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Abstract
In this paper, a method for detecting surface roughness in machining processes is proposed to solve the problem of low detec-
tion accuracy caused by a small sample size in machine vision detection. The proposed method combines QR decomposition 
with the support vector machine (SVM) classifier to accurately assess surface roughness. First, a contact roughness detector 
is used to measure the surface roughness value, and a CCD camera is used to capture the processed surface image to obtain 
the sample. Subsequently, an improved QR decomposition method is employed to generate virtual samples and expand the 
sample size. Texture feature values of the image are then extracted using the grayscale level co-occurrence matrix, and the 
correlation between roughness and texture features is determined. Finally, SVM is employed to classify the surface rough-
ness of machined components. Experimental results demonstrated that the accuracy of the machine vision-based surface 
roughness detection method increased from 80.6 to 96.5%, thus validating the feasibility of the proposed method and pro-
viding a theoretical basis for on-site detection of small-sample surface roughness. This method has potential for practical 
engineering applications.

Keywords  Virtual sample · Vision measurement · Small sample · Roughness measurement

1  Introduction

Surface roughness is an important indicator of workpiece 
quality and greatly affects its fatigue strength, wear resist-
ance, service life, and other characteristics. Therefore, effi-
cient and high-precision detection of surface roughness is 

essential for modern engineering applications. Existing 
methods for measuring workpiece surface roughness include 
contact and non-contact processes. Contact methods suffer 
from drawbacks such as low efficiency, strict detection con-
ditions, and susceptibility to damage to the measuring head. 
Non-contact methods include optical, ultrasonic, and visual 
measurements. Among non-contact measurement methods, 
visual measurement offers the advantages of lower costs and 
higher efficiency compared to optical and ultrasonic meas-
urement methods [1, 2].

In machine vision-based methods, the roughness image 
of the workpiece surface is captured using a CCD cam-
era. Texture feature parameters are then extracted from the 
image to determine the correlation between these features 
and roughness and create a model for predicting roughness 
in unknown samples [3, 4]. Texture extraction methods 
involve frequency- and spatial-domain analyses. Frequency 
domain-based approaches involve grayscale processing of 
the image followed by Fourier transform to determine the 
correlation between amplitude parameters and roughness 
in the frequency domain. This method is mainly used for 
samples with distinct texture characteristics [5]. When the 
surface features of samples are difficult to distinguish, the 
performance of texture extraction algorithms based on the 
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frequency domain decreases. Texture extraction algorithms 
based on the spatial domain include non-statistical indica-
tors that focus on extracting geometric structure features 
and statistical indicators that calculate histograms, grayscale 
variance, and grayscale co-occurrence matrix (GLCM) [6]. 
However, geometric feature indicators are not suitable for 
measuring the surface of samples processed through highly 
random machining processes such as grinding. Statistical 
indicators such as histograms and GLCM offer a wide appli-
cation range and high measurement accuracy. As opposed to 
other statistical indicators, GLCM considers pixel brightness 
and the position information between pixel pairs. Therefore, 
it can comprehensively characterize the texture features of 
the sample surface. Liu et al. [7] proposed a method for 
measuring the roughness of deep hole surfaces by using 
the fusion of grayscale co-occurrence matrix and SVM 
(GLCM-SVM) and obtained high measurement accuracy 
and strong applicability for irregularly textured machined 
workpiece surfaces. Yi et al. [8–11] proposed a color dif-
ference algorithm based on RGB and a color image singular 
value entropy-based evaluation index to construct a grind-
ing surface roughness prediction model to study roughness-
related indicators within the mathematical structure of the 
image. Lu et al. [12] proposed the pure color energy index 
and the area index of the mixing area of two light sources 
to establish a corresponding relational model with rough-
ness. To evaluate the surface roughness, Rifai et al. [13] 
proposed a convolutional neural network (CNN) by inte-
grating feature extraction into the neural network without 
separate processing. They analyzed five loss functions to 
improve the prediction accuracy of the model. Tian et al. 
[14, 15] characterized surface roughness by calculating 
texture and shape features and demonstrated the feasibil-
ity of machine vision-based roughness parameter measure-
ment. Nammi et al. [16] demonstrated the importance of 
considering workpiece orientation in machine vision-based 
roughness measurement by extracting image features from 
low-carbon steel milling samples at different angles. Patel 
et al. [17, 18] implemented a non-contact roughness meas-
urement method for turning surfaces by using the grayscale 
co-occurrence matrix algorithm and a machine vision sys-
tem for texture feature extraction. Jayabarathi et al. [19, 20] 
determined the correlation between surface roughness and 
laser speckle images by using He Ne and diode lasers and a 
camera. They extracted image contrast, correlation, energy, 
entropy, mean value, standard deviation, and other texture 
feature values and calculated the coefficient of determina-
tion. Patil et al. [21] proposed singular value decomposition 
for surface roughness detection to determine the correlation 
between the exponential decay function of the singular value 
of the speckle pattern and the roughness. Tootooni et al. [22] 
converted surface images into an undirected network graph 
without weights and used a regression model to calculate 

