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Abstract
Most commercial software used to simulate the injection molding process of semi-crystalline thermoplastic polymers do not
explicitly take into account the polymer crystallization, which could lead to errors in the estimations of filling as well as
warpage and shrinkage. This is mainly due to the common complexity of the models used to describe crystallization and the
challenging respective model parameter identification under injection molding conditions. To close this gap, in this work,
we use a simple thermo-mechanical crystallization model to describe the flow-induced and quiescent crystallization of an
unreinforced semi-crystalline thermoplastic material during injection molding. The crystallization model is implemented in
the commercial softwareAutodesk®Moldflow® Insight 2021 using the SolverAPI feature alongside crystallization-dependent
viscosity, PVT, and solidification models. The model parameters were identified using a calibration workflow that employs
surrogate models representing the simulated pressure results to perform amulti-objective optimization. The filling predictions
as well as the calculated pressure fields are presented using the calibrated model parameters in comparison to those measured
during the actual injection molding of a polyoxymethylene (POM) part using different process conditions. The results show
major improvements in the estimations of the time-depending pressure field as well as the level of filling of the produced
parts.

Keywords Crystallization · Injection molding · Surrogate modeling · Process simulation · Multi-objective optimization ·
Thermoplastics · Parameter calibration · Polymers

1 Introduction

To ensure high product quality and minimize design/pro-
duction costs, injection molding simulation is broadly used
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in order to efficiently design molds and enable the identi-
fication of optimal process settings that mitigate common
defects such aswarpage, shrinkage,weldline, and short shots.
The simulation of the injection molding process is a numer-
ical implementation to solve a set of conservation equations
using material models [1]. Many commercial and academic
software have been developed to solve this problem, which
involves flow, diverse heat transfer mechanisms in addition
to a phase change as well as time-dependent boundary con-
ditions of the polymer material domain during the various
stages of the process. Taking into account all these physi-
cal phenomena in the simulation is not straightforward and
necessitates some simplifying assumptions. An overview of
those hypotheses with a focus on the injection molding of
an unfilled semi-crystalline thermoplastic [1] is given in the
following:

• Specific heat capacity: Data taken from differential scan-
ning calorimetry (DSC) tests performed at constant
cooling rates, typically quite lower than the ones encoun-
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tered close to the mold wall in the actual process. The
data includes the crystallization peak measured during
the DSC test.

• Heat sources: Latent heat of crystallization is considered
indirectly by means of the specific heat capacity data
mentioned above, i.e., froma single constant cooling rate.
Therefore, those solvers do not implement explicitly a
heat source term related to crystallization in the energy
equation.

• Solidification: This phenomenon is approximated numer-
ically by using a single no-flow temperature (or transition
temperature) below which the local melt viscosity is set
to a very high value (∼ 106 Pa.s). This implementa-
tion ignores the changes in crystallization temperature
induced by different local cooling rates occurring in the
actual process.

• Pressure-volume-temperature (PVT): Data taken from
experiments using a constant cooling rate, typically far
below than the ones in the actual process, and therefore
neglecting the changes in crystallization kinetics trig-
gered by different cooling rates.

Due to the complexity of experimentally identifying crystal-
lization parameters under injection molding conditions and
the effect of crystallization on material properties during
processing, many commercial software do not take it into
account by default, even when dealing with the injection of
semi-crystalline materials. This could lead to inaccuracies in
the fill predictions as well as in the estimation of warpage
and shrinkage in the simulation [1].

To overcome the assumptionsmentioned above and, at the
same time, to maintain the effort in material characterization
as low as possible, in this work, we chose a simple crystal-
lization model able to consider flow-induced and quiescent
phenomena [2] to simulate explicitly crystallization during
injection molding. From this point on, this work has two
main contributions to the state-of-the-art in injection mold-
ing simulation. The first one is the numerical implementation
of a flow-induced crystallization model in a commercial
software for injection molding simulation. Concretely, we
present the implementation of a flow-induced crystallization
model coupled with melt viscosity, PVT, and solidification
models in Autodesk® Moldflow® Insight 2021 by using its
solver Application Programming Interface (known as Solver
API). The second contribution is a novel material-parameter
identification methodology, which uses a surrogate model-
based optimization taking as reference experimental sensor
data from an actual injection molding process. One inno-
vation here is the material-parameter identification under
actual processing conditions, which differs from traditional
approaches where the crystallization models are calibrated

based on offline experiments with thermo-mechanical con-
ditions far away from industrial injection molding ones.

In-mold pressure signals are reliable state-of-the-art sens-
ing equipment in industrial context. That is one of the reasons
why we chose in-mold pressure sensor signals as reference
data for the model calibration. Another important reason
is because this physical quantity is strongly dependent on
the crystallization process of the injected semi-crystalline
thermoplastic material. In other words, the simulated pres-
sure field is highly sensitive to the crystallization model
parameters that we look for calibrating. A subjacent working
hypothesis here is that the rest of parameters in the simula-
tion (of material or numerical nature) are correctly calibrated
and that other computed physical quantities (e.g., tempera-
ture field) are accurate.

This work looks for elucidating two research hypotheses.
On the one hand, the implementation of a flow-induced crys-
tallization model in injection molding simulation increases
the robustness of the mold filling predictions. Note that this
work primarily focuses on the impact of the crystallization
model on the filling simulation, particularly in the estima-
tion of pressure-field evolution and incomplete fillings (short
shots) due to flow-front solidification. A discussion about the
impact on shrinkage and warpage predictions falls outside
the scope of this paper. The second hypothesis states that
the proposed method of material parameter identification is
especially advantageous for the modeling of crystallization
in injection molding. In fact, we propose that the genera-
tion of a surrogate model of a high-fidelity injection molding
simulationmodel (where the surrogate input variables are the
unknown material parameters in the high-fidelity simulation
model) and the subsequent identification by calibrating the
generated surrogate model is more efficient than the tradi-
tional approaches based exclusively on lab experiments. In a
previous work dealing with default injection molding simu-
lation [3], thismethodology performedwell for a low number
of training data and input parameters.

This paper is structured in four main sections. In the next
section,we revisit the literature about polymer crystallization
and its modeling as well as the numerical methods associated
with themetamodel generation and its application in injection
molding simulation. In Section 3, we show the implementa-
tion of the flow-induced crystallization model in Autodesk®

Moldflow® Insight as well as the respective material param-
eter identification process by means of a pilot case using a
polyoxymethylene material. In the subsequent section, we
discuss the performance of the identified models at the level
of the high-fidelity simulation in terms of pressure estima-
tion and prediction of short shots. Finally, we close the paper
with a conclusion.
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2 Theoretical background

2.1 Polymer crystallization

2.1.1 Crystallization from the melt

There exist multiple types of crystallization such as crys-
tallization from solution, crystallization by stretching, or
crystallization from the melt. In this work, the main inter-
est is studying polymer crystallization during the injection
molding process, and therefore, only the crystallization from
the melt is considered. This process involves two stages:

1. Nucleation or the formation of active nuclei in the liquid
phase acting as starting points for the appearance of crys-
tals [1]. Two types of nucleation can be distinguished [4,
5]:

• Homogeneous nucleation: Caused by heat motion
and starts within a few polymer chains or segments
(e.g., from the bulk polymer phase).

• Heterogeneous nucleation: Appears on foreign sub-
strates (e.g., nucleating agents, impurities, fillers) or
interfaces in multiphase systems.

2. Growth of the formed nuclei into semi-crystalline mor-
phological structures. Thesemorphologies depend on the
thermo-mechanical history experienced by the polymer
melt leading to the formation of two distinct microstruc-
tures having different spatial growingmechanisms [1, 6]:

• Spherulites: Grow radially in space and form spher-
ical structures known as spherulites, typically seen
under no-flow conditions (quiescent crystallization).

• Thread-like: Oriented semi-crystalline microstruc-
tures in which crystals mainly grow perpendicularly
to flow direction, leading to deformed spherulites,
shish-kebab structures, and even fibrils for high strain
rates (flow-induced crystallization).

