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Abstract
Precision tool wear prediction in the milling process is crucial in enhancing product quality and machining efficiency. Both 
data-driven models and physical models are vital for indirect tool wear prediction. However, data-driven models rely on 
appropriate model structures and extensive datasets to achieve high prediction accuracy; physical models face challenges 
when adapting to complex cutting conditions, in which case accurate modeling is difficult. Aiming at employing the advan-
tages of both methods for accurate tool wear prediction, a fusion model is developed by integrating both the data-driven 
model and the physical model by constructing an indirect prediction layer and a parameter constraint layer. The indirect 
prediction layer incorporates domain knowledge of tool wear, while the parameter constraint layer utilizes priori knowledge 
from accumulated data. Validation results show that with the introduction of domain knowledge and prior knowledge as 
constraints, the range and shape of the fusion model’s prediction result confidence intervals are effectively constrained to 
more reasonable zones, the area of the confidence intervals is reduced by 73.7%, and the average prediction accuracy of the 
fusion model is improved by 11.5%.

Keywords Tool wear · Milling · Data-driven model · Physical model · Fusion model

1 Introduction

With the continuous improvement of the performance and 
life requirements of key components and high-end equip-
ment in the aerospace field, the difficult-to-cut materials 
represented by the nickel-based superalloy GH4169 are 
widely used in the manufacture of heat-resistant parts, such 
as casings [1], blisks [2], and blades [3], of aero-engines, 
due to their excellent mechanical properties, thermal fatigue 
strength, oxidation resistance [4], and corrosion resistance 
[5]. Based on the difficult machinability of GH4169, such 
as poor thermal conductivity, high strength, and high stiff-
ness, the machining process of the parts has a tendency for 

severe surface hardening, large cutting force, and rapid tool 
wear. This presents challenges to both the machining cost [6] 
and the machining quality [7] of the parts. The state of tool 
wear significantly influences the stability of the machining 
process [8]. Research indicates that tool failure contributes 
to over 20% of the total machine tool downtime [9], and 
the cost associated with tool use and replacement consti-
tutes 3–12% of the overall machining cost [10]. Achieving 
timely and accurate prediction of tool wear in the machining 
process facilitates the replacement of severely worn tools. 
This approach contributes to reducing production costs, opti-
mizing production efficiency, and enhancing surface quality 
[11]. Furthermore, it plays a crucial role in realizing intel-
ligent manufacturing.

With an increase in cutting time, the tool continuously 
loses material during the interaction with the workpiece 
[12], and this process is irreversible. Consequently, wear 
leads to changes in the geometry of the tool, such as tool 
diameter and tool length [13]. These changes further 
impact force, heat, vibration, and stress in the cutting 
region [14]. Additionally, these alterations affect machine 
tool current, power, torque, and other relevant information 
[15]. Collecting information related to tool wear at the 
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machining site allows for the analysis of the wear state of 
the tool. Tool wear monitoring methods are categorized 
into two types: direct monitoring and indirect monitor-
ing [16], based on the correlation of information affected 
by tool wear. Typically, direct monitoring methods utilize 
equipment to collect information directly associated with 
the loss of tool material and offer high recognition accu-
racy under ideal conditions. For instance, CCD cameras 
can capture the shape of the wear area [17]. Other meth-
ods, such as machine vision [18], digital image process-
ing [19], geometric descriptor techniques [20], resistive 
methods [21], and radiographic methods [22], can also be 
employed. However, the application of the direct moni-
toring methods is more restricted. Indirect monitoring 
methods employ sensors to collect information indirectly 
associated with the loss of tool material. Since the indi-
rect monitoring method has less impact on the machining 
process, it has garnered significant attention from both 
academia and industry. General monitoring signals include 
force, vibration, acoustic emission, feed current, and spin-
dle power signals [16]. As tool wear progresses, the abil-
ity of the cutting edge to shear the workpiece material 
decreases, and this inefficiency usually leads to an increase 
in cutting forces. As the tool geometry changes, which 
can alter the dynamic balance of the cutting process and 
potentially introduce or amplify vibrations, it can create 
a feedback loop where increasing vibrations lead to faster 
tool wear, which then leads to more vibrations.

The tool wear state cannot be directly inferred from the 
raw monitoring signals. Therefore, researchers have devel-
oped various data-driven models, including artificial neural 
networks, genetic algorithms, fuzzy logic, support vector 
machines, and Markov models [23]. Its purpose is to estab-
lish a mapping relationship between the signals and the tool 
wear. Bao et al. [24] proposed a data model of machine and 
tool, communication framework, and access strategy based 
on OPC UA and established a BP neural network model 
reflecting the relationship between machine condition 
and tool parameters for tool health prediction. Wang et al. 
[25] proposed a multi-scale principal component analysis 
(MSPCA) method to construct statistical indicators and cor-
responding control limits for tool wear monitoring, realiz-
ing online monitoring of tool wear in the milling process. 
Shi et al. [26] proposed a PCA method for extracting fea-
tures from multiple sensor signals in the machining process 
and constructed a tool wear prediction model based on a 
least squares support vector machine by learning the cor-
relation between the extracted features and the actual tool 
wear. Data-driven models in the mechanical field are mostly 
derived from the computer and mathematical fields. These 
models, which rely on sensor data collected at the machining 
site [27], often fail to leverage the abundant domain knowl-
edge already available.

Scientific models invariably involve some degree of ide-
alization, abstraction, or fictionalization of their target sys-
tem [28]. In contrast to data-driven models, which mainly 
rely on machining data and lack a physical background, 
physical models are built based on domain knowledge in the 
mechanical field. These models use mathematical or empiri-
cal formulas to capture the primary factors of the tool wear 
process while ignoring secondary factors. Physical models 
exhibit applicability and generalizability across various cut-
ting conditions, offering greater interpretability and physical 
significance. Tyler [29] pioneered the expression of tool life 
as a function related to cutting parameters such as depth of 
cut and feed rate, where the parameters to be determined 
in function are constants for a given tool-workpiece mate-
rial pair, and the constants can be obtained through cutting 
machining experiments. Müller [30] was the first to employ 
an empirical function containing a unitary linear term and 
an exponential term to establish a mapping relationship 
between tool wear and cutting time, serving as a means to 
characterize the evolving pattern of flank wear. According to 
Pálmai [31], the most effective empirical function of wear-
time is the physical model proposed by Sipos [32], which 
contains exponential and polynomial terms. Zhang et al. [33] 
validated a generalized wear model with adjustable coef-
ficients based on experimental data and compared it with 
other celebrated wear models and then further improved its 
adaptability and generalization ability. Fan et al. [34] ana-
lyzed the tool wear process through an evolutionary cluster 
analysis method and proposed a physical model of tool wear 
jointly constructed by three sub-equations, which has bet-
ter fitting accuracy and generalizability relative to existing 
models. Nevertheless, physical models simplify complex 
manufacturing systems by making reasonable assumptions. 
It requires a comprehensive and in-depth understanding of 
the tool wear mechanism and process. Model parameter cali-
bration must be conducted for the specific working condi-
tions during application. The calibration process for model 
parameters needs to be repeated when facing new working 
conditions. This complexity makes it challenging to calibrate 
model parameters for scenarios involving complex working 
conditions.

