. 8a, b, respectively.

The percentage of each partition within the model parameter 
interval that satisfies the optimization conditions varies after 
optimizing the model parameter interval using nested param-
eter uncertainty optimization. A higher percentage within the 
parameter interval indicates a greater likelihood of optimal 
solutions. Therefore, the parameter interval with the highest 
percentage is selected for substitution into the ISSA. This pro-
cess facilitates the modeling of error terms EZX and ECX. The 
uncertainty of fitting the model of EZX is σ = 0.0043 < σ′ = 0.26, 
average deviation e = 0.0035 < e′ = 0.21. The uncertainty of fit-
ting model of ECX is σ = 5.35 × 10−5 < σ′ = 5.98 × 10−5, average 
deviation e = 3.79 × 10−5 < e′ = 4.25 × 10−5. The uncertainty 
curves of the model before and after optimization can be 
obtained by substituting into Eq. 38, as shown in Fig. 9.
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Fig. 8   Search interval of the model after optimized

It can be seen from Fig. 9 that the predicted residuals 
of the fitting model EZX are concentrated within the range 
of − 0.4 to 0.4 µm. Similarly, the predicted residuals of EAX 
are confined within the range of − 0.0002 to 0.0002 µm/
mm, exhibiting a sharper curve distribution and a narrower 
range of predicted residuals. This suggests that a smaller 

deviation between the predicted and true values results in 
smaller uncertainty for the optimized ECFM.

By substituting the model parameter values calculated 
by the ISSA into the fitting model, the expression of geo-
metric error for the X-axis fitting curve can be derived, 
which is presented in Eq. 48:

(48)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

EXX = −0.2265 ⋅ e(−0.01412⋅x) ⋅ cos(−0.02074 ⋅ x) + 0.05106 ⋅ x + 10.14

EYX = −0.188 ⋅ e(−0.001582⋅x) ⋅ cos(0.03508 ⋅ x) − 0.002988 ⋅ x − 0.086

EZX = 2.752 ⋅ e(0.01701⋅x) ⋅ cos(0.007901 ⋅ x) − 0.02435 ⋅ x − 3.812

ECX = 0.0002559 ⋅ e(0.002212⋅x) ⋅ cos(0.04339 ⋅ x) − 0.000002318 ⋅ x − 0.001223

EBX = −0.0007139 ⋅ e(0.02505⋅x) ⋅ cos(0.0136 ⋅ x) + 0.00002097 ⋅ x + 0.002469+

EAX = 0.0002857 ⋅ e(0.006122⋅x) ⋅ cos(0.0223 ⋅ x) + 0.000004032 ⋅ x − 0.00003137
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Fig. 9   Comparison of fitting 
model uncertainty

Fig. 10   X-axis geometric error fitting model

The model of six geometric errors of the Y-axis is 
shown in Eq. 49.

(49)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

EYY = 0.5793 ⋅ e(−0.0001423⋅y) ⋅ cos(0.05238 ⋅ y) + 0.04008 ⋅ y + 6.84

EXY = −11.4 ⋅ e(0.004718⋅y) ⋅ cos(0.004338 ⋅ y) + 0.04924 ⋅ y + 11.52

EZY = 3.013 ⋅ e(−0.004432⋅y) ⋅ cos(0.05285 ⋅ y) + 0.0009422 ⋅ y − 0.2605

EAY = 0.00008096 ⋅ e(0.03595y) ⋅ cos(0.008673 ⋅ y) − 0.00003888 ⋅ y − 0.003602

ECY = 3.086 ⋅ e(−0.004432⋅y) ⋅ cos(0.05282 ⋅ y) + 0.0009652 ⋅ y − 0.2669

EBY = −0.0001554 ⋅ e(−0.01796⋅y) ⋅ cos(0.03604 ⋅ y) − 0.00000913 ⋅ y + 0.001874
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Fig. 11   Fitting cure of Y-axis geometric error

The model of six geometric errors of the Z-axis is 
shown in Eq. 50.