The flow conditions during injection molding affect the
crystallization from the melt in several ways [7]:

• Increase the nucleation density
• Raise the crystallization kinetics
• Induce changes in the semi-crystalline morphological
structures

• Increase the crystallization and melting temperature

Comprehensive research work has been done in the last few
decades to better understand the physics behind polymer
crystallization whether under quiescent or flow conditions.
An extensive review of the various theories postulated is
given by Zhang et al. [8]. The current understanding of this

process under flow conditions is that there exists a Weis-
senberg number threshold belowwhich no changes in crystal
morphology are observed and above which the nucleation
density and growth rate are altered by the intensity of flow
in addition to a second threshold where thread-like (fibrillar)
morphologies start appearing [9, 10].

2.1.2 Modeling approaches

The first modeling approaches used to describe the kinetics
of quiescent crystallization are based on the Kolmogorov-
Avrami-Evans (KAE) model [11–13] which was developed
considering isothermal conditions. Such model describes the
nucleation and growth of spherulites using integral equations
while taking into account crystal impingement. To include
a temperature dependence into the modeling, it is common
to use the Hoffman-Lauritzen model which describes the
temperature-dependent growth rate constant [14]. Addition-
ally,Ozawa [15] extended the phenomenologicalKAEmodel
to adhere for the non-isothermal case but it was found that
it applies for a limited range of cooling rates. Nakamura
et al. [16] introduced an isokinetic approach to describe the
kinetic constant in the KAEmodel. Thereafter, Ziabicki [17]
developed a generalized theory to predict non-isothermal
crystallization kinetics using an empirical relation for the rate
constant. As for the description of the temperature-dependent
nucleation evolution, a relation based on Koscher & Fulchi-
ron’s experimental work [18] is commonly used in literature.
An alternative approach for the modeling of non-isothermal
crystallization is proposed by Schneider et al. [19]. This
approach uses a set of four first-order differential equations
derived from the KAE model to solve for the relative crys-
tallinity. Additionally, the solution of Schneider’s equations
provides morphological information concerning the formed
crystalline structures.

The pioneeringwork of Eder et al. [20] set the stage for the
modeling of flow-induced crystallization (FIC). They based
their model on the shear rate as a driving force for crys-
tallization and proposed a model dependent on the shear
rate to account for the effects of flow. Other researchers like
Doufas et al. [21] took into account the effect of flow by
defining a stress intensification factor. Zuidema et al. [22]
proposed a strain-based model describing the spherulite evo-
lution using the Schneider equations and a modified Eder
model to account for the evolution of shish-kebabs. Guo and
Narh [23] and Kim et al. [24] developed a model to describe
the molecular orientation based on Nakamura’s model. Cop-
pola et al. [25] and Titomanlio and Lamberti [26] correlated
the increase of free energy to the raise of melting temperature
and decrease of induction time. Zinet et al. [27] considered
the first invariant of the extra stress tensor as driving force
and extended theSchneider equations accordingly.A thermo-
mechanical-based approach is used by Poitou et al. [2] to
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describe the flow-induced crystallization in the framework of
generalized standard materials. Roozemond et al. [28] used
themodifiedSchneider equations to account for the growth of
both spherulites and shish-kebab crystallites. Most recently,
Spina et al. [29, 30] used a multi-scale approach to model
flow-induced crystallization.

To sum up, in the literature, we can find a broad range
of approaches to model flow-induced crystallization. These
can be clustered into twomain categories according to which
type of model the work is based on:

• The model family based on Nakamura’s approach: The
increase of crystallization kinetics is modeled by multi-
plying the kinetic function by an intensification factor
depending on the postulated driving force for flow-
induced crystallization (stress, strain, shear rate, melt-
ing temperature increase). This approach neglects the
changes in morphology.

• The family based on the KAE model and/or Schneider’s
rate equations: The increase of crystallization kinetics
is coupled with an enhancement of the nucleation rate
and/or growth rate of the crystalline structures. In some
particular cases, the increase of nucleation rate is con-
nected to a higher volumetric free energy difference
between molten and crystalline phases.

Table 1 presents an overview of the literature in the field
of FIC modeling categorized according to the two above-
mentioned clusters and mentions the proposed driving force

describing the effect of the flow on the crystallization kinet-
ics.

These two modeling approaches are not strictly separated
as some of the functions describing the driving force in
the Nakamura-based approaches can be integrated into the
Schneider rate equations to obtain morphological informa-
tion.

2.1.3 Effect on other material properties

During the processing and forming of semi-crystalline ther-
moplastics, the development of crystalline structures influ-
ences other material properties such as viscosity, specific
volume, thermal capacity, and thermal conductivity. There-
fore, substantial research effort has been made to develop
models that describe the effect of crystallization on these
material properties.

As it is difficult to measure the viscosity and the crys-
tallinity simultaneously, separate testing methodologies are
typically performed to assess the impact of the crystallization
phenomenon on the effective viscosity. Rheological mea-
surements are done to describe the viscosity evolution as
a function of temperature and shear rate, whereas DSC mea-
surements are carried out to obtain the crystallinity evolution
with temperature. Special care is taken to assure that these
measurements experience the same thermal histories [50].
The experimental data obtained from the previously men-
tioned methods are used to obtain models describing the

Table 1 Overview of the literature in the field of modeling the flow-induced crystallization during polymer processing, based on [9]

Crystallization model based on Effect of flow on crystallization kinetics
using

Author(s)

Nakamura’s model [16] Multiplying factor function of the extra
stress tensor

Doufas et al. [21], Zinet [27]

Multiplying factor function of the strain
and the shear rate

Kulkarni et al. [31], Tanner et al. [32],Brah-
mia [33], Mu et al. [34, 35]

Melting temperature increase function of
stress

Haas and Maxwell [36], Titomanlio et al.
[37], Guo and Narh [23]

Melting temperature increase function of
molecular strain

Titomanlio and Lamberti [26], Kim et al.
[24], Pantani et al. [10, 38]

Irreversible thermodynamics based on the
standard material formalism

Poitou et al. [2, 39]

KAE model [11–13], Schneider’s rate
equations [19] (Nucleation and growth
models)

Enhancement of nucleation rate Eder et al. [20], Zuidema et al. [22],
Koscher and Fuchiron [18], Roozermond
et al. [28], Kim et al. [40]

Enhancement of growth rate van Meerveld et al. [41], Zinet et al. [42],
Roozemond et al. [43], Troisi and Arntz
[44]

Enhancement function of the free energy
contribution affecting the nucleation rate

Acierno et al. [45], Zheng and Kennedy
[46], Zheng et al. [47], Laschet et al. [48],
Schrank et al. [49]
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viscosity enhancement due to crystallization. Those coupling
functions can be divided into two main classes:

• Models taken from the framework of particle suspension
rheology

• Empirical equations recreating the abrupt increase in vis-
cosity induced by crystallization

Pantani et al. [9] and Lamberti et al. [50] present concise
reviews on the different developed viscosity functions found
in literature that take into account the crystallinity content in
relation to viscosity.

As for the specific volume, several works have been pre-
sented by Luyé et al. [51], Fulchiron et al. [52], Zheng
et al. [47], and Zhao et al. [53]. They included the relative
crystallinity into the calculation of the specific volume by
assuming a simple mixing rule of the molten and solidified
phases’ specific volumes and using Tait-based forms of equa-
tion of state. An alternative approach is to extend the classical
modified 2-domain Tait PVT model by including a cooling
rate dependency as proposed by Cook et al. [54], Wang et al.
[55], and Hopmann et al. [56].

2.2 Surrogate modeling

Despite the advances in numerics and high-performance
computing, there is still a large number of engineering prob-
lems that are difficult to solve accurately and in an acceptable
time frame [57]. This ismainly due to the strong coupling and
multi-dimensionality of the subjacent physical models [58].
In response to this fact, there has been a growing interest in
surrogate modeling techniques to address these challenges.
Such methods approximate the response of complex models
using a surrogate model also known as a metamodel, which

is basically a supervised machine learning model trained on
a finite set of input–output data from the complex (high-
fidelity) model. This makes surrogate models cheaper to run
and are thus used instead of the complex model in various
fields such as engineering design optimization, uncertainty
quantification, and sensitivity analysis.