As a problem with a clear application background and 
physical significance, the tool wear process follows certain 
laws. Consequently, when predicting tool wear values, the 
continuous predictions should exhibit certain trends and 
align with the domain knowledge of tool wear. However, 
the data-driven model often relies solely on applying data 
labels as constraints for dealing with the tool wear problem, 
but cannot be compatible with the domain knowledge, that 
is, employing the physical model as the constraints of the 
model. Therefore, combining the advantages of data-driven 
model and physical model while mitigating the shortcom-
ings of a single prediction method has become an important 
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direction for enhancing the predictive ability and interpret-
ability in the tool wear prediction problem. In 2017, Stewart 
et al. [35] introduced a method to supervise neural networks 
and constrain the output space by incorporating known laws 
of physics as domain knowledge, which was experimentally 
verified to significantly reduce the need for labeled data, 
but poses a new challenge for encoding priori knowledge 
into an appropriate loss function. Wang et al. [36] proposed 
a novel physics-guided neural network model for tool wear 
prediction in the form of cross physics-data fusion (CPDF) 
scheme as a modeling strategy to fuse the hidden informa-
tion explored by the physics-based and data-driven models, 
which eliminates the physical inconsistencies present in the 
traditional data-driven models through the physics guided 
loss function. Hua et al. [37] introduced a weighted-loss 
PINN (PNNN-WLs) based on the evaluation of uncertainty, 
which quantifies the prediction error of the variance, pro-
posed a novel weight allocation strategy based on uncer-
tainty evaluation, and established an improved PINN frame-
work for accurate and stable prediction of manufacturing 
systems. However, on the one hand, the fitting accuracy and 
generalizability of the physical models of tool wear selected 
for existing model fusion studies are poor. On the other hand, 
while existing model fusion studies have improved predic-
tion accuracy, they still lack the ability to intuitively explain 
how the physical model affects the prediction process of the 
data-driven model and how it constrains the data distribution 
of tool wear prediction results.

To address the challenge of underutilizing tool wear 
domain knowledge and existing data priori knowledge in 
current studies, this study proposes a novel tool wear model 
fusion method, which employs an indirect prediction layer 
and a parameter constraint layer to effectively incorporate 
the data-driven model with the physical model. The contri-
butions of this study are in two aspects.

a) The physical model of tool wear, which represents the 
domain knowledge of tool wear, is transformed into an 
indirect prediction layer that is integrated into the net-
work structure of the fusion model. This addition facili-
tates the derivation of the loss function, ensuring that the 
prediction results of the fusion model are bound by both 
data and physical model constraints, thereby applying 
tool wear domain knowledge to tool wear prediction to 
improve predictive ability and interpretability;

b) Designing the parameter constraint layer based on the 
saturation function, we utilized the physical model of 
tool wear to solve model parameters on accumulated tool 
wear data. This process utilizes the priori knowledge of 
the accumulated tool wear data to determine the param-
eter ranges of the physical model under specific working 
conditions, forming the foundation for configuring the 
parameter constraint layer attributes. This configuration 

aims to improve prediction accuracy and expedite the 
model training efficiency.

The rest of the paper is organized as follows: the “Tool 
wear model fusion method” section presents the model 
fusion framework; the “Experiment design” section details 
the design of the milling experiment and the collection of 
wear-related data; the proposed model fusion methodology 
is validated in the “Analysis and validation” section, and the 
public dataset PHM2010 is introduced to further validate the 
generalization and interpretability of the model fusion meth-
odology. Finally, this study is summarized, and the future 
research direction is prospected in the “Conclusion” section.

2  Tool wear model fusion method

In this study, based on the data-driven model, the network 
structure of the fusion model is designed, and the indirect 
prediction layer representing domain knowledge and the 
parameter constraint layer representing priori knowledge are 
included. The framework of the proposed tool wear model 
fusion method is illustrated in Fig. 1, including six parts: 
data preprocessing, attention mechanism, one-dimensional 
convolutional neural network, indirect prediction layer based 
on the physical model, parameter constraint layer based on 
the saturation function, and fusion model. Firstly, the tool 
wear data is preprocessed, and a data-driven model is for-
mulated by substituting the correlation analysis process with 
the attention mechanism. Secondly, the indirect prediction 
layer is devised based on the physical model, incorporating 
domain knowledge into tool wear prediction. Thirdly, the 
parameter constraint layer is designed using the saturation 
function. Mathematical analyses and actual tool wear data 
are employed to determine the constraint range of the param-
eter constraint layer positioned before the indirect prediction 
layer. Finally, the indirect prediction layer and the parameter 
constraint layer are integrated with the multi-column neural 
network structure, devised based on the network structure 
of the data-driven model, to form a fusion model. In the 
model, its loss function is constrained by the data labels and 
the physical model.

2.1  Data‑driven model

The data-driven model establishes the mapping relationship 
between data and labels through iterative training, and the 
data-driven model represented by the neural network has 
strong nonlinear mapping ability and can fit any nonlinear 
function. In the field of tool wear, sensor signals are dif-
ficult to be directly used in data-driven models. Therefore, 
data preprocessing and attention mechanisms are used to 
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transform the sensor signals into a feature matrix suitable 
for the tool wear prediction.

2.1.1  Data preprocessing

For data-driven models and fusion models, tool wear-related 
data collected from the machining site, such as raw cutting 

force signals, vibration signals, and acoustic emission sig-
nals, commonly exhibit drawbacks such as large data vol-
ume, high data dimensionality, and redundancy. These issues 
pose significant challenges to the iterative training process 
and the convergence of model parameters. To improve 
data quality and reduce data sparsity, raw signals require 
preprocessing steps involving the removal of air cut data, 

Fig. 1  Model fusion methodology framework
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outliers, and trend terms. Additionally, to further diminish 
the data volume and convert the data dimensionality from 
high-dimensional space to low-dimensional space, research 
typically employs time domain analysis, frequency domain 
analysis, and time–frequency domain analysis methods [38] 
to extract data features.

Time domain analysis involves calculating the features 
of the signal with time as the independent variable. For the 
raw signals in this study, the time domain features include 
maximum value, average value, peak and valley values, 
variance, standard deviation, root mean square, skewness, 
kurtosis, waveform factor, peak factor, impulse factor, and 
margin factor. Simultaneously, alterations in the tool wear 
state often induce modifications in the frequency structure 
of the raw cutting force signal and vibration signal. There-
fore, exploring the frequency domain of the original signal 
becomes essential. This involves employing mathematical 
methods to transform the signal from the time domain to the 
frequency domain, calculating the power spectral density 
function S(f) with frequency as the horizontal coordinate 
and power as the vertical coordinate. Relevant frequency 
domain features, including frequency center, mean square 
frequency, and frequency variance, are then derived from the 
power spectrum. To address the limitations of the Fourier 
transform in time and frequency domain analysis, a time–fre-
quency domain analysis method based on wavelet packet 
transform is employed. In this method, the signal under-
goes a three-layer wavelet packet decomposition, resulting 
in its complete orthogonal decomposition into eight inde-
pendent sub-frequency bands. Subsequently, wavelet packet 
energy values are extracted from these bands, serving as the 
time–frequency domain features of the signal [39]. The time 
domain features, frequency domain features, and time–fre-
quency domain features are used together as the relevant 
features of tool wear to jointly construct the feature matrix 
for tool wear prediction. The definitions of all the features 
are detailed in Table 1.