the correlation between the image Federer’s number and 
surface roughness, with a measurement error within 15%. 
Yi et al. [3] evaluated the metal surface roughness based 
on the sharpness of color images and established a corre-
lation model between sharpness and roughness by consid-
ering the effect of the texture of the grinding surface on 
the sharpness. Zhang et al. [4] proposed a method based on 
inductive transfer learning that utilizes only the knowledge 
of the area index of the red–green mixing area to transfer 
simulation data and enables establishing a roughness pre-
diction model with fewer training samples. In the case of 
insufficient training samples, this method achieves an aver-
age error of 12.57%. Liu et al. [23] proposed a color distri-
bution statistical matrix and overlap index based on green 
and red color spaces. They established a correlation model 
between the overlap index and roughness. This measurement 
method yields high accuracy and has a wide measurement 
range. Wedyan et al.[24] proposed a virtual sample genera-
tion method to overcome the problem of small sample sizes 
in the diagnostic process. Olesen et al. [25] created the life 
ratio index based on actual faults and particle swarm opti-
mization faults. They generated virtual samples and experi-
mentally verified the accuracy of the life assessment model. 
Cui et al. [26] proposed a virtual sample generation method 
based on the generative adaptive fuzzy neural network for 
industrial testing process data and experimentally verified 
the feasibility of the method, providing a theoretical basis 
for online measurement of key performance indicators in 
industrial processes. Li et al. [27, 28] used different methods 
for facial virtual sample reconstruction and generated vir-
tual samples based on facial structure, perturbation, sample 
distribution, and sample viewpoints to improve the facial 
recognition accuracy. Lu et al. [29] proposed an improved 
combination virtual sample classification method based on 
linear representation. They used an alternating minimization 
algorithm to optimize the objective function and improve the 
facial recognition accuracy.

In summary, research on non-contact roughness meas-
urement methods has mainly focused on simple textures 
such as turning and milling. However, due to the higher 
complexity of ground surface textures compared to the 
surface finish of turning and milling, the detection accu-
racy is low when the number of samples is small. The 
virtual sample generation method, which is commonly 
used in fault diagnosis, life prediction, and face recogni-
tion, provides a new research direction for non-contact 
measurement of roughness. Therefore, in this paper, we 
proposed a workpiece surface roughness measurement 
method by using QR and SVM. The QR method is used 
to generate samples and expand the sample size, whereas 
SVM is used to establish a roughness prediction model for 
studying machined surface roughness measurement and 
analysis.
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2 � Material and method

2.1 � QR decomposition

The original image is transformed into a grayscale image 
represented by a two-dimensional matrix. For a given 
training sample G(x,y), a reasonable sample G′(x′,y′) (also 
referred to as a virtual sample) is obtained by transforming 
T.

The QR decomposition algorithm is generally used to 
reconstruct virtual samples for facial recognition [30, 31]. 
This algorithm uses partial information from Q and R to 
construct virtual samples with certain differences from the 
original image, thereby increasing the effective features of 
possible changes in the image and expanding the training 
sample set. In this paper, the results of the collaborative 
representation of virtual samples and real samples were 
combined using weighted fusion, the optimal weight com-
bination was selected, and the recognition accuracy was 
improved. The method of QR reconstruction weighted 
fusion is shown in Eqs. (1)–(4). First, QR decomposition 
is performed for Il and Ir of two pictures captured under the 
same rough surface.

In Eq. (1), Ql, Rl, Qr, and Rr are the matrices obtained by 
decomposing Il and Ir.

Using reconstruction coefficients to process the obtained 
matrices Ql, Rl, Qr, and Rr sparse reconstruction matrices are 
obtained; the calculation method is shown in Eq. (2).