2.2.1 Generation of a surrogate model

The construction of a surrogate model consists of multiple
steps. The basic process can be summarized as follows [59–
61]:

1. Choice of input (design) variables: Selection of input
parameters, which presumably have a non-negligible
impact on the model output. This choice is usually sup-
ported by preliminary experiments, whether physical or
numerical ones.

2. Sampling in the design space: Definition of a sampling
strategy also known as design of experiments and eval-
uation of the respective design points by means of a
high-fidelity simulation or actual experiments.

3. Supervised learning: Selection of an emulator model in
accordance with the problem at hand and model identi-
fication by fitting the input–output data obtained in the
previous step.

4. Model validation: Assessing the performance of the sur-
rogate model by calculating diverse statistical criteria for
training and testing sets. In case of unsatisfactory results,
the identification of new design points for further model
enrichment is triggered.

5. (Optional) Model updating: Building an updated surro-
gate model using the additional design points along with
the previous ones.

Fig. 1 Overview of the most commonly used methods during the generation of a surrogate model [62, 63]
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6. Model exploitation: Use of the generated surrogatemodel
for further analyses such as parameter sensitivity analy-
sis, optimization routines, or uncertainty quantification
purposes.

Figure1 provides a summary of the mathematical/nume-
rical techniques most commonly used to perform the second
and third steps in the surrogatemodel generation process pre-
sented above. After defining the design space, an additional
optional step is to perform a model order reduction on the
output result(s), which has to be approximated by the surro-
gate model. Following this, the type of emulator is chosen
along with the most suitable fitting (or regression) method.
In the following sections, a closer look is taken into each of
the four steps shown in Fig. 1.

2.2.2 Surrogate modeling in injection molding simulation

In the last years, the use of surrogate models to approxi-
mate outputs from the injection molding simulation has been
growing steadily especially in the field of process param-
eter optimization to enhance product quality and molding
efficiency. Gao and Wang [64] employed a Kriging approxi-
mation model along with an adaptive optimization technique
tominimize thewarpage in producedparts byvaryingprocess
parameters such as the mold and melt temperature, injection
time as well as the holding pressure profile. Similar works
were performed by Chen et al. [63], Wang et al. [65] and
Kang et al. [66]. Other authors used radial basis function
[67–69], artificial neural networks [70, 71], Gaussian pro-
cess [72] as fast emulator to optimize process parameters for

controlling shrinkage and warpage in the final part. Addi-
tional applications for surrogate models have been used for
the optimization of cycle time [68] and part weight [73].

All of the previously mentioned publications use a sur-
rogate model to find optimal process parameters. However,
another interesting utilization of surrogate modeling in injec-
tionmoldingwas recently published by Ivan et al. [74],where
the surrogate model is used to identify two fiber orientation
model parameters. The authors used experimental fiber ori-
entation data obtained by micro-computed tomography to
calibrate thefiber orientationmodel used in their high-fidelity
injection molding simulation. This was done by generating
an ANN-based surrogate model recreating the fiber orienta-
tion tensors across the thickness of several regions of interest
in a plate as a function of two fiber orientation model param-
eters. In this work, we use an analogous approach to calibrate
a crystallization model implemented in a high-fidelity injec-
tion molding simulation.

Table 2 provides a brief overview of the literature deal-
ing with surrogate modeling in injectionmolding simulation.
More comprehensive reviews can be found in [71, 75].

3 Model implementation and parameter
identification

Aworkflowof the proposedmaterial parameter identification
is sketched in Fig. 2. It includes the implementation of the
crystallization model into a high-fidelity injection molding
simulation software, the generation of a respective surrogate
model (having as input variables the unknownmaterialmodel

Fig. 2 Sketch of the surrogate modeling-based optimization for parameter identification in injection molding simulation
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Fig. 3 DSC thermograms of the studied POM under different constant
cooling rates (1, 3, 5, 10 ◦C/min)

parameters), the generation of reference data (in-mold pres-
sure sensor signals) from actual injection molding as well as
the optimization loop over the surrogate model for identify-
ing theunknownmaterialmodel parameters. In the following,
we will present in detail those different blocks by using a
polyoxymethylene (POM) homopolymer as a pilot case.

3.1 Experimental data generation

3.1.1 Material

The polymer material used in this work is an injection
molding grade of an unreinforced POM homopolymer. To
characterize the quiescent crystallization, we carried out dif-
ferential scanning calorimetry (DSC) measurements using a
TA Instruments, Inc. DSC Q1000 with a heating rate of 10
◦C/min and several cooling rates (1, 3, 5, 10 ◦C/min). The
DSC thermograms of the different cooling rates are presented
in Fig. 3. Using the DSC data, we determined the crystalliza-
tion (peak) and melting (peak) temperatures along with the
crystallization enthalpy for the studiedPOMmaterial. Table 3
summarizes those characteristical values.

Additionally, rheological measurements are performed
using an ARES rheometer from TA Instruments, Inc. with
a plate-plate geometry. The test is carried out with a constant
frequency of 3 rad/s and a maximal shear strain of 0.03%
with a cooling rate of 3 ◦C/min. Figure4 presents the results
of the rheological dynamic tests with temperature ramp.
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Fig. 4 Complex viscosity measured under a cooling rate of 3 ◦C/ min
with a constant frequency of 3 rad/s and a maximal shear strain of
0.03%

3.1.2 Injection molding experiments

Injection molding experiments are performed on an electri-
cal injection molding machine (ENGEL E-Motion 440/220
T). We used a constant cross-section cavity mold geometry,
where four pressure sensors aremounted in the cavity tomea-
sure pressure signals during the injection molding process.
A technical drawing of the part along with the design dimen-
sions are shown in Fig. 5. The sensors’ location is specified
by the gray circles in Fig. 5. Bymeans of a filling studywith a
melt temperature of 220 ◦C, amold temperature of 80 ◦C and
an injection velocity of 10cm3/s, we determined a shot vol-
ume of 28.3 cm3 that is used as fixed initial ram position for
all subsequent injection molding experiments. On the other
hand, a packing study is donewith amold temperature of 110
◦C and a holding pressure of 80 MPa for defining a holding
time of 16s.

A design of experiments consisting of 27 sampling points
is performed where the mold temperature, the injection
velocity, and the holding pressure are varied. The upper and
lower bounds of these variables are presented in Table 4. All
experimental runs are carried out with a melt temperature
of 220 ◦C. To import the machine and process settings along
with the sensor signals during the different injection molding
runs, we used the ENGEL sim link interface.

Some of the experimental runs presented short shots due
to the incomplete filling of the mold cavity caused by the
early freezing of the gate.

Table 3 Material characteristics of the studied POM homopolymer obtained from DSC measurements

Crystallization peak temperature, Tc(0) Melting peak temperature, Tm(0) Sample crystallization enthalpy, �Hc

149.4 ◦C 178.9 ◦C 155.3 j/g
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Fig. 5 Technical drawing of the
injection-molded part including
some characteristic dimensions
in mm and the location of the
four pressure sensors (P0, P1,
P2, and P3) [3]

3.2 Implementation of user-definedmodels

3.2.1 Simulation software

We selected Autodesk® Moldflow® Insight 2021.1 (AMI20
21.1) as software to perform the high-fidelity injection mold-
ing simulations because it offers the possibility to implement
user-defined functions by means of the Solver API feature.

The Solver Application Programming Interface (API)
in Moldflow® enables the user to create their own C++
functions, which are called by the solver to calculate a user-
defined variable (e.g., physical property, material descrip-
tor) during an analysis. In AMI2021.1, this feature allows
user-defined models for viscosity, PVT, core shift, solid-
ification, and fiber orientation. Additionally, due to the
newly-introduced Advection API functionality, it is possi-
ble to define material derivatives that are solved in time and
space by the solver while providing the user’s code access to
the solution of the derivative.

3.2.2 Crystallization model

The implemented crystallization model is a thermo-mecha
nical-based model developed by Poitou et al. [2] in the
framework of irreversible thermodynamics. The model is
derived using the standard material formalism commonly
used in solid mechanics to describe various coupled phe-
nomena [2]. Such formalism necessitates two potentials, a
thermodynamic potential and a pseudo-potential, to describe

the behavior of a material. The first potential helps in quan-
tifying the capability of the material to store energy whereas
the second potential quantifies the capability of the material
to dissipate energy [2]. More detailed information concern-
ing this method can be found in [2, 39].

