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Abstract
As an advanced metal additive manufacturing technology, laser-directed energy deposition (DED-LB) has attracted a lot of 
attention in recent years, and is increasingly used in aerospace, automotive, marine, and biomedical applications. However, 
as industry application standards continue to improve, the challenges of part quality, process stability, and molding efficiency 
faced by DED-LB are becoming more and more prominent. On-line monitoring and real-time quality regulation can effec-
tively avoid quality defects in processing, which is an effective measure to solve the problem. This paper summarizes the 
current research status of on-line monitoring means and closed-loop quality regulation technology for DED-LB. The on-line 
monitoring signals and related sensing devices mainly based on image signals, temperature signals, spectral signals, acoustic 
emission signals, and X-ray imaging, as well as the closed-loop control strategies and intelligent optimization methods in the 
process are discussed. Finally, a view on the future direction of on-line monitoring-control system for DED-LB is presented.

Keywords Laser-directed energy deposition · On-line monitoring technology · Control strategies · Optimization methods · 
On-line monitoring-control system

1 Introduction

As the mainstay of the national economy, the manufacturing 
industry has been seeking new methods and technologies 
to improve productivity and product quality while reduc-
ing manufacturing costs in recent years. As an innovative 
technology in the actual manufacturing industry, laser addi-
tive manufacturing (LAM) forms a bottom-up processing by 
melting metal powder or wire layer by layer [1], and is grad-
ually being widely used. With the development of science 
and technology, its connotation is being deepened and its 
extension is being fully expanded. According to the different 

material treatment methods, laser additive manufacturing 
can be divided into selective laser melting (SLM), laser-
directed energy deposition (DED-LB) [2], etc. The problem 
of low productivity of SLM [3] has led to its failure to be 
widely used in industrial production.

DED-LB is one of the most commonly used cladding 
method based on laser surface modification [4], often also 
referred to as laser cladding (LC) [5]. A high-energy laser 
beam is utilized to rapidly melt the coating material and the 
substrate to form a 50-μm 2-mm thick bonding layer [6, 7]. 
Thereby, the surface volume of the substrate is not altered 
and very low dilution rates are guaranteed [8]. According to 
the different ways of powder entering the deposition layer, 
the two methods of pre-positioned powder and coaxial pow-
der feeding are commonly used [9–11]. In general, the pre-
positioned powder system is easy to operate and has a better 
quality of deposition, but the depth of deposition is difficult 
to control. The coaxial powder feeding system has higher 
laser utilization [12], but the process involves the coupling 
of multiple physical fields such as material, laser, optics, 
powder, and airflow [13], such multi-parameters make it 
more controllable [14]. Most of the DED-LB process con-
trol methods described in this paper are based on coaxial 
powder feeding systems, and the DED-LB system is shown 
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in Fig. 1 [15]. DED-LB has the following advantages over 
other processes:

(1) DED-LB is able to form a more homogeneous and 
dense high-quality deposition layer between the metal 
powder and the substrate compared to TIG welding. 
Sexton et al. [16] verified this advantage in terms of 
dilution rate and hardness in repairing the blades of a 
turbojet engine.

(2) Based on its technological mechanism, DED-LB is able 
to be applied to a wide range of materials such as metal 
alloys [7] and composites [17]. Bartkowski et al. [17] 
verified the microhardness and corrosion resistance of 
metal matrix composite (MMC) coatings prepared by 
DED-LB.

(3) DED-LB is a rapid melting and rapid cooling process 
that produces a smaller heat-affected zone. This results 
in grain refinement [18] and reduces the effects of ther-
mal damage and material deformation [8].

The above characteristics make DED-LB attractive in the 
field of surface engineering [7, 18, 19]. It is often applied to 
surface coating, repair and rapid prototyping in aerospace 
[20], automotive marine [21], and biomedical [22]. DED-LB 
is an integration of greening, automation, and personaliza-
tion that enables efficient production while reducing material 
waste, which is in line with contemporary manufacturing 
needs and trends.

Although significant progress has been made in DED-LB 
technology, it is undeniable that there are still many chal-
lenges and technical limitations. Since DED-LB is a multi-
field, multi-parameter coupled complex physical, chemical, 
and metallurgical process [14], laser power, scanning speed, 
powder feeding rate, laser beam spot size, and protective 
gas and other small changes in any one of the parameters 
will directly affect the melt pool, powder flow, the transient 
process characteristics of the matrix, and further effect on 
the macro-form, microstructure, and mechanical properties 
of the formed parts. Specifically, it is mainly limited to the 
following issues [23–25]:

(1) Numerical simulation can help to better understand the 
DED-LB process and derive data from it. However, 
idealized data does not really make sense to meet the 
increasing demands for quality control and assurance.

(2) DED-LB is accompanied by real-time changes in the 
state of the material, which produces inconsistencies in 
the results. For example, melting or cooling rates that 
are too fast or too slow tend to produce more defects 
and residual stresses.

(3) Process parameters have an important influence on the 
quality of DED-LB, but the complexity of the process 
and the nonlinear correlation between the quality of 
DED-LB and different process parameters make it dif-
ficult to determine the optimal combination of process 
parameters.

Fig. 1  Laser-directed energy deposition system [15]
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In order to solve these problems, further optimize the 
deposition process, and improve the stability of DED-LB, 
researchers have been exploring and developing on-line 
monitoring methods and control strategies for the DED-LB 
process. As shown in Fig. 2, the number of publications in 
recent years shows that the topic of on-line monitoring and 
control of DED-LB has been growing in popularity year by 
year, which is a reflection of the importance of this type of 
research. At the present stage, the on-line monitoring means 
of the DED-LB process is mainly based on the dynamic 
characteristics of the melt pool and powder flow. The main 
monitoring signals are image signals based on morphology 
and size, temperature signals, as well as plasma spectral sig-
nals and acoustic emission signals [26], etc. Through on-
line monitoring means, the process of interaction between 
laser, powder, and melt pool can be analyzed and restored. 
At the same time, a three-dimensional mapping relation-
ship between process parameters, monitoring information, 
and molding quality is established, providing more basis for 
quality regulation. In addition, through the closed-loop con-
trol in the process, immediate response can be made when 
relevant defects are found and recognized, avoiding qual-
ity problems caused by inappropriate process parameters. 

Therefore, on-line monitoring and real-time quality control 
are of great significance for the optimization and stability of 
the quality of the deposition layer, production efficiency, and 
the guarantee of reproducibility.

This paper summarizes the current research progress of 
on-line monitoring means and control strategies for DED-
LB process. The principles, application effects, and main 
problems of various methods are discussed. Finally, on the 
basis of the existing methods, we put forward our views on 
the future development direction of the on-line monitoring 
system and control system for DED-LB.