In Eq. (2), Qlω, Rlω, Qrω, and Rrω are sparse reconstruction 
matrices, and ω is the reconstruction coefficient.

The reconstruction coefficient quantifies the information 
contained in a sparse reconstruction matrix containing the 
original samples. Different types of virtual samples can be 
generated by using different reconstruction coefficients. In 
this study, five reconstruction coefficients were used (0.2, 

(1)Il = Ql

(
Rl

0

)
= QlRl

Ir = Qr

(
Rr

0

)
= QrRr

(2)Ql� = QlN∗(N∗�)

Rl� = RlN∗(N∗�)

Qr� = QrN∗(N∗�)

Rr� = RrN∗(N∗�)

0.4, 0.6, 0.8, and 1.0) to generate various types of virtual 
samples, each representing different information levels. The 
method of obtaining left and right information graphs from 
the sparse reconstruction matrix is shown in Eq. (3).

In Eq. (3), Ilω and Irω are the left and right information 
graphs, respectively.

For Ilω and Irω, virtual samples after fusion are obtained, 
as shown in Eq. (4).

In Eq. (4), Iω is a virtual sample. When obtaining sparse 
reconstruction matrices, the left and right matrices use the 
same reconstruction coefficients; thus, the same weight is 
used to fuse the left and right information graphs during the 
calculation process. This method can generate 100 virtual 
samples from a set of 10 raw samples.

2.2 � Sample image preprocessing and texture 
feature extraction methods

Efficient and accurate extraction of image texture features 
requires the use of appropriate image preprocessing tech-
niques. Common preprocessing methods include image 
denoising and enhancement.

2.2.1 � Image filtering

In the CCD image acquisition system, Gaussian noise is the 
predominant noise type affecting acquired images. Linear 
filtering methods effectively reduce Gaussian noise. Linear 
filtering can be categorized as mean filtering and Gauss-
ian filtering. Gaussian filtering offers better noise reduction 
compared to mean filtering. The two-dimensional Gaussian 
filtering function is shown in Eq. (5).

In the equation, σ is the standard deviation.
Due to the symmetrical and interchangeable mathemati-

cal properties of two-dimensional Gaussian filtering func-
tions, Eq. (5) can be written in the form of Eq. (6).

(3)Il� = Ql� × Rl�

Ir� = Qr� × Rr�

(4)I� =
Il� + Ir�
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√
2��

e−y
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√
2��

= g�(x)g�(y)



3990	 The International Journal of Advanced Manufacturing Technology (2024) 133:3987–3997

In the filtering operation, if σ is too small, two-dimen-
sional Gaussian filtering will transform the image to per-
form a point operation, and the noise removal effect is not 
satisfactory. If σ is too large, Gaussian filtering will act like 
mean filtering. By analyzing the relationship between the 
output image edge gradient and the actual edge gradient, a 
one-dimensional filtering function can be obtained, as shown 
in Eq. (7).

2.2.2 � Image enhancement

To enhance image contrast, adjustments need to be made 
based on its histogram, which is a statistical representation 
of the frequency of different grayscale levels in an image. 
For example, consider an image with four grayscale levels 
(0, 1, 2, and 3), with each grayscale level occurring 4, 3, 6, 
and 3 times, respectively, as shown in Fig. 1.

Histogram equalization [32, 33] is a common image 
enhancement technique used to improve contrast, especially 
in images with a small grayscale range. It can handle images 
with uneven lighting, which reduces the grayscale range of 
the image. In this technique, the histogram corresponding 
to the original image is transformed into a uniformly dis-
tributed histogram, thereby expanding the dynamic range of 
the image’s gray values and enhancing its overall contrast.

The grayscale histogram of an image can be represented 
as a one-dimensional discrete function, as shown in Eq. (8).

In Eq. (8), k is the grayscale level, and h(k) is the number 
of occurrences of that grayscale level.

Equation (8) can be written as a normalized probability 
expression, as shown in Eq. (9).

(6)

{
gx = g��(x)g�(y)

gy = g
�
(x)g��(y)

(7)

{
gx = g��(x)g�(y)

gy = g
�
(x)g��(y)

(8)h(k) = nk k = 0, 1, ..., L − 1

In Eq. (9), sk is the kth grayscale value of the image f(x,y), 
n is the total number of pixels in the image, nk is the number 
of times the corresponding kth grayscale value appears in the 
image, and ps(sk) represents an estimate of the probability of 
sk occurrence. The proportion of the number of pixels with 
each grayscale value in the image is obtained by normalizing 
the total number of pixels in the image.