Due to the variation in magnitudes and dimensions among 
different features, the impact of features with lower orders 
of magnitude may be ignored. To maintain the trend of the 
selected features and mitigate the impact of their varying 
magnitudes and dimensions on the prediction results, it is 
necessary to normalize the selected features by compressing 
their values into the range of [0, 1].

2.1.2  Attention mechanism

Multi-source features related to tool wear, obtained from 
different sensors through various feature extraction meth-
ods [40], contain different tool wear information. To 
enhance the feature matrix quality and mitigate the impact 
of redundant features on the tool wear prediction results, 
correlation analysis is commonly employed for feature 

selection based on Pearson’s correlation coefficient [41] 
or the mutual information coefficient [42]. This aims to 
identify features that exhibit sensitivity to tool wear. Var-
ied selection thresholds in different studies for different 
cutting conditions result in differences in the types of fea-
tures obtained through correlation analysis selection. To 
eliminate uncertainty generated from the feature selection 
step and improve the generalizability of the model fusion 
method, this study employs the attention mechanism to 
process the feature matrix instead of using correlation 
analysis for feature selection. Each channel within the 
feature matrix contains varying amounts of information 
about tool wear. The attention mechanism enables the 
prediction model to autonomously learn to allocate atten-
tion, automatically adjust the influence weights of each 
channel, diminish the weights of redundant features, and 
emphasize the impact of important features on the pre-
diction results [43]. The attention mechanism serves as a 
module that is positioned between data preprocessing and 
the model’s network structure. The attention mechanism 
operates as follows: Utilizing the squeeze-and-excitation 
block [44], weights for each channel of the feature matrix 
are calculated. These weights are then assigned to the fea-
ture matrix, as illustrated in Fig. 2, to obtain an enhanced 
attention feature matrix.

The feature matrix X , consisting of C channels extracted 
from the monitoring signal, is inputted into the attention 
mechanism module. This module outputs the feature matrix 
X̃ , containing a total of C channels, to the prediction model. 
The squeeze global information embedding module corre-
sponds to a global average pooling operation. It compresses 
global channel information into a channel descriptor by 
reducing the feature matrix, with the number of channels and 
vector length C × H , into a C × 1 weight vector. This vec-
tor serves as a channel descriptor, encapsulating the global 
information of the feature set:

The excitation adaptive recalibration part contains two 
fully connected layers. After squeeze global pooling, a con-
volution of length 1 is applied to the C-dimensional vector, 
resulting in a C/r-dimensional vector. Where r is a down-
sampling scale factor, the original number of channels C 
is divided by r to get the number of compressed channels 
C∕r . It is common to choose a power of 2 as the value of r . 
After experimental comparisons, the value of r in this study 
is 4. This is followed by ReLU activation. Subsequently, 
another convolution of length 1 transforms the C/r-dimen-
sional vector back to a C-dimensional vector, and a Sigmoid 
activation is applied to ensure values range between 0 and 1, 
yielding the weight vector:

(1)z = Fsq

(
Xc

)
=

1

H

H∑
i=1

Xc(i)
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By multiplying the weight vector s with X , the feature 
weight-adjusted X̃ is obtained:

2.1.3  One‑dimensional convolutional neural network

Different types of neural networks can process tool wear 
data with different data structures, such as cutting-edge 
pictures, signal time–frequency maps, and signal data. 
This study focuses on the widely used signal data in tool 
wear monitoring, selecting the one-dimensional convolu-
tional neural network as the network structure of the data-
driven model. This structure is also a part of the network 

(2)s = Fex(z,Conv) = Sigmoid
(
Conv2ReLU

(
Conv1z

))

(3)X̃ = Fscale

(
Xc, sc

)
= scXc

structure of the fusion model and is used for comparison 
with the fusion model.

The one-dimensional convolutional neural network 
(1DCNN) is a deep learning architecture that effectively 
reduces the number of trainable parameters through local 
perception and weight sharing, resulting in computational 
efficiency and excellent performance. The 1DCNN model 
consists of six parts: the input layer, the convolutional 
layer, the activation layer, the pooling layer, the fully 
connected layer, and the output layer. The structure and 
parameters of the 1DCNN are detailed in Table 2. The 
output layer calculates predicted values ŷ  of the network, 
and the loss function measures both model performance 
and the inconsistency between the actual values y and the 
predicted values ŷ  . This inconsistency serves as the basis 
for calculating the gradient during back propagation to 
update the network parameters, indicating that the actual 

Table 1  Feature definition

Domain Significance Feature Definition

Time domain Statistical properties of signal over time Maximum max = max
(
fi
)

Average avg =
1

I

∑I

i=1
fi

Peak-to-valley pv = max
(
fi
)
− min

(
fi
)

Variance
var =

1

I

∑I

i=1

�
fi − f

�2

Standard deviation
std =

�
1

I

∑I

i=1

�
fi − f

�2

Root mean square
rms = σ

�
1

I

∑I

i=1
fi
2

Skewness
ske =

1

I

∑I

i=1

�
fi−f

�3

�3

Kurtosis
kur =

1

I

∑I

i=1

�
fi−f

�4

�4

Waveform factor wf =
rms

1

I

∑I

i=1�fi�
Crest factor cf =

pv

rms

Impulse factor if =
pv

1

I

∑I

i=1�fi�
Margin factor mf =

pv�
1

I

∑I

i=1

√�fi�
�2

Frequency domain Utilizing the spectral information of the signal, 
such as amplitude or phase at different fre-
quencies

Frequency center
fc =

∑I∕2

�
�S(w)∑I∕2

�
S(w)

Mean square frequency
msf =

∑I∕2

�
�2S(w)∑I∕2

�
S(w)

Frequency variance
vf =

∑I∕2

�
(�−fc)2S(w)∑I∕2

�
S(w)

Time–frequency domain Takes into account information about the signal 
in both the time and frequency domains

Wavelet packet energy wpe − band1

wpe − band2

wpe − band3

wpe − band4

wpe − band5

wpe − band6

wpe − band7

wpe − band8
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values are used as a constraint for the data-driven model. 
The loss function of the data-driven model is

The structure of the data-driven model is illustrated in 
Fig. 3.

(4)loss(y, ŷ) = MSE(y, ŷ) =
1

N

∑
(y − ŷ)2

2.2  Indirect prediction layer based on the physical 
model

Tool wear increases irreversibly during machining, and a 
large amount of domain knowledge on tool wear has been 
accumulated. Current research primarily focuses on estab-
lishing a physical model of tool wear to describe the tool 
wear process based on wear mechanisms, field experience, 
or mathematical derivations, which is used to map the rela-
tionship between the machining parameters and the tool wear 
values to describe the growth law of the tool wear values. 
However, due to the high complexity and nonlinearity of the 
machining process, there is no generally accepted physical 
model for the general tool wear process. Considering the 
physical characteristics of the tool wear process, the physi-
cal model should satisfy specific mathematical constraints.

where t is the cutting time, t0 is any specific cutting time, Δt 
is the amount of change in cutting time, VB is the tool wear 
value, ΔVB is the amount of change in the tool wear value, 
w is the physical model, w′ is the first-order derivative of 
the physical model, and w′′ is the second-order derivative 
of the physical model.