(50)
⎧
⎪⎪⎪⎨⎪⎪⎪⎩

EZZ = −0.4363 ⋅ e(−0.003412⋅z) ⋅ cos(0.1012 ⋅ z) − 0.0984 ⋅ z − 14.37

EXZ = −0.01715 ⋅ e(0.02412⋅z) ⋅ cos(0.02514 ⋅ z) − 0.003974 ⋅ z − 0.2031

EYZ = 2.516 ⋅ e(0.007911⋅z) ⋅ cos(0.007296 ⋅ z) − 0.01369 ⋅ z − 2.303

EAZ = 0.0008998 ⋅ e(0.005862⋅z) ⋅ cos(0.02765 ⋅ z) − 0.000001783 ⋅ z + 0.0005033

EBZ = 0.009668 ⋅ e(0.01052⋅z) ⋅ cos(0.006298 ⋅ z) − 0.00007605 ⋅ z − 0.01028

ECZ = −0.001752 ⋅ e(−0.00104⋅z) ⋅ cos(0.01821 ⋅ z) + 0.000007631 ⋅ z + 0.0006596

The parameterized model curve depicting the six geo-
metric errors of the linear axes is illustrated in Figs. 10, 
11, and 12.

Model curves of the Z-axis six geometric errors are 
shown in Fig. 12.

As can be seen from Figs. 10, 11, and 12, the sinusoidal 
straightness error is the most common type encountered. The 
error curve of three linear axes exhibits fluctuations both 
upwards and downwards, with slight periodicity. For posi-
tioning errors, the midsection of the motion axis bears its 
own weight or that of the spindle. Hence, during the design 

phase of machine tools, pre-bending is typically incorpo-
rated. However, due to prolonged machining, wear, and 
loading, the entire motion axis guide rail inevitably bends 
downwards. Generally, this guide rail bends downwards and 
results in a geometric error shape akin to linear variation.

5.2 � Validity verification of compensation 
experiment

The experiments were performed on a VDL-600A three-axis 
vertical machining center using a geometric error–assisted 
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Fig. 12   Fitting cure of Z-axis geometric error

Fig. 13   Error compensation 
experiment
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Fig. 14   Error curves before and after compensation

compensation upper computer. During the compensation of 
geometric errors, communication between the upper com-
puter and the machine tool was established by configuring 
the IP address, as illustrated in Fig. 13. After the G-code 
file is executed, the compensation values are automatically 
generated by the upper computer and then transferred to the 
CNC system. Geometric error measurements and identifica-
tion are carried out after the corresponding compensation 
parameters are configured.

The error curve before compensation is compared, as 
depicted in Fig. 14.

It can be seen from Fig. 14 that the positioning error 
curve exhibits a linear growth trend with increasing travel. 
The straightness error is impacted by the angle error of the 
workbench, resulting in a fluctuating curve along the refer-
ence line with a downward curved and wavy shape. The 
angle error curve does not exhibit linear characteristics but 
fluctuates with a trigonometric function before compensa-
tion. After compensation, the numerical range of various 
error curves is significantly reduced. The error data were 
analyzed and compared before and after compensation, as 
presented in Table 5.
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Fig. 14   (continued)

The results presented in Table 5 indicate a significant 
reduction in positioning error, straightness error, angle 
error, and verticality error values after compensation. 
The geometric errors in the X, Y, and Z directions have 
decreased by an average of 69.7%, demonstrating high 
compensation accuracy across the entire measurement 
range.

To further validate the effectiveness of error compensa-
tion, a double ball bar (DBB) was employed to conduct a 
360° standard circular trajectory test on the XOY plane both 
before and after compensation. Additionally, a 220° standard 
circular trajectory test was performed on the XOZ and YOZ 
planes. The testing parameters included a radius of 100 mm 
and a feed rate of 200 mm/min, as depicted in Fig. 15.
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trajectory. A detailed comparison of the circular trajectories 
before and after compensation is provided in Table 6.