During histogram equalization, the gray value of the 
original pixel is transformed. If the grayscale transformation 
function is EH, where s and t represent the grayscale values 
of f(x,y) and g(x,y) at positions (x,y), respectively, the gray-
scale transformation expression can be written as follows:

The grayscale transformation function must meet the fol-
lowing requirements: EH(s) is a single-valued single increas-
ing function within the range of 0 ≤ s ≤ 1; For 0 ≤ s ≤ 1, 
0 ≤ EH(s) ≤ 1.

The first condition ensures that the grayscale levels of the 
image histogram maintain their sorting order from black to 
white after transformation. The second condition ensures 
that a consistent dynamic range of grayscale values is main-
tained in the image before and after the transformation.

The cumulative distribution function (CDF) is commonly 
used as the transfer function for histogram equalization. 
Under the action of the CDF, the cumulative distribution of s 
is the cumulative histogram of the original image histogram, 
and its formula is as follows:

2.2.3 � Image texture feature extraction method

Grayscale co-occurrence matrix (GLCM) [34, 35] is a sta-
tistical method used to analyze grayscale information in an 
image. It accurately predicts and reflects grayscale values 
and gradients in various directions.

(9)Ps

(
sk
)
=
nk

n
0 ≤ sk ≤ 1

(10)t = EH(s)

(11)tk = EH(s) =
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i=0
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n
=
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i=0
ps(sk) 0 ≤ sk ≤ 1

Fig. 1   Histogram image
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The feature parameter extracted by the GLCM is 
obtained by processing the scalar values of each gray level 
calculation in the image. For image P with a size of M × N, 
the grayscale co-occurrence matrix is shown in Eq. (12):

In Eq. (12), the grayscale value of point (i, j) is I, and 
the grayscale value of point (i + a, j + b) is J.

The feature parameters include contrast, energy, 
entropy, correlation, and inverse moment, which reflect 
different aspects of the image’s texture.

Contrast represents the grayscale contrast of the image 
and is calculated using Eq. (13):

(12)
P(I, J) = {(i, j), (i + a, j + b) ∈ M × N

|Gray(i, j) = I&Gray(i + a, j + b) = J }

(13)CON =

L−1∑

N=0

N2

{
∑

I

∑

J

P(I, J)

}

Energy represents the image texture distribution and 
gray level distribution and is calculated using Eq. (14):

Entropy represents the randomness and complexity of 
image gray distribution; its calculation formula is as follows:

Correlation reflects the similarity between rows or col-
umns in a matrix. When the matrix elements are uniformly 
equal, the correlation is high. In this study, because the tex-
ture was mainly vertical, only the correlation in this direction 
was calculated. The calculation formula is shown in Eq. (16):

Inverse moment represents the complexity of the spatial 
distribution of the image; its calculation formula is shown 
in Eq. (17):

In Eq. (17), N represents the number of grayscale levels 
of the image,�x and �y , respectively, represent the mean 
values of the horizontal and vertical directions of the 

(14)ASM =
∑

I

∑

J

P2(I, J)

(15)ENT =
∑

I

∑

J

P(I, J) logP(I, J)

(16)COR =

∑
I

∑
J

(I × J × P(I, J)) − �x�y

�x�y

(17)IDM =
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I

∑

J

(
P(I, J)

1 + (I − J)2

)
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Fig. 2   Test platform

Fig. 3   Machined surface 
samples

(a) 0.350μm (b) 0.380μm (c) 0.440μm 

(d) 0.480μm (e) 0.530μm (f) 0.580μm 

(g) 0.610μm (h) 0.750μm (i) 0.850μm 
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matrix P(I,J), and �x and �y , respectively, represent the 
variance in the horizontal and vertical directions of matrix 
P(I,J).

2.3 � SVM algorithm

In balanced data classification, SVMs and other classifica-
tion methods have been extensively studied and successfully 
applied in various fields [36, 37]. However, traditional meth-
ods have numerous limitations when handling imbalanced 
datasets. Although these methods aim to create a high-accu-
racy model that matches the training data well, they exhibit 
poor performance in imbalanced classification problems as 

these often ignore the accuracy of minority class samples. 
To address this problem, in this study, we used a large num-
ber of virtual samples to improve the classification accuracy.