By using the standard material formalism, it is therefore
possible to fully describe a coupled phenomena such as the
flow-induced crystallization since themechanical parameters
are dependent on the degree of crystallinity. The coupling is
taken into account by adding up the potential representing the
quiescent kinetics given by the Nakamuramodel [16] and the
potential referring to the mechanical constitutive behavior
[2]. By assuming that the material is a Newtonian fluid, this
mechanical dissipation potential is thus approximated using a
simple relation between the strain rate tensor and the viscos-
ity. In Poitou et al.’s model [2], the crystallization’s kinetics
are modeled using a temperature-dependent function χ(T )

defined by Hieber [78]. However, in this work, this relation
is substituted by a rate equation described by Lauritzen and
Hoffman [14], known as the Hoffman-Lauritzen equation,
and related to the previous by χ(T ) = 1/K (T )1/n .

The crystallization model, which only applies for temper-
atures lower than the material’s melting temperature Tm(P),
reads as follows:

α̇(t) = (1 − α)

[
− 1

β

∂η

∂α
trD2

+nK (T )
1
n (− ln(1 − α))1−

1
n

] (1)

Table 4 Variable process
settings in the injection molding
experimental runs with their
upper and lower bounds

Process settings Units Lower bound Upper bound

Injection velocity, Vinj cm3/s 10 50

Mold temperature, Tmold
◦C 80 110

Holding pressure, Phold MPa 20 80
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K (T ) = K0 exp

(
− 3Kg

T (T 0
m(P) − T )

)

× exp

(
− 3U �

R(T − T∞(P))

) (2)

where β, n, K0, and Kg are data-fitted parameters, D is the
strain rate tensor, T 0

m(P) is the pressure-dependent equilib-
rium melting temperature, U � is the activation energy for
segmental jump of polymer molecules with a universal value
of 6270 J/mol, R is the gas constant, and T∞ = Tg(P) − 30
Kwith Tg(P) as the pressure-dependent glass transition tem-
perature. The first term in Eq.1 represents the contribution of
the flow-induced crystallization, whereas the second term in
Eq.1 is the contribution of the quiescent one. This last term
is a function of the quiescent crystal growth rate given in
Eq.2, which corresponds phenomenologically to the Avrami
kinetic model parameter too.

To decrease the amount of unknown material model
parameters, we determined a linear relationship between the
kinetic constants of the Hoffman-Lauritzen equation, which
is particular for the POM used in this work:

Kg = 6732 ln(K0) + 11296. (3)

This relationshipdefines the allowedcouplets of (Kg, K0),
which fit (2) to the values of KAvrami identified in the reduced
range of temperatures that is typically accessible by exper-
imental means. We determined, in turn, the Avrami kinetic
constants (crystal growth rate at constant temperature) from
the Ozawa kinetic constants (crystal growth rate at constant
cooling rates) using the following expression:

KAvrami = K (T ) =
[
− d

dT

(
KOzawa(T )1/n

)]n
(4)

where n is the Avrami exponent and also appears in Eq.1.
We needed this Avrami-Ozawa correlation because our

DSC experiments were performed under constant cooling
rates, so we identified first directly the Ozawa kinetic con-
stants.

Additionally, the pressure dependencies of the tempera-
tures are defined by the following:

Tm(P) = Tm(0) + b6P, (5)

T 0
m(P) = T 0

m(0) + aP, (6)

Tg(P) = Tg(0) + bP (7)

where b6, a, and b are usually experimentally determined
parameters. The pressure dependency of the melting tem-
perature b6 is typically obtained from PVT measurements.

However, the two other dependencies are harder to determine
experimentally for semi-crystalline materials. Therefore, for
this work, a relation between the three parameters is pro-
posed by computing the crystal growth curves as a function of
temperature for different pressure levels using the Hoffman-
Lauritzen model given in Eq.2. For various combinations
of a and b, the maximal growth rate is determined for the
different pressures and the corresponding temperatures are
used to calculate b6. Figure6 shows the surface representing
the relation between the parameters, which seems to follow
a linear relationship:

b6 = f · a + g · b (8)

where f = 0.629 and g = 0.4015 are the obtained fitted
parameters. In this work, we suppose that the melting tem-
perature and the equilibrium melting temperature have the
same pressure dependency such as b6 = a = 0.175 K/MPa
(value provided by the material supplier). As a consequence,
the pressure dependency of the glass transition temperature
was found to be b = 0.161 K/MPa by using (8). The crys-
tallization model parameters are summarized in Table 5.

3.2.3 Heat of crystallization

In the standard Moldflow® solver, the implemented energy
equation in terms of temperature T reads as follows:

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ) + τ : ∇v

+ ζT

(
∂P

∂t
+ v · ∇P

) (9)

Fig. 6 Fitting surface relating the different pressure dependencies of
the melting temperature (b6), equilibrium melting temperature (a), and
glass transition temperature (b)
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Table 5 The model parameters of the implemented crystallization
model

Model parameter Value (units)

n 3 (-)

U � 6270 (J/mol)

T 0
m(0) 199.7 (◦C) [79]

Tm(0) 178.9 (◦C)
Tg(0) −73.0 (◦C) [80]
b6 0.175 (K/MPa)

a 0.175 (K/MPa)

b 0.161 (K/MPa)

where ρ is the polymer density, t is the time, v is the velocity
vector, P is the pressure, τ is the viscous stress tensor, k
is the polymer thermal conductivity, cp is the specific heat
capacity of the melt, and ζ = − 1

ρ
∂ρ
∂T is the coefficient of

volume expansion. Notice that there is no explicit term of
heat source. In this work, we model however explicitly the
crystallization heat release by adding a heat source term to
the right of Eq.9 as follows:

Q̇ = ρ�Hcα̇(t) (10)

where �Hc is the latent heat of crystallization of a material
sample with ultimate absolute crystallinity. The numerical
implementation of the heat source term via the solver API
feature is done by defining a local temperature increment
�T as a function of the crystallization increment in a given
time step:

�T = α̇(t)�t
�Hc

cp
(11)

where �t is the solver time step. This model supposes that
the latent heat is released uniformly along the whole crystal-
lization process. On the other hand, if the local temperature of
the melt becomes higher than the melting temperature (T >

Tm(P)), an instantaneous remelting of the crystals should
take place. This endothermic process should lead to a local

temperature reduction,modeled as follows:�T = −α
�Hc

cp
.

The latent heat of crystallization is given in Table 3. As
here we implement explicitly the latent heat of crystalliza-
tion, we have to eliminate the crystallization peak from the
specific heat data as typically found in Moldflow® material
cards. In thiswork,we define the temperature-dependent spe-
cific heat using the values given in Table 6.

Table 6 The specific heat data used in theMoldflow® simulations along
with self-defined models

Temperature (◦C) Specific heat (J kg−1 K−1)

32 1286

220 1932

3.2.4 Viscosity model

Amodified Cross-WLFmodel is used to describe the viscos-
ity in this implementation. In this model, the shear viscosity
depends on crystallization, temperature, shear rate, and pres-
sure. The melt shear viscosity η is given by the following:

η(T , P, α, γ̇ ) = η0(T , P, α)

1 + (
η0(T ,P,α)γ̇

τ � )1−λv

(12)

where γ̇ is the shear rate, τ � is the critical stress level at
the transition to shear thinning, λv is the power law index in
the high shear rate regime, and η0 is the zero shear viscosity
defined as follows:

η0(T , P, α) = D1 exp

( −A1(T − Tre f )

A2 + (T − Tre f )

)
ϑ(α) (13)

where Tre f = Tg(P) with the pressure-dependency defined
in Eq.7, D1 is theoretically the shear viscosity at Tre f , and
A1 and A2 are data-fitted coefficients approaching the uni-
versal constant values of the WLF theory. As for ϑ(α), it is a
function describing the crystallization dependency of the vis-
cosity and is an extension of Kitano et al.’s relation [81] for
concentrated suspension of particles. This function is defined
as follows:

ϑ(α) = 1

(1 − α
A )B

(14)

where A would represent a critical relative crystallinity at
which the viscosity of the system tends to be infinite (solidifi-
cation) and B is a data-fitted exponent. The coupling function
ϑ(α) = η0(T , P, α)/η0(T , P) is chosen to increase the
effect of crystallization on viscosity at low shear rates as
done by Pantani et al. [9].