Altintas [45] summarized the tool wear process into three 
stages: initial wear, normal wear, and severe wear, and differ-
ent stages have unique evolutionary rules. Since the physical 
model serves as a reasonable simplification of the complex 

(5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
Δt→0

ΔVB

Δt
= lim

Δt→0

VB(t0+Δt)−VB(t0)
Δt

, t0 ∈ t

lim
t→t0

w��(t) = w��
�
t0
�

w(t) ≥ 0

w�(t) > 0

t ≥ 0Fig. 2  Attention mechanism module

Table 2  1DCNN network 
structure and parameters

No Network layer Out channels Kernel size/Step size Activation function

1 Conv1d 32 5 × 1/1 × 1 LeakyReLU
2 AvgPool1d 3 × 1/2 × 1
3 Conv1d 48 5 × 1/1 × 1 Sigmoid
4 AvgPool1d 3 × 1/2 × 1
5 Conv1d 64 5 × 1/1 × 1 LeakyReLU
6 AvgPool1d 3 × 1/2 × 1
7 Conv1d 80 5 × 1/1 × 1 LeakyReLU
8 AvgPool1d 3 × 1/2 × 1
9 Conv1d 96 5 × 1/1 × 1 LeakyReLU
10 Reshape 288
11 Linear 96
12 Linear 48
13 Linear 4
14 Linear 1
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machining process, adapting it to the complex working condi-
tions and tool wear process requires a physical model com-
posed of various sub-functions, using different sub-functions 
to describe the different stages of the tool wear process. It 
should meet specific requirements:

1) different sub-functions control different stages
2) different sub-functions have less effect on other stages.

The selection of sub-equations should satisfy both math-
ematical constraints and meet requirements (1) and (2). After 
comparative analysis, the tool wear model generated by the 
evolutionary cluster analysis method [34], comprising a com-
bination of exponential and constant functions, is chosen from 
existing physical models of tool wear. The natural exponential 
function is used to control the slope of the curve from large 
to small in the early stage, and then the slope converges to 
zero, which has no effect on the slope of the subsequent curve; 
the exponential function is used to control the slope of the 
subsequent stages from stable to gradually increasing, with 
relatively little effect on the slope of the earlier stage of the 
curve; the constant function is used to adjust the initial value 
of the wear curve to control the overall position of the curve, 
which are given as

(6)

⎧⎪⎨⎪⎩

w1(t) = −ae−bt + a

w2(t) = cdt − c

w3(t) = e

where a , b , c , d , and e are the fitting coefficients of the 
model.

The final tool wear model is shown in the following 
equation:

where A , B , C , D , and E are the fitting coefficients of the 
model, and A,B,C > 0 , D > 1 , E ≥ A − C . When no cutting 
is performed, and the tool is not worn, then E = A − C.

One of the basic assumptions in the tool wear modeling 
problem is that the tool wear process is continuous, so the 
first-order and second-order derivatives of this tool wear 
model w(t) are respectively

As t  approaches 0, the value of −ae−bt + a is relatively 
large, and the value of cdt − c is small, at which point the 
function is monotonically increasing, and its value is domi-
nated by w1(t).

As t  increases, the rate of increase of w1(t) gradually 
slows down while the rate of increase of w2(t) gradually 
speeds up, at which point the value of the function is jointly 
dominated by w1(t) and w2(t) . In this process, when the sec-
ond-order derivative changes from negative to positive, the 
function w(t) changes from convex to concave at some point, 
which means that there is an inflection point for the function. 
This inflection point is the point at which the second-order 
derivative changes from negative to positive, which is the 
solution to the equation w��(t) = 0.

After the inflection point, the function starts to accelerate 
its growth, gradually dominated by w2(t) . The critical cutoff 
point can be defined as the point at which the rate of growth 
of the function changes significantly. This point can be deter-
mined by observing the behavior of the first-order deriva-
tive w�(t) . The critical cutoff point can be considered to be 
reached when the rate of growth of the first-order derivative 
begins to accelerate significantly. The value of t correspond-
ing to this cutoff point can be estimated numerically or by 
observing the image of the function.

The indirect prediction layer, shown in Fig. 4, is con-
structed based on the selected tool wear model. It consists 
of multiple input nodes, an output node, and a function. The 
number of input nodes equals the number of model param-
eters of the physical model plus one, corresponding to the 
model parameters and machining time, respectively. The 
output node corresponds to the tool wear value, while the 
function represents the mapping relationship of the physical 
model from the model parameters and machining time to 
the tool wear value. The indirect prediction layer is located 

(7)
w(t) = w1(t) + w2(t) + w3(t) = −A × e−B×t + C × Dt + E

(8)w�(t) = AB × e−B×t + C lnD × Dt

(9)w��(t) = −AB2 × e−B×t + C ln2 D × Dt

Fig. 3  Data-driven model structure
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before the output layer of the fusion model and after the 
multi-column neural network structure. In contrast to the 
data-driven model, which directly calculates the tool wear 
value, the fusion model first calculates the model parameters 
of the physical model and then obtains the final predicted 
tool wear value through the indirect prediction layer.

2.3  Parameter constraint layer based on saturation 
function

The parameters of the tool wear model, which are con-
structed based on the actual machining process, exhibit a rel-
atively certain range under different machining conditions. 
In contrast, the hidden parameters of the neural network, 
which have not undergone iterative training, are random. 
The model parameters calculated during the initial iterative 
training process may exceed the value range of the actual 
problem, thus affecting the training speed of the model. To 
address this, the theoretical distribution range of the model 
parameters can be roughly inferred using mathematical 
methods. Simultaneously, leveraging the accumulated indus-
trial data from the actual production and machining process 
allows for solving the parameters of the selected tool wear 
model. Based on the similarity between the processing con-
ditions of the industrial data and the target conditions, the 
approximate distribution range of the model parameters is 
determined. This information serves as priori knowledge to 
determine the range for the parameter constraint layer. With 
the continuous accumulation of tool wear data for the target 
conditions, the constraint range of the parameter constraint 
layer can be refined.

The saturation function serves as a nonlinear activa-
tion function capable of mapping any real number to a 
probabilistic value that tends to converge if the input is 

too large or too small. Therefore, the saturation function 
can map the input value with an uncertain distribution 
range to the constraint interval with a certain distribu-
tion range. However, the output interval of the basic 
saturation function is fixed, which is inconsistent with 
the distribution range of the tool wear model parameters. 
Consequently, the saturation function needs to be further 
modified to achieve a parameter constraint layer with an 
adjustable output range. The structure of the parameter 
constraint layer based on the saturation function is given 
by outputj = nj × f (inputj) + mj , where f  represents either 
the Sigmoid function or Tanh function, nj is the ampli-
tude, and mj is the phase. These parameters ( nj , mj , and 
f  ) jointly constrain the distribution range of the model 
parameters.