SVM classification involves creating a plane to separate 
different data types and maximizing the distance between 
the data and the plane. The calculation formula is as follows:

where x is the vector on the hyperplane, w is the normal 
vector of the hyperplane, and b is the intercept of the 
hyperplane.

By solving the quadratic optimization problem, the values 
of w and b are obtained:

(18)wx − b = 0

Fig. 4   Virtual sample grayscale 
images generated by different 
reconstruction coefficients

(a) Reconstruction coefficient is 0.2 

(b) Reconstruction coefficient is 0.4 

(c) Reconstruction coefficient is 0.6 

(d) Reconstruction coefficient is 0.8 

(e) Reconstruction coefficient is 1.0 
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where c is the penalty function with a value range of (0,1], 
n is the number of samples, � is the relaxation variable 
(the value is greater than 0), and b is the intercept of the 
hyperplane.

By using the Lagrange multiplier method, the discrimi-
nant function of the classification model is finally obtained, 
as shown in Eq. (20):

where K(xi, x) is the kernel function and can be expressed 
as follows:

where g is the total number of samples.

3 � Experiment

A testing platform was constructed for machining surfaces 
by using CCD cameras, ball screws, zoom lenses, light 
sources, controllers, etc., as shown in Fig. 2. The testing 
platform can move along the x, y, and z axes and allows 
lens focal length adjustment, camera movement control, and 
image capture of processed surfaces. The image acquisition 
resolution was set as 1200 × 1600 pixels. We processed 
surfaces with different roughness levels using grinding. To 

(19)
min
w,𝜉,b

1

2
‖w‖ + 1

cn

n�

i=1

𝜉i − b

s.t.(wxi) > b − 𝜉i, 𝜉i ≥ 0, i = 1, 2, ⋅ ⋅ ⋅, n

(20)f (x) = sgn(

n∑

i=1

aiK(xi, x) − b)

(21)K(xi, x) = exp(−‖‖xi − x‖‖
2
∕2g2)

measure the roughness of the machined surface, we used 
a contact roughness tester TR200 and extracted roughness 
parameters by scanning the sample with a 0.8-mm sam-
pling length. The experimental results were used to pro-
duce a dataset of nine different roughness values for ground 
workpieces. The sample material was GCr15, with a size of 
φ65 mm × 5 mm and a roughness of 0.60 µm. The grind-
ing process parameters were as follows: grinding wheel 
speed = 30 m/s, feed depth = 20 µm, feed rate = 1 m/min, and 
particle size = 80#. The grinding sample block was produced 
by grinding on the grinding machine based on the process 
parameters and the particle size of the grinding wheel.

4 � Results and discussion

4.1 � Processing flat images

By using an image acquisition system, we captured images 
of surfaces processed using different techniques and meas-
ured their roughness levels using a contact roughness detec-
tor, as shown in Fig. 3.

4.2 � Virtual sample generation

We converted the collected images to grayscale and recon-
structed the processed surface samples by using reconstruc-
tion coefficients of 0.2, 0.4, 0.6, 0.8, and 1.0. The resulting 
samples are shown in Fig. 4.

4.3 � Characteristic parameters of images

We used the GLCM to extract texture feature values, namely 
correlation, contrast, energy, homogeneity, and entropy, from 
the images and then determined the correlations between 
these feature values and the roughness of the machined sur-
face. The relationship between the original samples and the 
virtual samples with different reconstruction coefficients and 
roughness is shown in Figs. 5 and 6.

As can be seen in Fig. 5, the feature values (correla-
tion, contrast, energy, entropy, and homogeneity) of the 
processed surface showed a linear correlation with rough-
ness. Furthermore, the correlation decreased with increas-
ing roughness, contrast increased with increasing rough-
ness, energy decreased with increasing roughness, entropy 
increased with increasing roughness, and second-order 
angle moment decreased with increasing roughness.

As can be seen in Fig. 6, the correlation between the 
texture feature values and roughness of the processed 
image generated by the virtual sample was consistent with 
the trend of the original sample; however, the determina-
tion coefficient of the linear regression between the virtual 
sample and roughness for its reasonable reconstruction 

Fig. 5   Relationship between the feature values of images and the 
roughness of machined surfaces
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Fig. 6   Relationship between virtual samples with different reconstruction coefficients and roughness
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coefficient was higher than that of the original sample, 
improving the accuracy of detection. The virtual sam-
ples generated using different reconstruction coefficients 
have different determination coefficients for roughness, as 
shown in Table 1.