The compensability of the error term may decrease due 
to the resolution limitations of the numerical control sys-
tem. Interestingly, the improvement of roundness error in the 
YOZ plane surpasses that in both the XOY and XOZ planes. 
On average, the roundness error compensation rate stands at 
68.7%, indicative of a notable enhancement in the accuracy 
of two-axis synchronous motion.

To validate the effectiveness of the method proposed in 
this paper for enhancing overall machine accuracy, error 
compensation was conducted both with and without spa-
tial error compensation enabled. Polynomial fitting was 
employed to represent the error terms proposed on a trial 
standard specimen. The specimen used conforms to the 
machined workpiece specified in ISO 10791–2020, as 
depicted in Fig. 17.

During clamping, the workpiece is approximately posi-
tioned at the midpoint of the X-axis and Y-axis travel and 
is secured using a dedicated fixture to ensure maximum 
stability of the tool and fixture. Following installation, the 
parallelism between the mounting surface and the clamp-
ing surface of the fixture is inspected to ensure the flatness 
of the fixture and workpiece mounting surfaces. To secure 
the workpiece, countersunk screws are used to prevent 
interference between the tool and the screws. A 32-mm 
diameter end mill is employed for machining all external 
surfaces of the workpiece, with cutting parameters set at a 

Table 5   Comparison of error data before and after compensation

Error terms Values before 
compensation

Values after 
compensation

Ratio 
improve-
ment

EXX/(µm) 7.645 2.547 66.7%
EYY/(µm) 6.496 1.980 69.5%
EZZ/(µm) 14.360 2.766 80.7%
EYX/(µm) 0.289 0.043 85.1%
EZX/(µm) 1.418 0.296 79.1%
EXY/(µm) 0.172 0.059 65.7%
EZY/(µm) 0.211 0.065 69.2%
EXZ/(µm) 0.277 0.060 78.3%
EYZ/(µm) 0.220 0.063 71.4%
EAX/(µm/mm) 0.0004 0.0002 50.0%
ECX/(µm/mm) 0.0011 0.0002 81.2%
EBX/(µm/mm) 0.0012 0.0004 66.7%
ECY/(µm/mm) 0.0007 0.0004 42.9%
EBY/(µm/mm) 0.0019 0.0004 78.9%
EAY/(µm/mm) 0.0032 0.0010 68.8%
EBZ/(µm/mm) 0.0021 0.0006 71.4%
EAZ/(µm/mm) 0.0008 0.0002 75.0%
ECZ/(µm/mm) 0.0012 0.0002 83.3%
EC0X (µm/m) 30.714 3.912 87.3%
EA0Z (µm/m)  − 47.365  − 28.245 40.4%
EB0Z (µm/m) 51.872 23.705 54.3%

Fig. 15   Measurement in three planes with DBB
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cutting speed of 50 mm/min, a feed rate of 0.05 mm/tooth, 
and a radial depth of cut of 0.2 mm. The cutting process 
of the specimen is illustrated in Fig. 18.

The feature accuracy of the specimen is inspected on 
CMM after machining is completed, and the inspection 
results are presented in Table 7. Table 7 reveals that the 
feature accuracy of the machined specimen is superior after 

Fig. 16   Comparison of circular trajectories compensates

Table 6   Comparison of circular trajectory before and after compen-
sation

Measuring plane Roundness 
before comp

Roundness 
with comp

Proportion

XOY 16.5 µm 10.8 µm 34.5%
YOZ 46.2 µm 6.6 µm 85.7%
XOZ 48.0 µm 6.7 µm 86.0%

Fig. 17   Model and tolerances of piece
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Fig. 18   Cutting of piece test and accuracy measurement

Table 7   The tolerances of piece test before and after compensation (dimensions in mm)

Measurement indicators Tolerance Without Comp Comp. with OPEM Comp. 
with the 
proposed 
method