Available tool wear data that can serve as priori knowl-
edge act as a reference for the distribution of tool wear 
values under unknown working conditions. In this study, 
a physical model w(t) is introduced, which can be applied 
to fit the known tool wear curves, allowing the solution for 
the parameters and obtaining the distribution range of each 
parameter. Due to the similar but different assumptions of 
the known and unknown working conditions in the tool 
wear prediction problem, the parameter values of the tool 
wear curve for the unknown working conditions can be ref-
erenced to the range of distribution of the parameters of the 
tool wear curve for the known working conditions. Before 
model training, it is necessary to divide all the samples into 
training set and test set. The tool wear data of the training 
set are used to solve for the physical model parameters, and 
then the range of the parameter constraint layer constraints 
on each parameter is determined. In this study, the Sigmoid 
function is chosen as the f  , and the finalized nj and mj are 
detailed in Table 3.

Fig. 4  Indirect prediction layer 
structure
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2.4  Tool wear fusion model

The tool wear fusion model is constructed using a data-
driven model, an indirect prediction layer based on the 
physical model, and a parameter constraint layer based 
on the saturation function. The input layer of the multi-
column neural network is the feature matrix, and the out-
put layer is the tool wear value. The network structure 
consists of multiple columns with the same neural net-
work structure, with the number of columns equal to the 
number of parameters in the physical model of tool wear. 
The neural network structure of each column is the same 
as that of the data-driven model. A parameter constraint 
layer is independently added at the end of each column of 
neural network structures. Additionally, an indirect pre-
diction layer is added before the output layer and after 
the parameter constraint layer of the multi-column neu-
ral network, resulting in the complete tool wear fusion 
model. Derive the loss function of the fusion model as 
loss

�
y, ŷ

�
= MSE

�
y, ŷ

�
=

1

N

∑�
y − ŷ

�2
=

1

N

∑�
w(t) − ŷ

�2 . 
The loss function reveals that the fusion model is con-
strained by both the data labels and the tool wear model 
during iterative training. The structure of the fusion model 
is illustrated in Fig. 5.

3  Experiment design

To fully apply the domain knowledge and priori knowledge 
of tool wear, this study proposes a fusion model of tool wear 
based on data-driven and physical constraints. The loss func-
tion analysis reveals that the network structure of the fusion 
model is constrained by both the data labels and the physical 
model during iterative training. To validate the feasibility 
of using physical model constraints as a new solution to the 
tool wear problem proposed in this study, the improvement 
in prediction accuracy and robustness of the fusion model 
with respect to the data-driven model is validated. In this 
study, several sets of milling experiments of Ni-based super-
alloy were designed to collect signals in the milling process 
as well as its corresponding tool wear value labels. Based 
on this, cross-validation experiments were designed between 
the data-driven model and the fusion model.

3.1  Experiment platform construction

The milling experiment of Ni-based superalloy in this study 
was carried out on YHVT850Z four-axis machining center; 
the workpiece material is Ni-based superalloy GH4169 with 
the dimensions of 196 mm × 120 mm × 16 mm; the nano-
coated insert APKT11T304-APF with ultrafine cemented 
carbide and the toolholder EMP01-016-G16-AP11-02 with 
16 mm diameter were selected for down milling and cooled 
by using the cutting fluid, with one insert installed on the 
toolholder; a total of 10 cases of milling experiments with 
variable parameters were designed in this study with different 
combinations of the cutting widths and cutting depths, and the 
experiment parameters are detailed in Table 4. In the experi-
ment procedure, a total of 10 new inserts were used. The mill-
ing tool cut 120 mm in the X direction for each cycle, and the 
inserts were measured every three cuts. Tool wear values were 
measured and recorded using an Alicona G4 device, as illus-
trated in Fig. 6. The process was repeated until the tool wear 
value exceeded 100 μm, and a new insert was substituted for 
the subsequent set of experiments, continuing until all 10 sets 
of milling experiments were completed. In each experiment 
set, the acquisition of sensor signals was synchronized. KIS-
TLER 9255B dynamometer was employed to collect milling 
force signals in the x, y, and z directions during milling, and the 
Dytran 5225F1 acceleration sensor was used to collect vibration 
signals. These signals were gathered through the multi-channel 
data acquisition device UEI DNR-12-1G, with a sampling fre-
quency of 20 kHz. The experiment scheme is shown in Fig. 7.

A total of 185 experiment samples were gathered from 
10 milling experiments. Each experiment sample included 
two channels of force signals, one channel of vibration sig-
nals and the corresponding tool wear values. As the inserts 
used in the experiments were new, the tool wear value of the 
first sample in each experiment group was set to 0 μm by 
default. The number of samples for each working condition 
is detailed in Table 5.

3.2  Parametric sensitivity analysis of the physical 
model

Multi-column neural networks share the same learning rate for 
each column when not preset. However, model parameters with 
the same learning step exhibit varying degrees of influence on 
the model output. Thus, it is essential to analyze the sensitivity 
of each parameter of the physical model w(t) to adjust the learn-
ing rate for each column of the network. Sensitivity analysis is 
performed through sub-equations, that is, the degree of change 
in the model output caused by changing the model parameters. 
The relative error is equal to the absolute error divided by the 
variable; the absolute error has a positive or negative value, and 
the relative error has no positive or negative value. Therefore, 
all equations are default to absolute values.

Table 3  Parameter constraint 
layer properties

Layer j nj mj

A 0.1 0.000001
B 1 0.000001
C 20 0.000001
D 0.01 1.000001
E 5 0.000001
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Three sub-equations of the model (6) can be simplified 
as

The absolute error is calculated from the error transfer 
equation �(y) =

∑ �y

�xi
�
�
xi
�
:

(10)

⎧⎪⎨⎪⎩

w1(t) = aebt

w2(t) = cdt

w3(t) = e The relative error is derived as

(11)
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�
�
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�
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�
�
w2(t)
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w3(t)

�
= �(e)
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1
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Fig. 5  Fusion model structure
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Taking the relative error of sub-equation w1(t) as an 
example, the first term in the equation is only related to 
the absolute error of a and the magnitude of a . The smaller 
the relative error of a , the smaller the relative error of w(t) 
( a is a constant term); the second term is related to the 
absolute error of b and the magnitude of t  . The larger t  is, 
the larger the relative error of w(t) is.

The independent variable t represents cutting time, cutting 
length, or the number of cuts in the model. To maintain the 

(13)
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�
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�
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1

a
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�
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1
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t

d
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d
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�
w3(t)

�
= �(e)

balanced influence of the learning rate on the convergence 
speed of each model parameter during network training, the 
learning rate LR2 for the model parameters B and D in the 
network column should be lower than that of the learning rate 
LR1 of the model parameters A , C , and E . The ratio of the 
learning rates is set as

3.3  Model training setup

To evaluate the variance between the data-driven model and 
the fusion model regarding prediction capability, the 10 mill-
ing experiments are grouped into G1 (C1, C2, C3), G2 (C4, 
C5, C6), and G3 (C7, C8, C9, C10). The study employed 

(14)
LR1

LR2
= 10

Table 4  Experiment parameters

Experi-
ment 
case

Feed per 
tooth (mm/
tooth)

Spindle 
speed 
(rpm)

Cutting 
speed (m/
min)

Radial 
depth 
(mm)

Axial 
depth 
(mm)

C1 0.1 796 40 0.7 0.4
C2 0.1 796 40 0.7 0.6
C3 0.1 796 40 0.7 0.8
C4 0.1 796 40 0.6 0.4
C5 0.1 796 40 0.6 0.6
C6 0.1 796 40 0.6 0.8
C7 0.1 796 40 0.5 0.6
C8 0.1 796 40 0.5 0.8
C9 0.1 796 40 0.4 0.6
C10 0.1 796 40 0.4 0.8