2  On‑line monitoring methods for DED‑LB

DED-LB involves more than 19 process parameters [27], 
such as laser power, scanning speed, powder mass flow rate, 
and laser beam spot diameter. It is necessary to fully under-
stand the relationship between different process parameters 
and forming quality in order to further optimize the qual-
ity of the deposition layer (Table 1). Conventional offline 
monitoring including metallographic microscopy, scanning 
electron microscopy (SEM) analysis, and non-destructive 

Fig. 2  Number of papers on 
online monitoring and feedback 
control of directed energy depo-
sition in Web of Science. Search 
was done using the topics 
“Laser Directed Energy Deposi-
tion” OR “Laser Cladding” 
AND “On-line monitoring” and 
“Laser Directed Energy Deposi-
tion” OR “Laser Cladding” 
AND “Feedback control”

Table 1  Performance 
parameters of different types of 
pyrometers

Parameters Contact type Non-contact type

Thermocouples Single-spot mono-
chromatic pyrometer

Dual-color pyrometer Infrared camera

Model number CS-SF15-C1 CTLM-2HCF3-C3H - FLIR A655sc
Temperature range (°C) 0-1030 385–1600 1000–3000 -40-650
Spatial resolution < 1 mm (0D) 0.7 mm (0D) 0D 15 × 10 mm² (2D)
Sampling time (ms) 50 1 10 20
Wavelength (µm) - 1.6 1.3,1.64 0.9–1.7
Publications  [32]  [33]  [34, 35]  [36]
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ultrasonic testing [28–31] can provide an assessment of the 
quality and performance of the formed parts. However, such 
methods can lead to interruptions and delays. The inability 
to provide real-time feedback on the deposition leads to the 
inability to achieve higher quality and efficiency. In contrast, 
on-line monitoring can provide real-time non-destructive 
performance evaluation. Therefore, researchers are continu-
ously exploring and developing different on-line monitoring 
techniques to achieve real-time control and optimization of 
the deposition process.

In this section, the focus will be on different monitoring 
means in DED-LB technology. The types, characteristics, 

and effectiveness of the sensors used in the different moni-
toring means are explored and compared. At the end of this 
section, information on the application of each type of moni-
toring signal is summarized in Table 2. In addition, a com-
parison of the five on-line monitoring methods presented is 
summarized in Table 3.

2.1  Morphology and size‑based image monitoring 
methods

With the development of computer vision, machine vision, 
and image processing techniques, visualized image signals 

Table 2  Summary of application information for on-line monitoring signals

Monitoring devices Monitoring objects Geometry Powder Substrates Publications

CMOS camera Melt pool width Single layer MetcoClad 52052 Inconel 718 [37]
CMOS camera Melt pool width Multi- Stellite 5 4CrMo4 [38]
CMOS camera Melt pool width Single layer EN25 - [39]
CMOS camera Melt pool width Single layer 1.2344 1.2344 [40]
CCD camera Height of deposition layer Horseshoe-shaped part SS316 SS10 [41]
CCD camera Height of deposition layer Cylinder 316L SS304 [33]
CCD camera Height of deposition layer Multi- 316L SS10L [42]
CCD camera Powder flight speed Multi tracks and single 

layer
Ti-6Al-4V S235 [43]

Single-spot monochro-
matic pyrometer

Melt pool temperature Single layer Inconel 718 AISI 304 austenitic steel [44]

Single-spot monochro-
matic pyrometer

Melt pool temperature Single layer Inconel 718, TiC AISI 304 austenitic steel [45, 46]

Dual-color pyrometer Melt pool temperature Multi tracks and multi 
layers

H13 Carbon steel [47]

Infrared camera Melt pool temperature Multi layers Inconel 625 U75V, U20Mn [48]
Infrared camera Melt pool temperature Multi layers Ti-6Al-4V Ti-6Al-4V [49]
Type K thermocouple Substrate temperature Multi tracks and multi 

layers
Stellite 6, Inconel 625 SS316 [50]

Type K thermocouple Substrate temperature Multi tracks and multi 
layers

Stellite 6 SS8 [51]

Spectrometer Cavities and cracks in the 
deposition

- Inconel 718 Inconel 718 [52, 53]

Spectrometer Metal powder jet Single layer WC, Ni-Fe-B-Si Fe37-3FN [54]
Spectrometer Elemental Composition Single layer Multi- AISI 4140 [55]
Fiber optic spectrometer Depth of deposition layer Single layer Al0.5FeCu0.7NiCoCr Al5083 [56]
Photodiode Melt pool width Single layer 316L 316L [57]
Acoustic emission sensor Cracks in the deposition Multi tracks and multi 

layers
Ni60A 45 [58]

Acoustic emission sensor Cracks in the deposition Multi layers H13, Ti-6Al-4V H13 [59, 60]
Acoustic emission sensor Cracks in the deposition Multi tracks and multi 

layers
Multi- 45 [61]

Laser vibrometer optical 
microphone

Layer cracks and HAZ 
cracks

Industrial products (valve 
seats)

Stelite 6 Carbon steel [62]

X-ray imaging system Powder flow behavior - Ti-6Al-4V Ti-6Al-4V [63]
X-ray imaging system Melt Pool Morphology Multi- Ti-6242 Ti-6242 [64]
X-ray imaging system Temperature, phase transi-

tion and stress
Multi layers Inconel 718 Inconel 718 [65]
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are increasingly used as DED-LB on-line monitoring signals 
[70]. Compared to other monitoring signals, image signals 
can provide non-contact monitoring of morphology, struc-
ture, and surface features at high resolution [37]. Commonly 
used monitoring devices are charge-coupled device (CCD) 
cameras and complementary metal oxide semiconductor 
(CMOS) cameras [70]. CCD cameras use a photosensitive 
element to convert visible light into an electrical signal, 
which is further converted into a digital image signal by an 
AD converter; CMOS cameras use each pixel unit on the 
image sensor and internal integrated circuits to convert the 
signal, and are more highly integrated than CCD cameras, 
with lower power consumption and cost, but are usually less 
sensitive than CCD cameras. There are usually both coaxial 
and off-axial forms between the camera and the laser beam 
as shown in Fig. 3 [71]. In this way, diverse morphological 
and dimensional features at different angles can be obtained.

Coaxial cameras, whose optical axis coincides with the 
laser beam, are typically used to capture information about 
the melt pool and its surroundings. Moralejo et al. [72] 
used a coaxial CMOS camera to monitor the size of the 
melt pool, and the calibrated. The processed dimensional 
features were used as control parameters for a feedforward 
controller to optimize the laser power. Due to thermal accu-
mulation, constant laser power can lead to excessive dilution 
in the DED-LB process. Hofman et al. [40, 73] explored 
the correlation between the melt pool width and dilution 
rate. The melt pool image captured by a CMOS camera 
was fitted as an ellipse. A feedback control loop was finally 
realized using melt pool width as a covariate. However, the 
melt pool is not a standard elliptical shape, Lei et al. [74] 
used localizing region-based active contours to identify the 
head and tail of the melt pool. The accuracy of extracting 
melt pool dimensions was further improved. Colodrón et al. 

[37] weighed the accuracy of the sampled images against 
the processing time. The measurement of melt pool width 
was implemented based on a field programmable gate array 
(FPGA). The developed image acquisition and processing 
system improved the processing speed by nearly 10 times 
compared to the PC without significantly affecting the per-
formance. Sampson et al. [42] exposed the real edge features 
of the melt pool by adaptively adjusting the exposure time of 
the melt pool image captured by a coaxial CMOS camera. 
Accordingly, a novel edge detection algorithm not based on 
material emissivity was developed to improve the detection 
accuracy.

Off-axis cameras allow the melt pool to be viewed from 
the side or from other angles, providing more comprehensive 
dynamic information. However, off-axis monocular cameras 
suffer from a blind spot in the field of view, which is inevita-
bly obscured by the already formed track [47]. Hsu et al. [38] 
used a trinocular CCD camera to capture the calibration bar 
and the deposition boundary from an overhead angle. The 
melt pool height was calculated based on the known distance 
of the laser head from the substrate. A deviation of only 
2.3% was obtained. In addition, the calibration bar technique 
was utilized to compensate for field-of-view (FOV) effects 
and see-through phenomena, resulting in a significant cost 
reduction. It is worth noting that the use of multi-ocular 
cameras, while giving a variety of viewing angles and 3D 
reproduction results, makes it difficult to ensure that each 
camera is mounted at exactly the same angle, distance, and 
focal length. Based on a triangulation method, Donadello 
et al. [75] implemented melt pool height measurement on an 
original coaxial device. Although the system is not as sensi-
tive as a multi-camera, it was shown to be able to be used 
in closed-loop feedback controllers at the sub-millimeter 
level. Sun et al. [71] used a coaxial device similar to [75]. 