Be aware that in our implementation of the Cross-WLF
model, the A2 coefficient does not depend on pressure. This
differs fromMoldflow® implementation, which includes this
pressure dependency and leads to a linear relation between
η0 and P for all temperatures. However, Rudolph et al. [82]
showed a non-linear dependency between η0 and P for low
temperatures approaching the glass transition temperature of
a polycarbonate material. Therefore, in this work, the main
connection between shear viscosity and pressure is modeled
using the glass transition temperature’s dependency.
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To identify the parameters of theWLFmodel, the rheolog-
ical measurement presented in Fig. 4 is used. The viscosity
results before the onset of crystallization at 152 ◦C are uti-
lized to identify the temperature dependency of the shear
viscosity by fitting the following linear relation:

1

ln(η�/D1)
= − A2

A1

1

(T − Tre f )
− 1

A1
(15)

where η� is the magnitude of the measured complex viscos-
ity from the dynamic rheological test. On the other hand,
the cross parameters describing the dependency on shear
rate dependency are taken from the Moldflow®’s material
database. The model parameters for the Cross-WLF model
are summarized in Table 7.

3.2.5 PVTmodel

Since this work deals with a semi-crystalline thermoplastic
material, the pressure-volume-temperature (PVT) relation-
ship is defined by considering explicitly the relative crys-
tallinity α. We assume that thematerial is a simple two-phase
system. In this context, we can describe the specific volume v

using a mixing law of the molten and solidified phases’ spe-
cific volumes, represented respectively as vm and vs . This
law is written as follows:

v = αvs + (1 − α)vm . (16)

The specific volumes vm and vs are defined by using the
respective empirical Tait equation of state:

vx (T , P) = v0(T )

[
1 − C ln

(
1 + P

B(T )

)]
(17)

with x = m, s. In Eq.17, C is a universal constant equal to
0.0894, v0(T ) is the specific volume at zero gauge pressure,
and B(T ) describes the pressure sensitivity of the studied

Table 7 The model parameters of the implemented viscosity model

Model parameter Value (units)

λv 0.16 (-)

τ � 398 000 (Pa)

D1 5.55 x 1013 (Pa.s)

A1 26.59 (-)

A2 28.87 (K)

Tg(0) −73.0 (◦C) [80]
b 0.161 (K/MPa)

material. These temperature-dependent functions are defined
as follows:

v0(T ) = b1x + b2x (T − b5), (18)

B(T ) = b3x exp (−b4x (T − b5)) (19)

where b1x , b2x , b3x , b4x , and b5 are data-fitted coefficients.
In this work, the respective PVT parameters are taken

from Moldflow®’s material database and are summarized in
Table 8.

3.2.6 Solidification model

A solidification criterion is used in an injection molding
simulation to mimic a melt-to-solid transition in the man-
ufacturing process. Numerically, it is treated as an abrupt
increase of local viscosity to be able to solve the flow prob-
lem without shifting the system boundaries. Traditionally,
the criterion is defined by a constant no-flow temperature,
which should be characteristic of the material. However,
the solidification of a semi-crystalline polymer is primar-
ily dependent on its crystallization degree. Therefore, we
propose a crystallization-dependent solidification model as
follows:

• If α ≥ A, then polymer is treated as solid.
• If α < A, then polymer is in melt state.

where A is the same parameter used to describe the depen-
dency of the viscosity on crystallization given in Eq.14.

Table 9 presents a summary of the implemented models
in comparison to the ones used by the default Moldflow®

solver.

Table 8 The model parameters of the implemented PVT model

Model parameter Value (units)

b1m 8.45 x 10−4 (m3/kg)

b2m 5.65 x 10−7 (m3/kgK)

b3m 1.57x 108 (Pa)

b4m 7.67x 10−3 (1/K)

b5 448.15 (K)

b1s 7.45x 10−4 (m3/kg)

b2s 2.94 x 10−7 (m3/kgK)

b3s 2.88 x 108 (Pa)

b4s 4.78x 10−3 (1/K)
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Table 9 Comparison between
the implemented models and the
ones used by default in a
Moldflow® simulation for the
injection molding of a
semi-crystalline thermoplastic
material

Model Default moldflow® Proposed implementation

Crystallization Not included Poitou et al. [2] thermo-
mechanical model: Quies-
cent and flow-induced crys-
tallization

Viscosity Cross-WLF model (linear
pressure dependency) with-
out crystallization depen-
dency

Modified Cross-WLFmodel
(nonlinear pressure depen-
dency) coupled with crystal-
lization

PVT 2-domain Tait model with
a transition temperature lin-
early dependent on pressure

2-phases mixing law cou-
pled with relative crys-
tallinity

Heat of crystallization Indirectly considered in the
specific heat data (including
crystallization peak)

Heat release due to crys-
tallization and heat removal
due to remelting of crystals

3.3 Surrogate model generation

3.3.1 High-fidelity simulation model

The simulations are set-up to recreate the injection mold-
ing experiments presented in Section 3.1.2. The injection-
molded part corresponds to the geometry shown inFig. 5. The
high-fidelity simulation emulates the in-mold cooling pro-
cess of the injection-molded part, starting from the filling of
the mold cavity up to the mold opening for part ejection. The
thermal boundary conditions are given by a previous thermal
simulation of the complete mold within a stable injection
molding cycle. In Moldflow® software, the described sim-
ulation corresponds to a Cool(FEM) + Fill + Pack analysis.
The geometrical model includes cooling channels meshed as
beam elements and the part as well as the feed system (nozzle
and flange) meshed using tetrahedral elements with 24 layers
through the thickness, where the feed system is defined as a
hot runner. Lateral and top views of the meshed model are
shown in Fig. 7 a and b, respectively. The computation time
of a single simulation requires around 110min in a PC with
a 4.10 GHz processor and 32 GB RAM.

The process settings of the base simulation are defined
according to imported data from the ENGEL sim link soft-
ware tool. These include the filling and packing profiles along
with the switch-over ram position and the machine settings.
Since in this work multiple user-defined models are imple-
mented, the Solver API option should be enabled and the
paths of the text files containing the various model parame-
ters should be specified accordingly.

3.3.2 Input variables and output

A total of three surrogate models are generated for three
different processing conditions corresponding to the ones
used during the experimental injection molding runs. These
process settings are presented in Table 10 along with the

respective labels of the experimental DOE and surrogate
model. Since a cooling analysis is performed in the sim-
ulations, the inlet cooling temperature Tc,in is varied such
as Tc,in = Tmold + 4◦C of the Tmold set experimentally.
Each surrogate model is built by considering the following
input variables: Crystallization model parameters β and K0,

Fig. 7 The meshed simulation model including the part (dark green),
runner and sprue (light green), cooling channels (blue), and feed system
(red) [3]
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Table 10 Process settings of the baseline simulations for the generation of surrogate models

Experimental Surrogate Inlet cooling temperature, Injection velocity, Holding pressure,
DoE label model label Tc,in (◦C) Vinj (cm3 /s) Phold (MPa)

V6 SM1 84 50 50

V14 SM2 99 30 50

V27 SM3 114 50 80

viscosity model parameters A and B, and the heat transfer
coefficient during the packing phase HTCp. These input
variables are summarized in Table 11 along with their lower
and upper limits.

Some of these ranges were determined by making some
numerical tests while others were based on experimental
results. For K0, for example, we took as a basis the DSC
measurements presented in Section 3.1.1. However, given
the experimental limitations for covering a large range of
cooling rates, we have to deal with an uncertain identifica-
tion of K0. In fact, all values within the proposed interval of
variation for K0 fit the available experimental data according
to the Avrami-Ozawa relation given in Eq.4. On top of that,
the interval of variation is centered at ln(K0) = 53, which is
a value determined by Plummer and Kausch [83] for POM.
As for the solidification criterion A, in the case of B = 2, the
viscosity coupling is analogous to the one given by Metzner
[84], where A = 0.68 is specified for smooth spheres and
A ≈ 0.44 for rough compact crystals. As we expect the for-
mation of spherulites and thread-like crystal morphologies
during the injection molding process of POM, we propose a
rough variation of±0.15 around the value given for compact
crystals. As for B in the viscosity model, Kitano [81] and
Metzner [84] defined it to be equal to 2 according to sus-
pension theory. However, in our work, B is varied between
2 and 5 to encompass larger viscosity increases with evolv-
ing crystallization, as observed experimentally for POM in
Fig. 4.