Fig. 6  Tool wear value 
measurement ap = 0.4 mm 
and ae = 0.7 mm: (a) cutting 
length = 5400 mm, (b) cutting 
length = 10,800 mm, and (c) 
cutting length = 16,200 mm

Fig. 7  Experiment scheme

Table 5  Number of samples for 
each working condition

Experiment case Sample 
number

C1 17
C2 13
C3 15
C4 16
C5 15
C6 15
C7 15
C8 15
C9 15
C10 15
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the cross-validation strategy to construct the training and test 
samples, as detailed in Table 6. To evaluate and optimize the 
performance of the model, 80% of the samples are randomly 
selected from the training samples as the training set and 20% 
of the samples as the validation set. The data-driven model 
and the fusion model take the features extracted from moni-
toring signals as inputs. Utilizing the sliding window method, 
12 time domain features, 4 frequency domain features, and 8 
time–frequency domain features are extracted from the moni-
toring signals of the three channels, resulting in a final fea-
ture matrix shape of (185, 72, 200) . The network output of the 
data-driven model is the predicted tool wear value, which can 
be directly used to calculate the loss function with the labeled 
values. On the other hand, the network output of the fusion 
model is the 5 parameters of the physical model, which need 
to be inputted into the indirect prediction layer along with 
the machining time t to obtain the predicted tool wear value 
and then calculate the loss function with the labeled values. 
The learning rates for the 5-column network in the fusion 
model are set to 0.0001, 0.00001, 0.0001, 0.00001, 0.0001, 
and 0.0001, and the learning rate of the network in the data-
driven model is set to 0.00001. Both models employ the Adam 
gradient descent algorithm [46] with 50 network iterations.

To quantitatively compare the predictive ability of the 
model, three indicators are chosen to evaluate the prediction 
results of the model. The accuracy indicator is used to evaluate 
the accuracy of the predicted value and the labeled value; the 
closer to 100%, the better. Root mean square error (RMSE) 
is used to measure the deviation between the predicted value 
and the labeled value, which is sensitive to the outliers in the 
data; the smaller, the better. Mean absolute error (MAE) is 
used to represent the average of the absolute error between the 
predicted value and the labeled value; the smaller, the better. 
Each training situation is repeated three times, and the cor-
responding indicator takes the average of the three times. The 
expressions of the three indicators are as follows:

(15)
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where wi represents the labeled value of tool wear, ŵi repre-
sents the predicted value of tool wear, and N represents the 
number of test samples.

4  Analysis and validation

4.1  Cross‑validation

To compare the prediction results of using only data to con-
strain the network with those of using both data and physical 
model to constrain the network, three training cases (G1G2-
G3, G1G3-G2, and G2G3-G1) are devised. These cases are 
created using the cross-validation strategy, controlling the 
input data, network structure, and hyperparameter settings 
for both the data-driven and fusion models, which are the 
same. The training results are shown in Figs. 8, 9, and 10.

The evaluation indicators of the training results are illus-
trated in Fig. 11, where the fusion model is compared with 
the data-driven model, and the accuracy is improved by 
11.5%, with an improvement rate of 14.2%; the RMSE is 
reduced by 0.00690, with an improvement rate of 52.4%; 
and the MAE is reduced by 0.00835, with an improvement 
rate of 61.4%. These indicators reveal a significant improve-
ment in prediction performance with the addition of physical 
constraints. Upon observing the training results of the two 
models, it is evident that the prediction results of the fusion 
model align more closely with the actual tool wear trend 
and are in line with the design trend of the physical model.

4.2  Effects of indirect prediction layer

When a feature matrix is input into the trained model, the 
data-driven model predicts a tool wear value, while the 
fusion model directly predicts a set of parameter values from 
the physical model. By inputting the parameter values and 
the corresponding cutting time t into the indirect prediction 
layer, the fusion model indirectly obtains a predicted tool 
wear value. This tool wear value is positioned on a tool wear 
curve jointly constructed by the physical model w(t) and 
the predicted physical parameter values. Its specific position 
uniquely corresponds to the cutting time t  . The tool wear 
curve co-constructed from the physical model w(t) and the 
physical parameter values predicted by the fusion model is 
termed a reconstructed tool wear curve, in the sense that it 
is a confidence curve of the tool wear over the entire life 
cycle inferred by the trained fusion model from the feature 
matrix, where the known cutting time t corresponds to the 
predicted tool wear value and the entire confidence curve 
corresponds to the complete predicted tool wear curve. 
Obtaining one tool wear confidence curve requires one fea-
ture matrix, and multiple confidence curves obtained from 

Table 6  Division of training and test samples

Case study Training sample Test sample

Case 1 G1 + G2 G3(C7, C8, C9, C10)
Case 2 G1 + G3 G2(C4, C5, C6)
Case 3 G2 + G3 G1(C1, C2, C3)
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multiple feature matrices together constitute the confidence 
interval for the tool wear prediction results. This confidence 
interval acts as the tool wear prediction solution space of the 
fusion model, and its trend is constrained by the physical 
model w(t) , which is related to t . Therefore, the confidence 

interval is curved, and the confidence curve within it exhibits 
monotonically increasing properties, aligning with the trend 
of the physical model.

Comparing the network structure of the data-driven 
model with that of the fusion model, the data-driven model 

Fig. 8  Case 1 comparison of 
training results: (a) fusion 
model G1G2-C7, (b) data-
driven model G1G2-C7, (c) 
fusion model G1G2-C8, (d) 
data-driven model G1G2-C8, 
(e) fusion model G1G2-C9, (f) 
data-driven model G1G2-C9, 
(g) fusion model G1G2-C10, 
and (h) DDM G1G2-C10
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can be regarded as the fusion model with only the constant 
term indirect prediction layer. The equivalent structure of the 
data-driven model is illustrated in Fig. 12. Reconstructing 
with the constant term indirect prediction layer yields mul-
tiple confidence curves, forming the confidence interval of 
the data-driven model prediction results. This interval rep-
resents the solution space for the tool wear prediction of the 
data-driven model, which is independent of t . Consequently, 

the confidence interval is rectangular, and the confidence 
curve is no longer monotonically increasing. This leads to a 
much larger range of confidence intervals compared to that 
of the fusion model. The addition of the physical model as 
a constraint significantly reduces the area of the confidence 
interval of the fusion model, and the confidence interval 
is accurately concentrated around the predicted value. By 
comparing the confidence intervals of the fusion model and 

Fig. 9  Case 2 comparison of training results: (a) fusion model G1G3-C4, (b) data-driven model G1G3-C4, (c) fusion model G1G3-C5, (d) data-
driven model G1G3-C5, (e) fusion model G1G3-C6, and (f) data-driven model G1G3-C6
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the data-driven model, reconstructed using the training case 
of G1G2-C9 as an example, it can be found that the confi-
dence interval of the fusion model, after incorporating the 
physical model w(t) , is confined to a relatively small range, 
as shown in Fig. 13. This not only aligns with the trend of 
the physical model w(t) but also closely resembles the real 
tool wear curve. The improvement in prediction accuracy 

of the fusion model is attributed to the constraints on the 
area of the confidence interval. Calculating the confidence 
interval area reveals that, in the training case G1G2-C9, the 
confidence interval area of the fusion model is reduced by 
73.7% compared to the data-driven model in the results of 
tool wear curve reconstruction. The corresponding accuracy 
is improved by 10.1%, and the improvement rate is 12.1%.