As can be observed from Table 1, when the reconstruction 
coefficient was 0.8, the determination coefficient of the linear 
regression model between the generated samples and rough-
ness was the highest. The determination coefficients between 
the correlation, contrast, energy, entropy, homogeneity, and 
roughness of the original sample and the QR virtual sample 
were 0.87978 and 0.96646, 0.89549 and 0.97318, 0.87505 
and 0.96084, 0.90607 and 0.98296, and 0.87978 and 0.96646, 
respectively. Furthermore, the correlation, contrast, energy, 
entropy, entropy, homogeneity, and roughness of the feature 
values of QR virtual samples were 9.852%, 8.676%, 9.804%, 
8.486%, and 9.852%, respectively, higher than those of the 
original samples. Thus, it can be concluded that compared 
with the coefficients of the original sample, the determina-
tion coefficient of the linear regression model between the 
feature value parameters and roughness of the virtual sample 
generated by QR improved, and the generated virtual sample 
improved the accuracy of detection.

4.4 � Result analysis

The virtual samples generated using the QR reconstruction 
method were added to the training of the recognition model, 
and the accuracy P of the virtual samples generated by QR 
decomposition was compared with the accuracy P without 
virtual samples, as shown in Fig. 7.

As can be seen from Fig. 7, the grinding surface roughness 
can be predicted using SVM; however, when the sample data 
size is small, the accuracy is average. The average accuracy 
was found to be 80.6%, and the average coefficient of deter-
mination was 0.870. After expanding the sample size through 
QR reconstruction weighted fusion, the measurement accuracy 
and determination coefficient of SVM improved considerably. 
The average value of the determination coefficient exceeded 
87%, and the average accuracy was over 0.90. When the QR 
reconstruction coefficient is 0.8, the roughness detection effect 
is the best, with an average determination coefficient of 0.984 
and an accuracy average of 96.5%, which is 19.7% higher than 
the accuracy of the original image sample.

5 � Conclusion

To overcome the challenge of obtaining large sample sizes 
for non-contact grinding surface roughness measurement, 
we proposed a virtual sample generation method that 
enhances detection accuracy by generating a large number 
of virtual samples and uses the SVM method for accurate 
measurement of non-contact grinding surface roughness. 
The findings of this study are listed as follows.

(1)	 A machine vision detection system was developed to 
capture images of different processed surfaces, and a 
correlation model between roughness and texture fea-

Table 1   Correlation coefficients between texture feature values and 
roughness of virtual samples with different reconstruction coefficients

Correlation Contrast Energy Entropy Homogeneity

Original 
sam-
ple

0.87978 0.89549 0.87505 0.90607 0.83608

0.2 0.95726 0.96407 0.92743 0.96158 0.94268
0.4 0.96333 0.96226 0.94158 0.93893 0.96748
0.6 0.91632 0.96976 0.95236 0.97562 0.86199
0.8 0.96646 0.97318 0.96084 0.98296 0.9655
1.0 0.88649 0.94557 0.94723 0.96332 0.9551

Fig. 7   Accuracy and coefficients of the original sample with different reconstruction coefficients
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tures was established to perform non-contact roughness 
measurement; however, its accuracy is not high.

(2)	 A QR reconstruction weighted fusion method was 
proposed for generating virtual samples with similar 
texture features to the original samples, and the meas-
urement accuracy was improved by determining the 
correlations between texture feature values (correla-
tion, contrast, entropy, energy, and homogeneity) and 
roughness.

(3)	 The use of the QR reconstruction weighted fusion 
method to generate virtual samples increased the 
determination coefficients between the texture features, 
namely, correlation, contrast, energy, entropy, homo-
geneity, and roughness by 9.825%, 8.676%, 9.804%, 
8.486%, and 9.852%, respectively, compared to the 
original samples, thus demonstrating its effectiveness.

(4)	 Expanding the sample size considerably improved the 
accuracy of roughness measurement. The highest meas-
urement accuracy, averaging 96.5% in multiple experi-
ments, was achieved with a reconstruction coefficient of 
0.8, a 19.7% increase over the accuracy of the original 
sample. This validates the feasibility of the proposed 
method and provides a theoretical basis for in-machine 
detection of surface roughness in small sample process-
ing.
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