β is a parameter that controls the contribution of the flow-
induced crystallization to the total relative crystallinity in
the model. It turns out that the overall filling simulation is
extremely sensitive to this parameter because it can trigger
artificially fast solidification of the gate and therefore incom-
plete cavity filling. The interval of variation forβ was defined

after multiple high-fidelity simulation sensitivity studies and
surrogate model tests, guaranteeing a DoE that produces a
representative amount of short shots and fully filled parts to
efficiently calibrate the material-dependent model parame-
ters.

The output result used to train the surrogate models is
the pressure signal at a surface node corresponding to the
location of the sensor P2 located directly after the gate as
shown in Fig. 5.

3.3.3 Generation methodology

The training set for the generation of the different surrogate
models is sampled using the Latin hypercubemethod. A total
of 132 simulations were chosen for training and 20 simula-
tions for testing purposes. This choice is postulated to be
appropriate as five parameters are being varied in this work
in comparison to the six parameters changed in our previous
work [3], where an acceptable accuracy for the estimation of
the pressure signal was reached using 120 training simula-
tions.

Once the results of the high-fidelity simulation DoE are
available, the generation of the surrogate models is done in
MATLAB R2019b using proper orthogonal decomposition
(POD)of the pressure signal andnon-linear regression (NLR)
of the POD basis coefficients. This methodology is partially
analogous to the POD-NLRmethod presented in [3]. The fol-
lowing steps describe the process of generating the surrogate
models using the POD-NLR technique used in this work:

1. Normalization: The pressure signal results Pi (i =
1, · · · , S) are normalized between 0 and 1 as follows:

tnorm = toriginal − tstart
tend

(20)

Table 11 Surrogate model
variables with respective upper
and lower bounds

Surrogate model variables Units Lower bound Upper bound

β Pa−1s−1 −1012 −1010

ln(K0) – 23 83

A – 0.3 0.6

B – 2 5

HTCp Wm−2◦C−1 500 5000
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where toriginal is the imported unprocessed simulation
time, tstart represents the time at which the flow front
reaches the sensor node producing a non-zero pressure
value, and tend is the time at which the pressure sig-
nal becomes zero, i.e. the local pressure equalizes the
ambient pressure. In this work, tstart is substantially
smaller than tend , that is why we have neglected it in
the denominator of the normalization equation. Subse-
quently, the simulated pressure is resampled using 1000
points uniformly distributed in the normalized time inter-
val between 0 and 1.

2. Model order reduction: The normalized simulated pres-
sure signal is dimensionally reduced by means of proper
orthogonal decomposition (POD). To obtain the POD
basis functions, the eigenvalue problem PPT Vk = λkVk
needs to be first solved, where P is a snapshot matrix of
different pressure signals andV1, V2, V3, ... are the eigen-
vectors associated to the eigenvalues λ1, λ2, λ3, ... The
POD basis functions φk can be then determined by nor-
malizing the eigenvectors by φk = Vk/λk . These basis
functions create an orthogonal system that captures the
dominant energy modes within the data and their coeffi-
cients are determined by projecting the original data onto
these functions. The reconstruction of the pressure signal
can be obtained by the following:

P(s)
reconstructed =

n∑
k=1

�
(s)
k φk (21)

where s is the high-fidelity simulation number, n is the
number of modes or basis functions obtained according
to a specified error value, and �

(s)
k is the POD basis coef-

ficient for a specific mode k and a simulation s. The
truncation criterion is done according to an error value of
ε = 5× 10−4, which cuts off the number of modes once
the eigenvalue condition λ

λmax
≥ ε is not more satisfied.

3. Regression: A least-squares regression of a second-order
polynomial is used to correlate the POD basis coeffi-
cients �, and the time shift values tstart and tend with the
metamodel variables. The regression equations read as
follows, where the implicit Einstein summation conven-
tion is used for indexes i and j :

�(s)
n = a(n) + b(n)

i X (s)
i + c(n)

i j X (s)
i X (s)

j (22)

t (s)start = d + ei X
(s)
i + fi j X

(s)
i X (s)

j (23)

t (s)end = g + hi X
(s)
i + zi j X

(s)
i X (s)

j (24)

where Xi and X j are the surrogate model input variables
anda, bi , ci j , d, ei , fi j , g, hi , zi j are the surrogatemodel
parameters.

3.3.4 Performance of the surrogate models

The performance of each surrogatemodel is assessed bymea-
suring its capacity to recreate the pressure signal given by the
high-fidelity simulation at one sensor location. In this sec-
tion, we present some predicted pressure results from both
the training and testing DoE sets as well as the error met-
rics for the estimation of the POD basis coefficients and time
shifts. In other words, we measure the quality of the fitted
polynomials defined in Eqs. 22, 23, and 24 and their predic-
tive capability.

One of the errormetrics in this work is the normalized root
mean squared error (RMSE) that uses the min-max normal-
ization method to facilitate the comparison between various
surrogate modeling techniques:

Normalized RMSE(Y , Ŷ ) = RMSE(Y , Ŷ )

Ymax − Ymin

=
√

1
n

∑n
i=1(Y

i − Ŷ i )2

Ymax − Ymin

(25)

where Y and Ŷ represents the target and estimated output,
respectively. In this work, the estimated output is the surro-
gate model response.

The second metric is the coefficient of determination also
known as the R2 score. It is a statisticalmeasure that indicates
how well the data fit the regression model and how well
unseen samples are likely to be predicted by the model. R2

ranges between −∞ < R2 ≤ 1, where 1.0 is the best score.
R2 is calculated as follows:

R2(Y , Ŷ ) = 1 −
∑n

i=1(Y
i − Ŷ i )2∑n

i=1(Y
i − Ȳ )2

(26)

where Ȳ = 1
n

∑n
i=1 Y

i is the mean value of Y .
To ease the analysis of the previously mentioned metrics,

the POD basis functions associated to each surrogate model
are presented in Fig. 8. For the molding conditions V6 and
V14, the simulation output is reduced using five basis func-
tions. For themolding conditionV27, data reduction required
only three basis functions by using the same truncation error
ε. This fact means that the simulated pressure signal for the
process settings V27 is less fluctuating than the ones for the
other process conditions.

Starting with the surrogate model SM1, Fig. 9a presents
the pressure results of four training simulations and the
approximated results given by the trained surrogate model.
Even considering training data, there still exists some dis-
crepancy between the target simulation and the surrogate
model predictions, especially in the case of the green curve.
These differences are somehow explainable since the meta-
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Fig. 8 The PODbasis functions of the three generated surrogatemodels
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Fig. 9 Comparison between the pressure predictions using the SM1
surrogate model and those obtained by four example high-fidelity sim-
ulations used for the model’s a training and b testing

model is trained on a reduced form of the predicted signal
and not directly on the full-resolution simulated pressure
response. On the other hand, the pressure signal depicted
in the green curve is more wavy than the other three curves
making it more challenging to approximate using the same
number of basis functions. Figure9b shows the pressure sig-
nals of four simulations used to test the capability of the
surrogate model to predict unseen data. The surrogate model
is able to recreate reasonably well the form of the different
pressure signals but struggles to accurately predict tend as
seen in the case colored in dark blue.