Fig. 10  Case 3 comparison of training results: (a) fusion model G2G3-C1, (b) data-driven model G2G3-C1, (c) fusion model G2G3-C2, (d) 
data-driven model G2G3-C2, (e) fusion model G2G3-C3, and (f) data-driven model G2G3-C3
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4.3  Effects of parameter constraint layer

To evaluate the effect of the parameter constraint layer on 
the fusion model, the layer is removed. To ensure the non-
negativity of the inputs to the indirect constraint layer, the 
parameter constraint layer before the output layer of the 
5-column network structure is replaced with the Relu func-
tion. While keeping other training conditions unchanged to 
control variables, the training results of the fusion model 
with parameter constraint layers and without parameter 
constraint layers are compared using G1G2-C9 as an 
example. The training results as well as the reconstructed 

tool wear curves are illustrated in Fig. 14, where Fig. 14a 
is compared with Fig. 8e, which is the training results 
without parameter constraint layer. Figure 14b is compared 
with Fig. 13a, which is the reconstructed tool wear curve 
without parameter constraint layer, while the comparison 
of evaluation indicators is illustrated in Fig. 15. The addi-
tion of the parameter constraint layer reduces the area 
of the fusion model confidence interval, and its shape is 
closer to the theoretical physical model trend.

When comparing the fusion model with the parameter 
constraint layer against the one without the parameter 
constraint layer, the accuracy is improved by 2.49%, with 

Fig. 11  Comparison of evaluation indicators for fusion and data-driven models: (a) accuracy, (b) RMSE, and (c) MAE
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an improvement rate of 2.76%; the RMSE is reduced by 
0.00233, with an improvement rate of 27.1%; the MAE is 
reduced by 0.00195, with an improvement rate of 27.1%. 

The indicators reveal that incorporating the parameter con-
straint layer significantly improves the prediction perfor-
mance of the fusion model.

Fig. 12  Data-driven model 
equivalent structure

Fig. 13  Reconstructed tool wear 
curve: (a) fusion model and (b) 
data-driven model
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4.4  Validation with the public data set

4.4.1  Forward prediction validation

To analyze the effectiveness of the tool wear fusion model 
for predicting tool wear throughout the life cycle of the 
tool, as well as its generalisability for predicting tool wear 
in other cutting conditions, the public tool wear dataset, 
PHM2010, is introduced in this study for forward predic-
tion experiment. The Prognostics and Health Management 
Society provided a public tool wear dataset PHM2010 for 
the Data Challenge in 2010; 315 cuts were performed for 
each experiment set, and a total of the following 6 sets of 
experiments were conducted: C1, C2, C3, C4, C5, and 
C6. In this study, we focused on the initial 300 samples of 
C1. These samples were collected using a sliding window, 

extracting features from each of the 6 channels (the three 
directions of cutting force signals and three directions of 
vibration signals). The features included 12 time domain 
features, 4 frequency domain features, and 8 time–fre-
quency domain features, resulting in a final feature matrix 
with dimensions (300,144,200). A forward prediction 
experiment was designed with 300 samples. The first 50 
samples were employed for model training, and the sub-
sequent 50 samples for testing. This procedure was iter-
ated, combining all samples from previous training cases 
as training samples and using the next 50 samples as test 
samples. This cycle continued until all 300 samples were 
used, resulting in five training cases detailed in Table 7. 
To evaluate and optimize the performance of the model, 
80% of the samples are randomly selected from the train-
ing samples as the training set and 20% of the samples as 
the validation set.

The forward prediction experiments involved 24 fea-
tures distributed across the 6 channels of the public dataset. 
This leads to alterations in the channels of the input feature 
matrices for both the data-driven and fusion models. Con-
sidering the changes in the cutting conditions, the parameter 
constraint layer properties of the fusion model in the for-
ward prediction experiments were redefined using the priori 
knowledge from the public dataset, that is, the tool wear data 
in the C4 and C6 sets; the new parameter constraint layer 
properties are shown in Table 8.

To compare the prediction results of using only data 
to constrain the network with the prediction results of 

Fig. 14  (a) Training results 
without parameter constraint 
layer. (b) Reconstructed tool 
wear curve without parameter 
constraint layer

Fig. 15  Comparison of evaluation indicators between fusion model 
with parameter constraint layer and fusion model without parameter 
constraint layer: (a) accuracy, (b) RMSE, and (c) MAE

Table 7  Division of training and test samples

Case study Training sample Test sample

Case 1 1:50 51:100
Case 2 1:100 101:150
Case 3 1:150 151:200
Case 4 1:200 201:250
Case 5 1:250 251:300
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using both data and physical model to constrain the net-
work throughout the tool lifecycle, after controlling the 
input data, network structure, and hyperparameter settings 
of the data-driven and fusion models to be the same, the 
five training cases designed using the forward prediction 
strategy are 1:50–51:100, 1:100–101:150, 1:150–151:200, 
1:200–201:250, and 1:250–251:300, and the training results 
are illustrated in Figs. 16, 17, 18, 19, and 20.

The evaluation indicators of the training results are illus-
trated in Fig. 21, where the fusion model is compared with 
the data-driven model; the accuracy is improved by 1.84%, 
with an improvement rate of 1.92%; the RMSE is reduced by 
0.00259, with an improvement rate of 45.4%; and the MAE 
is reduced by 0.00194, with an improvement rate of 41.9%. 
From the indicators, the addition of physical constraints can 

significantly improve the prediction performance of the net-
work. Observing the training results of the two models, it is 
evident that the trend of the prediction results of the fusion 
model is closer to the trend of the actual tool wear and is in 
line with the design trend of the physical model.

Furthermore, the five training cases completely cover 
the three stages of tool wear: initial wear, normal wear, and 
severe wear. Notably, in case 3, the fusion model exhibits the 
least difference in prediction performance compared to the 
data-driven model. The difference in prediction performance 
steadily decreases steadily from case 1 to case 3, whereas 
it progressively increases from case 3 to case 5. The trend 
of the combined tool wear curves is used to analyze this 
phenomenon:

The 1:50 and 51:100 samples correspond to the transi-
tion process of tool wear from initial to normal wear, so the 
fusion model and the data-driven model in case 1 and case 
2 learn the trend of tool wear from the initial and normal 
wear stages and predict it in the normal wear stage. From the 
prediction results, the difference in prediction performance 
comes from the fact that the predicted tool wear curve of 
the fusion model is smoother and more stable, while the 
predicted tool wear curve of the data-driven model is more 
fluctuating.

Table 8  Parameter constraint 
layer properties

Layer j nj mj

A 100 0.01
B 2 0.01
C 20 0.01
D 0.2 1.01
E 5 0.01

Fig. 16  Case 1 comparison 
of training results: (a) fusion 
model and (b) data-driven 
model

Fig. 17  Case 2 comparison 
of training results: (a) fusion 
model and (b) data-driven 
model
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The 101:150 sample corresponds to the transition from 
normal to severe tool wear, with an initial but insignificant 
tendency to accelerate wear. Therefore, the fusion model and 
the data-driven model in case 3 learn the trend of tool wear 
from the initial wear, normal wear, and initial severe wear 
stages and make predictions at the severe wear stage, which 
leads to a serious deviation of the predicted tool wear values 
from the actual tool wear values, and both underestimate the 
accelerated process of tool wear.