Table 3  Comparison among 5 on-line monitoring methods

Monitoring signals Monitorable objects Advantages Limitations Publications

Image Morphology and size of melt pool Intuitive process characterization, 
non-contact measurement

Susceptible to lighting conditions, 
reflections, plasma arcs, powder 
flashes, Difficulty in capturing 
microscopic features

[37, 41, 43]
Powder behavior
Surface defect

Temperature Temperature High reliability, wide range of 
applications

Accuracy of different sensors [32, 45, 50, 66]
Thermal history
Microstructure (mapping)

Spectra Elemental composition Strong background noise immu-
nity, rich physical information at 
the atomic level

Complex data processing, com-
plexity of use and maintenance, 
limited spectral range

[54, 55, 57, 67]
Powder jet
Dimension of a layer

Acoustic emission Cracks Rich information on defects Low-disturbance environmental 
conditions

[61, 62]
Pores

X-ray Internal structure Sample penetration, visualizing 
the evolution of defects

High cost, safety of use [65, 68, 69]
Phase transition sequence
Powder individual dynamics
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Based on the measured melt pool width, two curve fitting 
methods, parabolic and arc, were utilized to predict the melt 
pool height in real time, achieving a prediction accuracy 
of 92%. In addition to height measurements, Smurov et al. 
[39] recorded the flight trajectory of each powder particle 
by means of a CCD camera. The particle flux was found to 
form a conical volume at an angle of about 18° with respect 
to the substrate normal. The effect of the carrier gas flow rate 
on the particle flight velocity was also thus analyzed, which 
is important for optimizing the powder feeding conditions.

All of these on-line monitoring means based on image sig-
nals are subjected to similar processing steps, such as the nec-
essary image filtering, threshold segmentation, and edge detec-
tion and feature extraction of the melt pool image [36, 47, 74], 
which increases the human interference in the image process-
ing. Fuzzy thresholding, multi-scale morphological operators, 
and adaptive algorithms have been applied to the DED-LB 
process to improve the melt pool contour extraction accuracy 
and system stability [42, 76, 77]. However, the adaptive ability 
in the face of complex scenarios is still limited. In addition, 
due to the complexity of the DED-LB process, a good quality 
of deposition can never be judged by observing a single melt 
pool feature. In contrast, machine learning is characterized by 
automatic feature learning and stronger generalization ability. 

Kao et al. [78] found that there was no significant difference 
between the melt pool images of low and normal quality pro-
cesses and used a machine learning approach for on-line pre-
diction of the quality of the deposition. Experimentally, it was 
found that convolutional neural network (CNN) outperformed 
autoencoder in feature extraction and classification, which was 
mainly due to the advantages of its hierarchical feature learn-
ing and depth-based structure. The acquired coaxial image was 
taken as input and after multiple convolutional, pooling, and 
fully connected layers, the output was the width, height, and 
the ratio of the height of the heat-affected zone to the height 
of the deposition layer. The judgment results by CNN under 
different process parameters are shown in Fig. 4. Red color 
indicates poor processing and blue color indicates normal pro-
cessing, both of which have accuracy rates higher than 95%. 
However, the implementation of deep learning model requires 
a large number of training datasets, which often requires a lot 
of effort to obtain [79].

2.2  Monitoring methods based on temperature 
signals

When a high-energy laser beam irradiates the surface of the 
substrate material, it is absorbed and converted into thermal 

Fig. 3  Schematic setup of the imaging system; (a) coaxial camera 
installation; (b) off-axial camera installation; (c) melt pool morphol-
ogy observed using off-axial imaging system; (d) illustration of laser 

beam and powder stream at processing area; (e) size of vision area 
through powder feeding nozzle [71]
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energy. The substrate surface and the powder are heated by 
the heat source and a melt pool is formed in a localized area 
centered on the point of laser beam irradiation [67]. With the 
movement of the laser beam, the melt pool is rapidly cooled 
and solidified [56]. Change in temperature during this pro-
cess is also accompanied by changes in microstructure and 
organization [52, 80]. Bi et al. [57] verified the dependence 
of the temperature signal on the main process parameters, 
including laser power, powder feed rate, and scanning speed. 
The results showed good correlation of dilution and size 
with the temperature signal. It can be seen that the tempera-
ture distribution in the process zone and its transient behav-
ior directly reflects the powder-matrix bonding and greatly 
affects the part properties [81]. It is particularly important 
to monitor the temperature field using temperature sensing 
devices. Temperature monitoring devices are categorized 
into contact and non-contact measurements according to 
their mode of operation. Due to the limitation of temperature 
measurement range and response speed [82], contact tem-
perature sensors such as thermocouples are not suitable for 
temperature monitoring of melt pool with high temperature, 
large temperature gradient, and fast cooling rate. However, 
the use of multiple thermocouples to measure the tempera-
ture of the substrate is a good choice [83, 84]. Non-contact 
pyrometers [39, 81] all measure temperature based on the 
principle of infrared radiation. These include single-spot 
pyrometers that can measure the temperature at a single 
point of the melt pool, multi-wavelength pyrometers that are 
capable of eliminating some of the effects of surface reflec-
tion and scattering, and infrared thermography that allows 
direct access to the temperature distribution on the surface of 
the melt pool [54]. It is shown in Table 1 the different types 

of a model of thermometer performance parameters, only 
as a reference comparison. Appropriate sensing equipment 
should be selected depending on the monitoring object and 
specific needs.

Thawari et al. [84] monitored the temperature and deflec-
tion variations of substrates with different fixation methods 
using type K thermocouple and laser displacement sensor. 
A combination of simulation and experimentation was car-
ried out. The results showed that simple and fixed supports 
produced 40–50% less deflection than cantilevers. In all 
samples, multi layers produced less deflection than single 
layers. This is precisely because the change in temperature 
gradient allows the material to expand and contract at dif-
ferent rates. Temperature not only causes deformation but 
also microstructural changes. In a subsequent study, multi-
ple thermocouples were used to monitor the thermal history 
[83]. It was found that the addition of Inconel 625 reduced 
the temperature by 20–22% compared to direct deposition 
of Stellite 6. Fine microstructures and crack-free tracks were 
formed. However, validation of the mechanical properties of 
the deposition layers was lacking. In a multi-layer deposi-
tion experiment involving Stellite 6 and Inconel 718, Tha-
wari et al. [32] measured the melt pool temperature graph 
shown in Fig. 5. It is shown that the melt pool thermal his-
tory trends are similar regardless of the deposition mate-
rial. In addition, it was observed that the melt pool tem-
perature in the second deposition layer was higher than that 
in the first layer, such temperature increase was attributed 
to the accumulation of heat between the layers for a short 
period of time. As a result, if the substrate can be preheated 
before the start of the deposition, the thermal gradient can 
be effectively reduced and the deposition performance can 

Fig. 4  Judgment results of the 
deposition process. a 750 W 
and 300 mm/min. b 750 W 
and 450 mm/min. c 750 W and 
600 mm/min. d 1000 W and 
300 mm/min. e 1000 W and 
450 mm/min. f 1000 W and 
600 mm/min. g 1000 W and 
750 mm/min. h 1250 W and 
450 mm/min. i 1250 W and 
600 mm/min. j 1250 W and 
750 mm/min. k 1250 W and 
900 mm/min. l 1500 W and 
600 mm/min. m 1500 W and 
750 mm/min. n 1500 W and 
900 mm/min [78]
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be improved. Srisungsitthisunti et al. [85] obtained similar 
conclusion when conducting experiments on the deposition 
of multi layers with Inconel 625 powder.