The error metrics of the surrogate model SM1 for estimat-
ing the five POD basis coefficients � and the two time shift
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Fig. 10 The error metrics of the calculated POD basis coefficients �

and time shifts tstart and tend using the SM1 surrogate model when
using input data from the training and testing sets

parameters are presented in Fig. 10. Figure 10 a and b show
the normalized RMSE and R2 score, respectively, differen-
tiating between training and testing scenarios. As expected,
error metrics for training are lower than for testing data sets.
The normalized RMSE for estimating the POD basis coeffi-
cients �1 and �4 as well as the time shift tstart doubles when
passing from training to testing data sets. Similarly, the esti-
mation of the POD basis coefficients �3 and �4 produce a
negative R2 score for the testing data set, which points out
that the SM1 should not be used as a single regressor for
those parameters. However, the overall performance of the
surrogate model SM1 (normalized RMSE lower than 26%)
is acceptable given that the reconstructed pressure signals
(Fig. 9) are accurate enough for the calibration purposes in
thiswork. Specifically, the reconstructionyields amean abso-
lute error of 3.7 MPa in the testing data set, which represents
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Fig. 11 Comparison between the pressure predictions using the SM2
surrogate model and those obtained by four example high-fidelity sim-
ulations used for the model’s a training and b testing

less than 7% difference with respect to the maximal injection
pressure of reference.

Moving on to the surrogate model SM2, Fig. 11 shows
high-fidelity simulation results in front of the surrogatemodel
estimations for both training and testing data sets. Some
minor differences between high-fidelity simulation and sur-
rogate model are visible. In the training set, the maximum
pressure of the simulation in turquoise is under-predicted
whereas the end times tend for the simulations in green and
pink are over-predicted. In the testing set, the SM2 model
performs reasonably well as seen in Fig. 12b. This is con-
firmed by a normalized RMSE lower than 20% for all POD
basis coefficients as shown in Fig. 12. Additionally, there is a
relatively small difference of performance metrics between
the training and testing data sets. In this case, the recon-
struction of the simulated pressure signals using SM2 shows
a mean absolute error of 2.3 MPa (less than 5% difference
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Fig. 12 The error metrics of the calculated POD basis coefficients �

and time shifts tstart and tend using the SM2 surrogate model when
using input data from the training and testing sets

with respect to the maximal injection pressure of reference)
in the testing data set.

The SM3 model exhibits also a remarkable performance
as observed in Fig. 13 a and b for training and testing
data sets, respectively. The most noticeable deviation occurs
in the training set, where the maximum pressures of the
high-fidelity simulations represented in green and turquoise
(Fig. 13a) are under-predicted by the metamodel. Interest-
ingly, the model order reduction in this case required only
three POD basis functions (see Fig. 8c) to satisfy the trunca-
tion error of ε = 5 × 10−4. For this reason, Fig. 14 presents
the error metrics for only three � POD basis coefficients. In
the training set, the normalized RMSE for all parameters is
lower than 12%. However, the prognosis of the third POD
basis coefficient �3 as well as tstart is inaccurate in the test-
ing set (negative R2), pointing out a deficiency of the chosen
polynomial regressor for those parameters. Nonetheless, the
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Fig. 13 Comparison between the pressure predictions using the SM3
surrogate model and those obtained by four example high-fidelity sim-
ulations used for the model’s a training and b testing

reconstruction of the simulated pressure signals using SM3
is acceptable as far as it displays a mean absolute error of 4.6
MPa (less than 6% difference with respect to the maximal
injection pressure of reference) in the testing data set.

3.4 Surrogate model-based parameter calibration

3.4.1 Calibration algorithm

To identify the five modeling parameters presented in
Table 11, amulti-objective optimization routine is performed
using the lsqnonlin built-inMATLAB function from the opti-
mization toolbox. The experimental pressure signals are used
as a reference for defining the objective functions. The cali-
bration utilizes all three surrogatemodels to obtain one single
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set of optimized parameters using the following formulation:

find V = (β, K0, A, B, HTCp)

argmin | Ŷ l
max − Y exp,k

max | (l = 1, 2, 3

| t̂ lend − texp,kend | & k = 6, 14, 27)

s.t. −1012 ≤ β ≤ −1010,

23 ≤ ln(K0) ≤ 83,

0.3 ≤ A ≤ 0.6,

2 ≤ B ≤ 5,

500 ≤ HTCp ≤ 5000.

The optimization problem contains in total six objective
functions. Three of themminimize the difference between the
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Fig. 15 The time intercept of a tangent straight line fitted to the pressure
signal decay at the end of packing for the P2 sensor signal of the DOE
level V6

experiment and surrogate model for the maximal pressure
value in three different processing conditions. The exper-
imental maximal pressure is Y exp,k

max , where k = 6, 14, 27
represents the experimental DoE labels V6, V14, and V27.
On the other hand, the maximal pressure determined by the
surrogate model l is Ŷ l

max. The remaining objective func-
tions minimize the difference between predicted end time
t̂ lend , calculated according to Eq.24, and the experimentally

determined end time texp,kend . The experimental end time value
is obtained as the time intercept of a tangent straight line
fitted to the pressure signal decay at the end of packing. A
visual example of the end time determination of V6 is given
in Fig. 15. Table 12 summarizes the experimental reference
values used to define the six objective functions.

3.4.2 Calibration results

For calibrating the material models implemented inMoldflow®,
we can use now the three generated surrogate models by
identifying β, K0, A, B, HTCp according to the algorithm
described in Section 3.4.1. The optimization routine neces-
sitated 15 iterations to reach a local minimum as shown in
Fig. 16. The optimization routine stopped because the func-
tion tolerance fell below 10−4. To check if there exist other
local minima in this multi-objective optimization and finally
obtain the globalminimum, the built-inMultiStartMATLAB

Table 12 The experimentally
determined parameters used to
define the six objective
functions used in the
optimization routine to identify
the modeling parameters

k Y exp,k
max (MPa) texp,kend (s)

6 38.1 12.8

14 35.2 15.2

27 63.6 20.5
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Fig. 16 The norm of the residuals as a function of the number of itera-
tions performed by lsqnonlin during the optimization routine

function is used to find other possible local minima to the
optimization problemby starting fromdifferent initial points.
We did not find a different combination of optimized param-
eters suggesting that we found the global minimum from the
first try. The optimized parameters are given in Table 13.

The identified solidification criterion parameter A =
0.35 seems reasonable since it depends theoretically on the
geometry of the suspending solid crystallites. According to
Kennedy andZheng [1] andMetzner [84], A is approximately
equal to 0.44 for rough compact crystals and since during
injection molding fibrillar crystal structures could develop
due to intense shear strain, an A < 0.44 is plausible. The
optimized value for the exponent parameter B is nearly equal
to the upper bound of the searching interval (i.e., B = 5),
which underlines the strong coupling between evolving crys-
tallization and effective shear viscosity. This correlates well
with the results of the rheological test in Fig. 4, where the
viscosity increases abruptly after the onset of crystallization.
On the other hand, the identified value of the FIC parameterβ
is not straightforward to assess but β = −1011.37 translates
into a lower contribution of FIC to the total relative crys-
tallinity. The optimized value for ln(K0) corresponds to the

Table 13 Identified model parameters after multi-objective optimiza-
tion

Model parameter Units Identified value

β Pa−1s1 −1011.37

ln(K0) – 83.00

A – 0.35

B – 4.96

HTCp Wm−2◦C−1 500
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Fig. 17 The pressure signals for the V6 processing condition obtained
using the simulation with the calibrated models in comparison to the
ones obtained by the default Moldflow® simulation along with the cor-
responding experimental results for this condition
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upper bound of the considered searching interval, which cor-
roborates the renowned high crystallization kinetics of POM,
even at quiescent conditions. The identified value is however
greater than the one determined by Plummer andKausch [83,
85] equal to 53. Finally, the heat transfer coefficient during
packing was found equal to 500 W m−2◦C−1, which is a
result prone to critic and discussion. In fact, this low value is
typically used to describe the heat transfer condition under
detachment betweenmold and part, which hardly occurs dur-
ing the entire packaging phase. The heat transfer coefficient is
a simulation parameter controlling the evolution of the tem-
perature field in the polymer domain and therefore can be
seen also as numerical artifact for tuning the crystallization
kinetics and solidification in the simulation. For reference,
in Moldflow® the default value for the global heat transfer
coefficient during packing is 2500 W m−2◦C−1. This result
points out the need for implementing a local definition of the
heat transfer coefficient, probably depending on the instan-
taneous local pressure, in the commercial codes of injection
molding simulation.

4 Calibrated high-fidelity simulation
with crystallizationmodel

In the following, the high-fidelity simulation including the
calibrated flow-induced crystallization model is compared
with the default Moldflow® simulation that does not take
crystallization explicitly into account.