The samples of 151:200 and 201:250 correspond to the 
severe wear stage of the tool, and the prediction perfor-
mance gap between the fusion model and the data-driven 
model increases in case 4 and case 5. From the predic-
tion results, the reason that the fusion model possesses 
better prediction performance is that the fusion model is 
better able to learn the tool wear trend in the severe wear 
stage from the train samples, while the data-driven model 

Fig. 18  Case 3 comparison 
of training results: (a) fusion 
model and (b) data-driven 
model

Fig. 19  Case 4 comparison 
of training results: (a) fusion 
model and (b) data-driven 
model

Fig. 20  Case 5 comparison 
of training results: (a) fusion 
model and (b) data-driven 
model
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has difficulty in learning the accelerated wear trend in the 
severe wear stage.

4.4.2  Reconstruction and decomposition of tool wear 
curves

To further validate the effect of physical constraints on the 
tool wear prediction results, the tool wear curves are recon-
structed using the same manner as in the “Effects of indi-
rect prediction layer” section for the prediction results of 
the fusion model and the data-driven model in the forward 
prediction experiment, as illustrated in Figs. 22, 23, 24, 25, 
and 26. In particular, since the physical model consists of 
three sub-equations w1(t) , w2(t) , and w3(t) of w(t) , that is, 
w(t) = w1(t) + w2(t) + w3(t) , the prediction results of the 
fusion model can be decomposed into the form of three sub-
equations, which makes it possible to analyze the weight 
share of the different sub-equations in the prediction results 
of the fusion model more visually.

From the reconstructed tool wear curves of the fusion 
model, unlike the reconstructed tool wear curves of the 
cross-validation experiments, which are curved regions 
around the actual tool wear curves, the reconstructed tool 
wear curves of the forward prediction experiments are more 

Fig. 21  Comparison of evaluation indicators for fusion and data-
driven models: (a) accuracy, (b) RMSE, and (c) MAE

Fig. 22  Case 1 comparison of 
reconstructed tool wear curves: 
(a) fusion model and (b) data-
driven model

Fig. 23  Case 2 comparison of 
reconstructed tool wear curves: 
(a) fusion model and (b) data-
driven model
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concentrated, close to a single curve. Therefore, it can be 
concluded that the reason why the fusion model can achieve 
better prediction performance is that, due to the constraints 
of the physical model, the fusion model can already have a 
better learning of the overall trend of the tool wear process 
from the training samples, and then, based on the existing 
tool wear trend, it can better obtain the prediction results that 
are close to the actual tool wear curve.

Observe the trends of the three sub-equations w1(t) , w2(t) , 
and w3(t) in the five training cases. Overall, w1(t) controls the 
slope of the initial curve from large to small, and then the 
slope converges to zero, which has no effect on the slopes of 
the subsequent curves. w2(t) controls the process of the slope 
of the subsequent stage from stable to gradually increas-
ing, and has relatively little effect on the slope of the initial 
curve. w3(t) controls the initial value of the tool wear curve 

Fig. 24  Case 3 comparison of 
reconstructed tool wear curves: 
(a) fusion model and (b) data-
driven model

Fig. 25  Case 4 comparison of 
reconstructed tool wear curves: 
(a) fusion model and (b) data-
driven model

Fig. 26  Case 5 comparison of 
reconstructed tool wear curves: 
(a) fusion model and (b) data-
driven model
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and affects the overall position of the curve. The prediction 
results of the fusion model achieve the modeling purpose of 
the physical model w(t) well.

Specifically, for each training case, the training samples 
for case 1 and case 2 focus on the initial wear and normal 
wear stages, with w1(t) accounting for a large weighting of 
the prediction results, w2(t) having negligible weighting, and 
w3(t) being close to the initial tool wear value. The training 
samples for case 3 include transition samples from normal 
to severe wear, and the weight of w2(t) begins to increase. 
The training samples of case 4 and case 5 cover the initial 
wear, normal wear, and severe wear stages, and the weight of 
w2(t) increases significantly. Overall, based on the functional 
properties of the three sub-equations w1(t) , w2(t) , and w3(t) 
of the physical model w(t) , the fusion model can learn the 
trend of the tool wear process well from the training samples 
and thus can accurately predict the tool wear values in the 
forward prediction experiment.

5  Conclusion

In this paper, to apply domain knowledge in the tool wear 
field and knowledge from the accumulated data to the tool 
wear prediction, an indirect prediction layer and a param-
eter constraint layer are designed to transform the traditional 
data-driven model into a tool wear fusion model that is sub-
ject to both data-driven and physical constraints. The indi-
rect prediction layer is designed from the physical model, 
whose inputs are the model parameters and corresponding 
time t computed by the multi-column network, and the out-
puts are the predicted tool wear value; the parameter con-
straint layer is designed, and the properties of the parameter 
constraint layer are determined from the accumulated tool 
wear data to constrain the distribution range of inputs to the 
indirect constraint layer. As a result, the predictions of the 
fusion model are constrained by both the data labels and 
the physical model, resulting in improved predictive ability 
and interpretability relative to the data-driven model. The 
effectiveness of the methodology is validated in the GH4169 
milling and the dataset PHM2010. The main conclusions 
are as follows.

(1) The results of cross-validation experiments based on 
the GH4169 milling experimental data show that the 
prediction performance of the fusion model exceeds 
that of the data-driven model, with an average predic-
tion accuracy increase of 11.5%, by effectively utilizing 
the tool wear domain knowledge and the available prior 
knowledge.

(2) Based on the physical model in the indirect prediction 
layer, the prediction results of the fusion model and 
the data-driven model are reconstructed to obtain con-

fidence intervals. Comparing the area and shape of the 
confidence intervals, the confidence interval area of the 
fusion model is reduced by 73.7% relative to that of the 
data-driven model, with the corresponding prediction 
accuracies improved by 10.1%. It is verified that the 
physical model introduced in this study can effectively 
constrain the range and shape of the confidence interval 
of the prediction results, thus improving the prediction 
accuracy.

(3) By comparing the prediction results of the fusion 
model with a parameter constraint layer and the fusion 
model without a parameter constraint layer, the confi-
dence interval area of the fusion model decreases and 
the shape of the fusion model is closer to the trend 
of the theoretical physical model after the addition of 
the parameter constraint layer, and the corresponding 
prediction accuracy is improved by 2.49%. The effec-
tiveness of the priori knowledge from the accumulated 
tool wear data introduced in this study for improving 
the prediction accuracy is verified.

(4) Through the reconstruction and decomposition of the 
tool wear curves with the public dataset, it is verified 
that the fusion model can learn the trend of the tool 
wear process well from the training samples, and thus, 
better prediction results can be obtained.

The approach proposed in this study, involving the 
modification of the data-driven model structure and the 
construction of the fusion model with the physical model 
as a constraint, holds the potential for enhancing various 
data-driven models in the current tool wear prediction. A 
more complex data-driven model can also be integrated 
into the following research.
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