In order to investigate the variation of thermal cycling 
with process parameters and its effect on the mechani-
cal properties of the deposition layer, Muvvala et al. [86] 
recorded the thermal cycling of the DED-LB process with 
a single-spot, monochromatic pyrometer and estimated the 
heating and cooling rates. The scanning speed was found 
to have a greater effect on the cooling rate than the laser 
power. The resulting conclusion was used in the DED-LB 
experiments of the composite of Inconel 718 and TiC. The 
melt pool thermal cycling was monitored using a single-
spot monochromatic infrared thermometer at scanning 
speed of 400 mm/min and 1200 mm/min, respectively. 
Figure 6 [41] demonstrates the decomposition of TiC 
during solidification to form a dendritic structure during 
slower cooling, when the melt pool lifetime is too long 
and exhibits brittleness and poor wear properties. The 
melt pool lifetime that produces good orbital quality is 
in the range of 0.25 s < τ  ≤ 0.45 s, which only applies to 
specific materials [33]. In addition, Muvvala et al. [43] 
explored the effect of different waveform lasers on the 

melt pool lifetime by recording the thermal history of the 
melt pool for modulated power signals with different duty 
cycles. The melt pool temperature was found to oscillate 
around the melting point at a duty cycle of 40%, which 
accelerated the cooling rate and refined the TiC particle 
coating. Srisungsitthisunti et al. [85] tested the cooling 
rate of the melt pool at different laser powers. Lower laser 
powers produced faster cooling rates, leading to smaller 
grain sizes and higher microhardness. In addition to mon-
itoring melt pool thermal history, infrared cameras can 
provide more detailed spatial and temporal signals than 
pyrometers, but the calibration process requires defining 
material emissivity that changes at higher temperatures 
[53]. Doubenskaia et al. [87] used infrared thermography 
to measure the melt pool brightness temperature. The true 
temperature distribution in the region of the deposited 
layer was obtained using the gray body assumption at dif-
ferent process parameters as shown in Fig. 7. The emis-
sivity and the orbit size during the phase transition were 
further determined from the liquid-solid phase transition 
point of the material. As can be seen from the figure, an 
increase in track width and the size of heat-affected zone 
(HAZ) is evident with increasing laser power.

Fig. 5  Melt pool temperature 
plot for S6 and S15. a Stellite 6 
(1st layer), (b) Inconel 718 (1st 
layer), (c) Stellite 6 (2nd layer), 
and (d) Inconel 718 (2nd layer) 
[32]



3113The International Journal of Advanced Manufacturing Technology (2024) 133:3105–3132 

The pyrometer, although capable of providing tempera-
ture distribution and thermal history information at a higher 
response rate than a camera, is unable to visually character-
ize internal defects and cannot be used as a single-factor 
characterization information of the deposition performance. 
Single-input-single-output (SISO) control systems with only 

temperature as the output variable have been shown to be 
unable to guarantee uniform and consistent track morphol-
ogy when controlling multi layers of deposition [88, 89]. 
This is due to the fact that different melt pool morpholo-
gies may have the same temperature, which depends on the 
dynamic balance of heat input and heat loss. To address 

Fig. 6  Relation between slope of solidification shelf and microstructure [41]

Fig. 7  Brightness temperature distribution in the cladded zone obtained by calibration of infrared camera with the black body. Scanning speed 
S = 1 mm/s, laser spot size d = 2.5 mm, and powder feeding rate F = 10.5 g/min. a P = 500 W, f = 6 L/min and (b) P = 750 W, f = 9 L/min [87]
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this issue, Tang et al. [90] and Song et al. [34, 35] devel-
oped a layer-to-layer control system and a camera tempera-
ture–based multi-source hybrid control system, respectively, 
which could effectively improve the dimensional accuracy 
of parts. Although cameras can provide visual process infor-
mation, image acquisition is affected by ambient lighting 
conditions, reflections, plasma arcs, powder flash, and other 
noises [38, 55]. Taken together, the temperature signal is 
often used as an auxiliary signal to strongly complement the 
interferometric visible light signal in practical engineering 
applications. For example, Xu et al. [36] constructed a multi-
source image monitoring system based on the combination 
of infrared thermography and high-speed camera, Six com-
plementary features of melt pool and splash were extracted 
from the infrared thermal camera and high-speed camera, 
respectively, and a classification accuracy of 99.5% of fine 
features was realized.

2.3  Monitoring methods based on plasma spectral 
signals

Fundamentally, the on-line monitoring methods described 
above are closely related to optical signals. Typically, images 
captured by cameras are performed based on visible light 
signals, whereas temperature measurement devices such 
as pyrometers and thermal imaging cameras are based on 
thermal radiation from infrared light to obtain temperature 
information [91]. A special spectral intensity signal, plasma 
spectroscopy, can also be used for on-line monitoring and 
diagnostics during DED-LB [92]. A schematic of laser-
induced plasma detection is shown in Fig. 8 [92]. With the 
help of plasma spectral information, it is possible to observe 
the atomic or ionic features produced by pulsed laser abla-
tion of the sample during DED-LB in the frequency domain 

of a specific wavelength range. Spectral signals have stronger 
background noise immunity than image and temperature 
signals [93]. In addition, it is able to provide richer physi-
cal information at the atomic level [46]. Spectral analysis 
involves complex data processing techniques and equipment 
that are costly to use and maintain. Commonly used spec-
tral sensing and analysis equipment includes photodiodes 
and spectrometers. Photodiodes have a high response speed, 
but only detect the intensity of the light signal and do not 
provide detailed information about the spectral distribution. 
Spectrometers can measure light signals at multiple wave-
lengths simultaneously, providing detailed elemental com-
position of materials through spectral characterization. Fur-
thermore, many researchers have obtained information such 
as plasma or electron temperatures, spectral intensities, and 
spectral line intensity ratios from the plasma plume during 
DED-LB [94, 95] to characterize the changes in microstruc-
tural and mechanical properties, the generation of defects 
such as pores and cracks [93, 96]. The correlation between 
process parameters and plasma spectral information is also 
explained [94].

Photodiodes are generally used to monitor the overall 
intensity of a spectrum without being able to distinguish 
between the different wavelengths of the light components 
of the spectrum. Miyagi et al. [97] used three photodiodes 
integrated in a laser head to monitor the signal intensities of 
thermal radiation, plume emission, and laser reflection from 
the melt pool. The specific spectral signals were received 
through selective filters of different wavelengths. The vari-
ations of different signal intensities with respect to process 
parameters and the relationship between deposition layer 
size and signal intensity were obtained by setting differ-
ent combinations of process parameters. The experimen-
tal results showed a good correlation between the thermal 

Fig. 8  Schematic diagram of 
the detection of laser-induced 
plasma [92]
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radiation signal intensity, melt pool width, and laser power, 
from which a feedback control system for thermal radia-
tion in the melt pool was established. In addition to being 
able to characterize the melt pool dimensions, Lin et al. 
[58] and Bi et al. [12, 57] used photodiodes to monitor the 

thermal radiation energy and correlate it with the tempera-
ture, respectively. Photodiodes are favored in control systems 
that do not require access to elemental composition due to 
their simple installation and fast response.