4.1 Pressure results

As shown in Table 10, each surrogate model was generated
using a fixing set of processing conditions and mimics one
particular level of the experimental design of experiments.
On the other hand, the pressure signal at the sensor located
after the gate (P2) was used to identify the modeling parame-
ters given in Table 13. Therefore, a natural way to assess the
performance of the implemented models is to compare the
predicted pressure signals by the standard Moldflow® simu-
lation (default simulation) with the high-fidelity simulation
including the calibrated crystallization model (Simulation
with calibrated crystallization model). Figures17, 18, and
19 present the experimental and simulated pressure signals
at the sensor locations P1, P2, and P3 (refer to Fig. 5) for the
processing conditions V6, V14, and V27, respectively.

The high-fidelity simulation including the flow-induced
crystallization model outperforms the default high-fidelity
simulation for all processing conditions and improves par-
ticularly the pressure estimation at sensor locations P2 and
P3. Interestingly, the proposed calibrated simulation is able
to recreate the pressure plateau just after the switch-over as
observed in Fig. 18 a and b at P1 and P2, respectively, which
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Fig. 18 The pressure signals for the V14 processing condition obtained
using the simulation with the calibrated models in comparison to the
ones obtained by the default Moldflow® simulation along with the cor-
responding experimental results for this condition
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Fig. 19 The pressure signals for the V27 processing condition obtained
using the simulation with the calibrated models in comparison to the
ones obtained by the default Moldflow® simulation along with the cor-
responding experimental results for this condition
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Fig. 20 The RMSE of the pressure predictions using the simulation
with the calibrated models (optimization) and the one using the default
Moldflow® models (default) for each of the three processing conditions
used to generate a surrogate model
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leads to a pressure signal delay at P3 as shown in Fig. 18c for
the processing condition V14.

To quantify the improvement in pressure predictions, the
normalized RMSE are calculated for the different simu-
lation approaches and plotted in Fig. 20 a, b, and c for
the processing conditions V6, V14, and V27, respectively.
As expected, the prediction error decreases significantly by
including the calibrated crystallization model along with the
crystallization-dependent viscosity, PVT, and solidification
models. Major improvements are noticeable at sensor loca-
tions P2 and P3 for the processing conditions V6 and V14,
where the error decreases threefold at P2 and four times at
P3. A more accurate estimation of the pressure field should
in principle lead to higher accuracy when predicting part
shrinkage and warpage. For the processing condition V27,
the improvement of accuracy is less pronounced in compar-
ison to the other conditions, but the error still decreased by
approximately 5%.

The previous comparison appears promising, but is biased
as far as the implemented models were calibrated using the
measured pressure signals for those processing conditions.
Therefore, Fig. 21 presents the averaged normalized RMSE
at P2 for all experimental processing conditions (all levels of
the design of experiments) while using standard Moldflow®

models and Moldflow® with the calibrated crystallization
model.

According to Fig. 21, for the majority of the different DoE
levels, the estimation error is decreased by more than half
with respect to the default high-fidelity simulation. Some
exceptions are for example theDoE levelsV7,V8, andV9.To
analyze the probable reasons behind this discrepancy, Fig. 22
presents the experimental pressure signal at sensor location
P2 in comparison to the simulated ones (default andwith cali-
brated crystallization models) for the mentioned DoE levels.
Both simulations fail to recreate the experimental pressure
signals in terms of maximum value and signal decay. In fact,
all experimental signals exhibit an unusual inflection point
around 10s. This could be due to a partial remelting of the
solidified material at the gate that would lead to an increased
melt flux entering the cavity. Even though our proposedmod-
eling includes the effect of remelting, our current calibrated
simulation is not able to recreate such bump in pressure sig-
nal. This fact reveals that some model assumptions need to
be revisited or that the models are not fully calibrated yet.
Please notice however that in Fig. 22b, our proposed sim-
ulation shows an inflection point around 7s. On the other
hand, the high-fidelity simulation with calibrated crystal-
lization models is able to predict with higher accuracy the
maximal pressure before switch-over and also the pressure
signal response just after changing to pressure control.

4.2 Predictions of short shots

As mentioned in Section 3.1.2, some experimental DoE lev-
els did not produce a fully filled part, displaying what in
the milieu is known as a short shot. Figure23a summarizes
the filling status of the 27 experimental DoE levels. One
of the claimed advantages of implementing crystallization-
dependent material models in injection molding simulation
is the ability to predict if a mold cavity can be filled com-
pletely or not. The default Moldflow® simulation is not able
to predict the short shots as seen in Fig. 23b. However, our
high-fidelity simulation with calibrated crystallization mod-
els makes it possible to predict most of these short shots as
shown in Fig. 23c. In total, four out of the five short shots are
identified along with one wrong prediction for V3 (≈ 4 mm
of flow length not filled). For the V19 condition, the simula-
tion showed a complete cavity filling, but experimentally, it
shorted 7mm before end of cavity. With our proposed mod-
els, the estimated flow length is accurate up to ±15 mm. For
example, the actual parts produced with the processing con-
ditions V10 shorted 10mm before end of cavity whereas in
the simulation the leftover unfilled length was around 5mm.

5 Conclusion

We successfully implemented a flow-induced crystalliza-
tion model coupled with viscosity, PVT, and solidification
models in a commercial software for injection molding
simulation (Autodesk® Moldflow® Insight). This modeling
framework is applicable to any semi-crystalline thermo-
plastic polymer. For a given material, the identification of
thematerial-dependent parameters requires initially standard
experimental characterization of the quiescent crystallization
(fundamentally based on DSC), which reduces the num-
ber of unknown parameters to 5. The lacking 5 unknown
material-dependent parameters are calibrated using a surro-
gate model-based optimization taking as reference in-mold
pressure sensor signals from an actual injectionmolding pro-
cess. In this work, we applied the identification methodology
to an industrial grade of an unreinforced polyoxymethylene
(POM) homopolymer. This novel data-driven calibration
method required the generation of a surrogate model (trained
with 132 high-fidelity simulations) and a multi-objective
optimization of the respective surrogate model. This last step
needed only 15 iterations (less than 1s) to solve the mini-
mization problem for identifying the 5 material-dependent
parameters of the flow-induced crystallization model under
actual injection molding conditions. In sum, the effort of the
proposed method seems quite lower in comparison with the
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Fig. 21 Averaged normalized RMSE of the pressure estimations at sensor location P2 using the high-fidelity simulation with the calibrated
crystallization models and the default Moldflow® simulation for all 27 experimental processing conditions used for injecting the half-length 3-mm
thick part
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Fig. 22 Comparison of pressure signals at position P2 for processing condition V7, V8, and V9: experimental, standard Moldflow® simulation and
Moldflow® simulation with calibrated crystallization models

Fig. 23 The experimental fill results a in comparison to the ones predicted using the b default simulation and c simulation with the calibrated
crystallization models
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costs (and time) associated with the extensive characteriza-
tion used for identifying phenomenological crystallization
models under laboratory equipment conditions.

The high-fidelity simulation with calibrated material-
dependentmodel parameters produced a remarkable increase
in the accuracy of the pressure field during injectionmolding.
Concretely, the error in the estimation of the pressure signals
at the sensor locations for a variety of processing conditions
decreased by more than half when comparing the simulation
including flow-induced crystallization modeling in front of
the default simulation (without explicit crystallization mod-
eling). This result highlights particularly the important role
of the crystallization-viscosity coupling, which influences
the pressure evolution during a mold filling. In addition, the
simulation with crystallization modeling was able to pre-
dict 80% of the short shots observed in an actual injection
molding DoE (5 from 27), whereas the default simulation
predicted not one. This outcome underlines the importance
of implementing a crystallization model in injection molding
simulation as well as the use of a crystallization-dependent
solidification criterion instead of today’s conventional no-
flow temperature.

As an outlook into the topic of surrogate modeling, the
approach presented in thiswork could be extended to emulate
a full-time and space model of an injection molding cycle.
Such emulator could be used to visualize and assess virtu-
ally an injection molding process in real time while varying
input parameters, also paving the way to perform efficient
uncertainty quantification. On the other hand, those models
constitute an opening to the industrial deployment of digital
twins in plastics processing.
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