Centre hole: Cylindricity 0.01 0.008 0.006 0.005
Centre hole: Squareness of the hole axis to datum A 0.01 0.007 0.004 0.003
Straightness of the square edge 0.01 0.006, 0.007, 0.009, 0.01 0.004, 0.005, 0.006, 0.008 0.003, 

0.004, 
0.004, 
0.004

Squareness of adjacent edges of the square to datum B 0.013 0.009 0.006 0.003
Tilt of the four edges of the rhombus to datum B 0.013 0.008 0.006 0.004
Roundness 0.016 0.0012 0.010 0.006
Concentricity of the outer circle with center hole C Φ0.016 Φ0.013 Φ0.011 Φ0.008

spatial error compensation compared to before compensa-
tion, implementing error compensation using orthogonal 
polynomials resulted in an improvement range of [15.4%, 
33.3%] in the accuracy of the test specimen, with an average 
improvement ratio of 25.9%.

In the XOY plane under quasi-static conditions, the 
improvement ratio after compensation for a circular trajectory 
is 34.5%. In contrast, the roundness error improvement ratio 
for standard test pieces under cutting conditions is 62.5%. 
The primary reason for this disparity is that the error com-
pensation in the XOY plane only addresses the errors of the 
X- and Y-axes, while under cutting conditions, compensation 
is applied to all three linear axes’ geometric errors. Thus, from 
the perspective of compensation effects within a single XOY 
plane, the accuracy improvement under quasi-static conditions 
surpasses that under cutting conditions. However, the form 
and position errors of machined parts reflect the combined 
effects of machine tool geometric errors, cutting forces, and 
servo system errors. In quasi-static DBB trajectory measure-
ments, there is no error influence from cutting, leading to a 
higher average accuracy improvement under quasi-static con-
ditions compared to that of machined parts.

6 � Conclusion

This paper introduces a novel approach for modeling, meas-
uring, identifying, and expressing geometric errors in multi-
axis machine tools. The key innovation lies in leveraging 
dual quaternions theory to formulate a comprehensive volu-
metric error model. This method enables the selection of 
optimal measurement times, reduction of disturbance infor-
mation and uncertainty, and the establishment of a paramet-
ric model for geometric errors with universal representation. 
The conclusions drawn from this study are as follows:

1.	 A comprehensive model is developed using dual quater-
nion theory to characterize the correlation between geo-
metric error terms and spatial error vectors. The PIGEs 
of rotary and linear axes are redefined by employing the 
dual quaternion space transformation rule. The method 
of geometric error modeling based on dual quaterni-
ons enables singularity-free spatial transformations in 
Euclidean space, with its structure being simple, com-
pact, and effectively avoiding multiplication operations 
between error term matrices.
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2.	 The minimum number of measurement poses was deter-
mined using the iterative updating of the singular value 
of the error identification matrix. The optimal meas-
urement point selection was conducted based on the 
improved Detmax algorithm of “replacement and addi-
tion.” In the measurement of straightness error, varia-
tions in the position of the interferometer or reflector 
have been accounted for by employing different expres-
sions to unify the identification results, which expands 
the applicability of the proposed method.

3.	 A parametric modeling method based on exponential 
cosine fitting is proposed, the ISSA-nested parametric 
uncertainty optimization approach was established, and 
the parametric errors of geometric error terms with inad-
equate fitting effects are effectively modeled.

4.	 An experiment involving the measurement and compen-
sation of geometric errors in a multi-axis machine tool 
was conducted using an error compensation system. 
Following the compensation process, the mean values 
of geometric errors in the X, Y, and Z directions exhib-
ited a remarkable reduction of 69.7%. Moreover, the 
accuracy of two-axis synchronous motion witnessed a 
substantial improvement increasing by 68.7%.

Despite the progress, it should be pointed out that ther-
mal errors as another significant factor of quasi-static 
errors collectively influence the accuracy of machine tools 
along with geometric errors. Therefore, the coupling effect 
between geometric errors and thermal errors needs to be 
further addressed, which is of more practical significance.
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