Laser-induced breakdown spectroscopy (LIBS) is cur-
rently the most commonly used technique for acquiring 
plasma plumes and quantitatively analyzing the target in 
terms of elements, which is characterized by on-line analy-
sis and non-contact work [59, 60, 98]. It can be adapted 
to the extreme working conditions of DED-LB processes. 
Lednev et al. [96] developed a LIBS probe [99] and per-
formed in situ monitoring and quantitative analysis of melt 
pools. As shown in Fig. 9, the LIBS signals of atomic (Fe 
I 278.81 nm) and ionic (Fe II 274.67 nm) ferrous wires 
in the defective deposition have a greater average inten-
sity compared to the optimal deposition, and this differ-
ence has a significance level of 95%. However, obtain-
ing LIBS spectra with good signal-to-noise ratio places 
high demands on the sampling and analyzing rates of the 
sensor and spectrometer. During the DED-LB of high 
entropy alloy (HEA) powder with aluminum substrate, Ni 
et al. [94] obtained plasma emission spectra in the wave-
length range of 400–850 nm at different scanning speeds. 
Figure 10 shows the variation of Al-II spectral intensity 
versus layer depth at different scanning speeds. It can be 
seen that the spectral intensity of Al-II decreases with 
the increase of scanning speed. The trend of the depth of 
deposition layer with scanning speed is basically compa-
rable with the spectral intensity of Al-II. Consequently, to 
a certain extent, the spectral intensity of Al-II can char-
acterize the change of the depth of the deposition layer. 
Compared to LIBS sampling in the melt pool, Sdvizhen-
skii et al. [98] changed the monitoring object to a metal 
powder jet, which would not be disturbed by the blackbody 

Fig. 9  Shot-to-shot LIBS signals comparison for in  situ ablation of 
the melt pool during optimal (black color) and defective (red color) 
laser welding: (a) atomic iron line Fe I 278.81 nm integral; (b) ionic 
iron line Fe II 264.67 nm integral; (c) ionic to atomic iron line inte-
grals ratio (Fe II 264.67 / Fe I 278.81) [96]

Fig. 10  The influence of scanning speeds on layer depth and spectral intensity [94]
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radiation of the melt pool and the reflection of the laser 
beam. This led to a higher robustness. However, due to the 
inhomogeneous distribution of particle density, the LIBS 
sampling points need to be continuously optimized by 2D 
mapping. Optical emission spectroscopy (OES) is an alter-
native plasma spectroscopy analysis technique to LIBS. It 
has a much higher spectral resolution to the point of being 
able to analyze subtle changes in material composition at 
greater depths [95, 100]. However, OES usually brings 
more data volume, which inevitably adds difficulties to the 
extraction and categorization of valid information [62].

The DED-LB process undergoes solid-liquid-gas phase 
changes [101]. The plasma characteristics captured by the 
spectrometer above the melt pool differ from the elemen-
tal characteristics in the melt pool due to the effect of 
saturated vapor pressure. In order to compensate for the 
compositional deviation due to the partial pressure of 
the metal gas, Wang et al. [102] measured the elemental 
weight% of the deposition layer using energy-dispersive 
spectroscopy (EDS), from which calibration curves for the 
intensity ratio between spectral lines were established and 
a monitoring system was constructed for application to 
the DED-LB process. When the alloy vapor concentra-
tion above the melt pool was greater than 3%, the relative 
deviation of the components was less than 8%. A compo-
nent concentration of less than 3% significantly affected 
the error rate in the spectra. Such results imply that the 
monitoring system needs further improvement. Song et al. 
[92] trained support vector regression (SVR) models for 
predicting elemental concentrations using spectral inten-
sity ratio, spectral intensity ratio, and spectral integral dual 
features, respectively. In order to validate its effectiveness, 
prediction comparison experiments were conducted with 
the calibration curve method at different nominal elemen-
tal concentrations. The results shown in Fig. 11 indicate 
that the SVR method can effectively solve the nonlinearity 
problem of the calibration curve in the low concentration 
region. In addition, SVR2 with line intensity ratio and 
integral intensity as inputs has a higher feature dimension 
and achieves better prediction results than SVR1 with line 
intensity ratio alone. This demonstrates that high-dimen-
sional features can better capture the relationship with 
elemental compositions. In addition to calibration issues, 
the low laser energy density used by Wang et al. [102] was 
unable to observe spectral lines emitted by refractory ele-
ments such as W and Mo during depositing nickel-based 
high-temperature alloy powders. De Baere et al. [61] did 
not find plasma information features when measuring radi-
ation spectra in the range of 400–850 nm. The inability to 
generate plasma plumes at lower laser energy density was 
confirmed experimentally, which limits the application of 
plasma spectroscopy in on-line monitoring techniques for 
DED-LB.

2.4  Monitoring methods based on acoustic 
emission signals

Acoustic emission (AE) is used to obtain information about 
the interior of a material based on the detection of tiny 
acoustic wave signals released by the material under stress, 
temperature, pressure [63, 103, 104], etc. During the DED-
LB process, the complex physicochemical processes aris-
ing from the interaction of the high-energy laser with the 
material are accompanied. A series of acoustic vibrations 
are induced, resulting in an acoustic emission signal. This 
contains a wealth of information related to cracks, pores, 
and other defects [50, 51, 105]. However, the AE signals 
are weak and need to be collected and analyzed with the 
help of highly sensitive instruments. AE signal acquisition 
devices can be categorized into contact [106] and non-con-
tact types [66] according to the sensor mounting position. 
Contact sensors are generally less expensive and allow direct 
contact with the object to be measured for the most intuitive 
measurement results. Nevertheless, few contact sensors are 
able to adapt to the high temperature of the DED-LB pro-
cess. Cooling methods that incorporate waveguide rods or 
water circulation are usually required. Among other things, 
waveguides can also act as a medium for the propagation 
of certain wave modes [105, 107]. Non-contact sensors are 
capable of non-destructive testing, but place high demands 
on cost and environmental conditions.

Garcia De La Yedra et al. [66] used a laser vibrometer 
and an optical microphone to monitor layer cracking caused 
by thermal stress and HAZ cracking acoustic waves, respec-
tively. The sensitivity was mutually verified by normalized 
acoustic energy images under different samples shown in 
Fig. 12, providing a more reliable crack analysis. Based on 
the phenomenon that the generation of cracks or defects 

Fig. 11  Predicted Al concentration and nominal Al concentration 
using calibration curve, PLSR, ANNs, and SVR methods [92]
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during the deposition process tends to emit energy shocks, 
Li et al. [105] utilized an AE sensor to collect the AE signals 
and signal energy during the deposition process in real time, 
as shown in Fig. 13. It can be found that the AE signals of 

the normal deposition process are relatively flat, while the 
amplitude of the signal energy at the cracks is much larger 
than the normal state. Wang et al. [108] used AE technique 
combined with finite element analysis to investigate the 

Fig. 12  Normalized acoustic 
energy per acoustic emission 
event monitored by an optical 
microphone (green) and a laser 
vibrometer (black) for both 
samples [66]

Fig. 13  AE signal and real-time signal energy in the deposition process (the real picture on the right is the coloring development detection effect 
of the deposition layer, and the cracks will appear as red tracks) [105]
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location of crack generation and the temperature range of 
crack expansion during DED-LB. The results showed that 
the number of cracks in the DED-LB process was positively 
correlated with the coating area and thickness as well as the 
cooling rate. Strantza et al. [109] utilized AE to monitor the 
crack extension process during DED-LB. A link between 
the AE parameters and the location of crack generation 
was established. Gaja et al. [50, 51] collected AE signals 
from a mixed-metal powder deposition process and suc-
cessfully differentiated between pore and crack features by 
using K-Means clustering method, logistic regression (LR) 
model, and neural network (ANN) model, respectively. The 
AE signals generated by pores were found to have a short 
decay time and small amplitude. The AE signals triggered 
by cracks were found to have short duration and high ampli-
tude. Taheri et al. [106] defined five states of the DED-LB 
process by monitoring the AE signals of the substrate using 
a clustering algorithm similar to that in [51]. These analyses 
revealed that the AE monitoring technique has great poten-
tial for on-line monitoring and defect diagnosis of DED-LB 
process. Parameters such as signal amplitude, duration, and 
rise time are key features for identifying the source mecha-
nism of defects and the severity of defects.

In addition to studies on the relationship between AE 
signals and the type of defects in the process, the effect of 
different processing conditions on the characterization of 
AE signals has been explored by an increasing number of 
scholars. Li et al. [105] obtained characteristic parameter 
datasets of normal deposition and suspected crack signals 
by changing a certain process parameter. And a network 
model named SRCD for deposition layer state identifica-
tion and crack defect detection was constructed, as shown 

in Fig. 14. The constructed deep learning model was able to 
effectively recognize 11 crack-generating situations caused 
by the abnormality of a certain process parameter, and the 
accuracy of the model was 99.76%. Based on the t-SNE 
algorithm for feature optimization, Li et al. [110] extracted 
the time-domain features (e.g., root-mean-square value, kur-
tosis, sparsity factor, and sample entropy) and frequency-
domain features (e.g., energy entropy) of the AE signals 
under three sets of different process parameters. The results 
obtained 92.8%, 89.0%, and 91.8% accuracy respectively. 
Whiting et al. [107] developed a powder mass flow monitor-
ing system based on AE signals by integrating a non-contact 
AE sensor into the powder feed line. The AE system was 
tested to produce a signal proportional to the mass flow rate 
with a correlation coefficient of 0.985 between the two sig-
nal samples. In summary, the AE characteristics in DED-LB 
can effectively analyze the processing state of substrates. AE 
signals generated by melt pool vibration, powder injection, 
and material deformation under different process parameters 
can effectively characterize the processing state and quality. 
The utilization of this method for troubleshooting of deposi-
tion layers or more complex parts is a hot research topic in 
the future.

2.5  Monitoring methods based on X‑ray signals

The four on-line monitoring signals mentioned above are the 
most commonly used sensing signals in DED-LB processes 
today, but have limited ability to characterize process infor-
mation. More advanced monitoring equipment should be 
used. In situ X-ray imaging has proven to be a very effective 
technique. When a polychromatic X-ray beam irradiates and 

Fig. 14  The model of SRCD’s framework presented in this paper [105]
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penetrates the sample, a scintillator converts the X-ray beam 
into visible light and an imaging display by a high-speed 
camera. Further information on the internal structure of the 
material and defect generation can be obtained [48]. X-ray 
imaging has been progressively matured for on-line moni-
toring of powder bed fusion (PBF) [64, 68, 69]. Drawing 
on this, several researchers have recently conducted simi-
lar studies in DED-LB in order to shed more light on the 
kinetic interactions between the laser, the powder, and the 
melt pool.

In order to reveal the effect of powder flow on melt pool 
fluctuations and on porosity, Wolff et al. [48, 65] set up two 
DED systems with different orders of magnitude of powder 
flow rates and monitored them separately by X-ray imaging. 
The small system with low powder flow rates showed lock 
holes similar to the PBF experiments, while the large system 
with industrial scale showed more fluctuations concentrated 
on the surface of the melt pool. A sequence of images under 
X-ray imaging is shown in Fig. 15, where the red dashed 
circles in the top row indicate powder with pores captured 
on the melt pool surface, and the yellow dashed circles in 
the bottom row indicate the escape path of the holes. In the 
subsequent work, high-speed X-ray imaging was used to 
capture, visualize, and classify the pore-generating process 
[111] as a means of elucidating the formation mechanism 
to better guide practical production and applications. Based 
on an edge image template combined with a Bayesian infer-
ence approach, Lindenmeyer et al. [49] used X-ray imaging 
for the first time to automatically extract melt pool shape 
and size. The proposed method alleviates the bottleneck of 
manually analyzing tedious data, but the detection accuracy 
is still greatly affected by noise. Chen et al. [44] used syn-
chrotron X-ray imaging to investigate the effects of process 
conditions such as laser power, powder feeding rate, and 
scanning speed on melt pool morphology during Ti-6242 
deposition. In addition, the processes of powder sintering 

and pore formation were similarly observed. Chen et al. [45] 
quantified key features and guided the diffraction process 
through X-ray imaging. The melt pool temperature gradient 
was isolated and the phase transition sequence and stress 
state of the deposition process were obtained.

X-ray imaging is an important visualization tool for cap-
turing melt pool kinetics and defect evolution. In addition, 
X-ray diffraction and small angle X-ray scattering (SAXS) 
are also analytical techniques related to X-ray signals, which 
are used to monitor solidification kinetics and precipitation 
evolution, respectively [112]. The current X-ray signals have 
been gradually applied in on-line monitoring of DED-LB. 
However, due to the complexity of the related equipment 
and the strong radiation of X-rays, specific DED-LB system 
needs to be designed. The on-line monitoring technology 
of DED-LB based on X-ray signals still has some limita-
tions at present, but it has a good potential for development. 
Therefore, the research and optimization of X-ray imaging 
technology will help to deeply understand the DED-LB pro-
cess and promote the further application and development 
of DED-LB.

3  Control strategies for DED‑LB

DED-LB, as a complex process, is still under open-loop 
control in current production. The combination of process 
parameters usually needs to be adjusted and optimized 
through multiple experiments and analyses. However, DED-
LB involves the integration of multiple physical fields. The 
optimal level of each process parameter also depends on 
the material, working conditions, and real-time interaction 
of multiple parameters [105]. Offline process parameter 
optimization does not adequately capture the severe impact 
of complex time-varying features on process stability. It is 
also insufficient to overcome the geometrical deviations and 

Fig. 15  Sequence of X-ray images from large-scale DED with laser power 200 W, scan speed 100 mm/s, and powder flow rate 535 mg/s [48]
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distortions of the part due to continuous thermal build-up. 
To realize real-time control of the DED-LB process, many 
scholars have carried out related researches. Different sens-
ing devices have been used to capture monitoring signals, 
such as images, temperature, spectra, AE, and X-rays to char-
acterize the information in the DED-LB process. Thereby, 
the closed-loop control system has been established. By 
timely adjusting the process parameters, the coating quality 
can be effectively improved, the defect rate can be reduced 
[24, 113, 114], and the automation and intelligence of DED-
LB process can be realized.

This section will focus on the different control strate-
gies of DED-LB quality control system, including specific 
control methods, optimization algorithms, and evaluation 
indexes of deposition performance. The input control sig-
nals described in this section are all based on the on-line 
monitoring signals described in Section 2. The aim is to 
explore the three-dimensional mapping relationships among 
process parameters, on-line monitoring signals and deposi-
tion quality.

3.1  Conventional control methods

Classical PID control, fuzzy control, feedback control, 
feedforward control, and model predictive control (MPC) 
are included within the conventional control methods. The 
transient processes of DED-LB constructed based on the 
physical principles such as mass balance, energy balance, 
momentum balance, heat conduction equation, and heat 
convection equations [115, 116] or model transfer meth-
ods [117] are referred to as mathematical analytical model, 
which can be used to accurately represent the control system 
behavior. However, considering the complexity of the DED-
LB process, there exists a nonlinear relationship between the 
controller input and output control variables [118]; empiri-
cal models fitted on the basis of experimental data are the 
most frequently used. Conventional control methods, based 
on simple control logic, achieve quality control of DED-LB 
through feedback mechanisms. The stability and effective-
ness of these methods have been thoroughly validated in 
numerous studies and practical applications.

The geometrical characteristics of the melt pool are the 
most effective control parameters. Hofman et al. [40, 73] 
developed a CMOS camera–based DED-LB control sys-
tem capable of regulating the laser power in real time. This 
closed-loop system was able to compensate for heat accu-
mulation during the deposition process within 1 s to obtain 
a customized melt pool width and a stable dilution rate. 
Similarly, Akbari et al. [119] selected laser power and melt 
pool width as control input and output variables, respec-
tively, and verified the controller performance with more 
diverse metrics based on [40]. Moralejo et al. [72] and Ding 
et al. [120] designed a feedforward-feedback controller by 

combining the characteristics of conventional PID control-
ler’s and feedforward controller, respectively. This combined 
control approach could improve the response speed and 
control accuracy of the system. The feedforward controller 
could adjust the DED-LB power in advance according to 
the desired DED-LB width, thereby reducing the response 
time of the system. Meanwhile, the PI controller could make 
feedback adjustment according to the actual melt pool width 
to keep the deposition layer width near the desired value. 
Fathi et al. [121] also proposed a similar feedforward PID 
controller, selecting scanning speed as input control vari-
able and melt pool height as output. The performance of 
this controller has been well validated in curved surface part 
fabrication. When facing the same surface manufacturing 
challenge, Shi et al. [122] developed a height-memory strat-
egy and used multiple PI controllers to segmentally control 
of unequal height tracks. The controller parameters of the 
next layer could be planned in advance by measuring the 
height of the current layer in real time to smooth out the 
unevenness. In Fig. 16, the microstructures of four typical 
segments are shown. These segments were observed during 
the controlled deposition process of the “bent pipe-shaped” 
part. The grain size underwent refinement from 5 to 15 μm 
to 3–10 μm, thereby demonstrating the effectiveness of the 
control strategy.

Miyagi et al. [97] captured the thermal radiation signal 
intensity of the melt pool, revealing its correlation with the 
width of the deposition layer and the laser power. As a result, 
an adaptive control system was developed. Figure 17 shows 
the control flow chart of the system. The laser power is 
adjusted to ensure a constant intensity of the thermal radia-
tion signal, thereby avoiding excessive heat input. The target 
value of the thermal radiation signal can be flexibly changed 
during the deposition process, with an adaptive control cycle 
as high as 1 kHz. The effect of the control system is shown in 
Fig. 18, where it can be clearly seen that the deposition layer 
has a more accurate morphology and a more stable cross-
section under the control of the system. Measurements also 
revealed a reduction in width variation from 63.6 to 12.5% 
compared to no adaptive shape control. Bi et al. [57, 123] 
constructed and tested a control system for DED-LB based 
on infrared temperature signals. The process-controlled sam-
ples had more uniform microstructure, hardness, and higher 
dimensional accuracy compared to multi-layer deposition 
using constant laser power. The PID controller designed by 
Farshidianfar et al. [124, 125] aims to maintain the cool-
ing rate near the desired point by adjusting the scanning 
speed, thus ensuring a consistent controlled microstructure 
throughout the DED-LB process.

Beam shape is an equally important process parameter 
in addition to the laser power, scanning speed, and powder 
feed rate mentioned above. Beam shaping generally consists 
of adjusting the beam size and energy distribution. During 
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DED-LB, the focusing of the laser beam changes the beam 
size and can regulate the heat input, which in turn affects the 
transient characteristics of the melt pool, the powder capture 
efficiency, and the microstructure of the sample [126, 127]. 
Zhao et al. [128] demonstrated the effect of the control of 
the focusing amount on the structure and properties of the 
samples by varying the amount of defocusing to achieve 
beam shaping. In addition, Wang et al. [129] used the layer 
height and defocus amount as the input and output param-
eters of the feedback control, respectively, to realize the 
real-time change of the beam size. The results showed that 
the designed control loop can effectively compensate for the 
height inconsistency problem during multi-layer deposition.

Other than controlling the beam size, beam shaping also 
involves adjusting the wavefront distribution of the laser to 
change the energy distribution and propagation character-
istics. This type of shaping is realized by using a series of 
optical elements based on optical theory. Chen et al. [130] 
investigated the elemental polarization and the formation 
of Laves phases when depositing IN718 with a flat-topped 
laser beam (FTLB) versus a Gaussian distributed laser beam 
(GDLB). The results showed that the formation of Laves 
phase in GDLB-IN718 was significantly improved com-
pared to FTLB-IN718. Shang et al. [131] used a variable 
beam profile modulator to change the energy distribution 

to achieve the optimization of wear and thermal cracking 
resistance of the single-orbital deposition layer. However, 
the beam with heterogeneous energy distribution is diffi-
cult to be dynamically adjusted during processing due to 
the expensive optics and the difficulty of centralizing the 
optics in a laser head with a complex structure [132]. While 
limited research has been reported in this area due to hard-
ware and software limitations, feedback control based on 
dynamic laser beam energy distribution adjustment is poised 
to become a future hotspot.

In addition to selecting appropriate control parameters, 
many reports also emphasize the importance of modeling 
the input and output mapping of the system. This modeling 
process serves as a basis for the design of the control system. 
Song et al. [34] developed a closed-loop control system, 
illustrated in Fig. 19, by establishing a state space model 
between laser power and melt pool temperature. By integrat-
ing this controller in series with the melt pool height con-
troller and setting the corresponding control actions, Song 
et al. [35] developed a dual-input single-output controller. 
This setup effectively mitigated issues such as under-build-
ing and over-building in the multi-layer deposition process. 
The future temperature change could be predicted by such 
a generalized predictive controller (GPC) based on the real-
time measured melt pool temperature. The establishment of 

Fig. 16  The microstructures of 
Fe313 alloy in 4 typical seg-
ments [122]
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the GPC temperature control system is of great significance 
for the future expansion of more complex multiple-input 
multiple-output (MIMO) DED-LB control systems. Based 
on a semi-empirical model named Hammerstein, Fathi et al. 
[133] established the dynamic response relationship between 
scanning speed and height. Subsequently, a joint control sys-
tem consisting of a sliding mode controller (SMC) and a PID 
controller was developed on this basis. Experiments on the 
fabrication of ramp-shaped parts showed that the designed 
control system was able to effectively reduce the step effect. 
However, a maximum height deviation of 15% was still 
observed. Based on the method of isothermal migration, 
Devesse et al. [117] developed a dynamic thermophysi-
cal model of the melt pool and established the relationship 
between the surface temperature and width of the melt pool. 
This model subsequently informed the design of a DED-
LB control system [134]. The control structure consisted 
of a static linear state feedback controller and a PI control-
ler capable of adjusting the laser power to track changes in 
the width of the target melt pool within 40 ms with zero 
steady state error. As previously reported, conventional con-
trol methods are characterized by their simple structure and 

effective control performance. However, large uncertainties 
persist when dealing with nonlinear, multivariate and time-
varying DED-LB processes.

3.2  Intelligent optimization methods for control 
systems

Several researchers are integrating optimization algorithms 
and machine learning into DED-LB control systems to 
further improve control accuracy. We classify these intel-
ligent optimization methods into two categories: optimi-
zation methods for constructing control models and opti-
mization methods for tuning controller parameters. These 
methods play important roles before and during processing, 
respectively.

Machine learning algorithms such as neural networks, 
support vector regression (SVM), and optimization meth-
ods like genetic algorithms and PSO can be used to learn 
the nonlinear behavior of DED-LB systems from extensive 
amount of monitoring data. This enables the construction of 
more accurate, higher-order mapping models linking process 
parameters to the quality of the deposition. Ma et al. [135] 

Fig. 17  Flow chart of adaptive shape control based on thermal radiation signal intensity [97]
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experimentally investigated the effect of different process 
parameters on dilution rate and residual stress. Subsequently, 
the optimal solution of the model response was obtained 
by applying multi-objective quantum particle swarm opti-
mization (MOQPSO) under the constraints of a second-
order polynomial response surface model. Yu et al. [136] 
developed a neural network model for genetic algorithm 
optimization between powder feeding rate, scanning speed, 

and crack density. The experimental results showed that the 
genetic algorithm optimized the model prediction accuracy 
and obtained the best combination of process parameters 
at the minimum crack density. Similarly, Yang et al. [137] 
used a genetic algorithm to optimize the mapping model 
between laser power, scanning speed. and melt pool center 
temperature, based on which the optimal process parameters 
were obtained and validated for effectiveness. During the 
deposition process of 15-5PH powder with 20Cr13 substrate, 
Zhou et al. [138] established a prediction model for the geo-
metrical characteristics of the deposition layer by combin-
ing the Grey Wolf Optimization (GWO) algorithm with BP 
neural network. The optimized best process parameters were 
laser power 1440 W, scanning speed 10 mm/s, and powder 
feeding rate 2.3 r/min. The deposition layer exhibited better 
microhardness and corrosion resistance compared to the pre-
optimized deposition layer. There have been many reports of 
model prediction and process parameter optimization studies 
similar to these, which are oriented to different materials but 
have achieved good results [139–141].

According to the above, machine learning can be used to 
construct more accurate offline models. However, machine 
learning approaches that require multiple training and itera-
tions can hardly meet the real-time demand of online control 
of DED-LB. Reports on machine learning models for online 
diagnosis and compensation of defects have just appeared 
recently. Gunasegaram et al. [142] pointed out the deficien-
cies of conventional closed-loop control strategies and pro-
posed a machine learning framework for assisted processing 
in DED-LB. This framework addresses the gap in the direc-
tion of machine learning–assisted adaptive control. Pandiyan 
et al. [143] developed a self-supervised deep learning frame-
work based on CNN and used a CCD camera to capture melt 
pool images, ultimately achieving effective classification of 
deposition quality. The possibility of real-time compensation 
in case of deviation during online monitoring was discussed 
by the developed predictive model. In conclusion, there are 
still limitations in terms of response speed and other aspects 
in integrating machine learning into online control strate-
gies. Nevertheless, machine learning control methods with 
predictive capabilities can be more adaptable to the nonlin-
ear and multivariate characteristics of DED-LB. It has great 
potential for future development.

Miao et al. [144] employed the optimization algorithm for 
tuning controller parameter. Specifically, the PSO algorithm 
was used to globally optimize the control power matrix of 
the linear quadratic regulator (LQR) to obtain the optimal 
control power matrix. The control strategy of PSO-LQR 
achieved a melt pool width control accuracy of 0.2 mm and 
a response time of 0.5 s in thin-wall processing. In order 
to avoid the cumbersome system identification process of 
conventional closed-loop control, Chen et al. [145] pro-
posed a data-driven adaptive control strategy with automatic 

Fig. 18  Appearance and cross-sections of deposited wall structures 
(laser power = 1200 W, scanning velocity = 10 mm/s, Df = 36 mm, Pf 
= 0.01 g/mm): (a) without adaptive shape control, (b) with adaptive 
shape control [97]

Fig. 19  Experimental setup of DMD process with a closed-loop tem-
perature controller [34]
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parameter tuning capability based on the virtual reference 
feedback tuning (VRFT) algorithm. The parameters of the 
designed controller were updated in real time throughout 
the deposition process, regardless of the current time, layer, 
material, size, or shape. As can be seen from the experi-
mental results shown in Fig. 20, the controller achieved a 
more uniform surface profile than conventional PID. Future 
research could explore expanding the control variables, 
such as powder feeding rate and scanning speed, to realize 
a more complete control system. Farshidianfar et al. [146] 
used the Adaptive Neuro-Fuzzy Inference System (ANFIS) 
algorithm to develop a mapping model of scanning speed to 
layer height. Based on the input-output data collected from 

multiple sets of experiments, the model was identified and 
a control system for the DED-LB process was designed. 
The control system achieved satisfactory results in terms 
of response speed and stability compared to conventional 
controllers such as PID and MPC. Chen et al. [147] used a 
model-free self-organizing fuzzy control (SOFC) method 
for quality control, which is well adapted to the nonlinear 
coupling and time-varying characteristics of DED-LB. The 
SOFC controller had the ability to learn on-line and was able 
to adjust the laser power and scanning speed simultaneously. 
When faced with workpieces with geometrical and absorp-
tive rate variations, the controller exhibited better immunity 
to interference than PID and fuzzy controllers.

Fig. 20  Samples of experiment 1 (solid semicylinder with the profile 
tool path, 316 L stainless steel). a The sample fabricated without con-
trol. b  The reconstructed surface of the uncontrolled sample. c The 
sample fabricated with a conventional proportional-integral-deriva-

tive (PID) controller. d The reconstructed surface of the conventional 
PID controlled sample. e  The sample fabricated with the proposed 
adaptive controller. f The reconstructed surface of the adaptively con-
trolled sample [145]



3125The International Journal of Advanced Manufacturing Technology (2024) 133:3105–3132 

4  Existing main problems and future 
development trends

4.1  The main problems and limitations

DED-LB on-line monitoring techniques have been used to 
capture and quantify the time-varying characteristics of the 
process and establish mapping relationships between pro-
cess parameters, monitoring signals and deposition qual-
ity. In addition, it can effectively reduce morphological and 
organizational defects through real-time feedback control. 
However, it is undeniable that there are still some problems 
to be solved.

4.1.1  Problems and limitations of on‑line monitoring

As far as current on-line monitoring systems are concerned, 
they are either built on directly measurable features such 
as melt pool, powder, and substrate [74, 84], or indirectly 
characterized by spectral and acoustic signals to character-
ize small-scale evolutions of elemental compositions and 
defects during processing [96, 108]. However, these systems 
rarely operate at multiple scales. More advanced integrated 
sensing devices need further research and development.

Some on-line monitoring techniques may suffer from 
insufficient sensitivity and resolution in feature extraction 
and analysis. This is especially true when dealing with com-
plex engineering problems such as DED-LB where strong 
radiation interference is coupled with multiple parameters, 
resulting in the inability to accurately capture and quantify 
microscopic changes.

X-ray imaging is an emerging on-line monitoring tech-
nique for DED-LB. Due to its strong penetration, it is able 
to reveal more in-depth information about the structural 
changes and defects generated during the process [48], but 
it also brings radiation safety issues and higher costs.

4.1.2  Problems and limitations of control strategies

Most of the control systems at this stage are limited to lin-
ear machining processes on flat surfaces. Due to the lack of 
control accuracy and stability, it cannot be applied to the 
machining of complex curved parts or coatings in actual 
production. Therefore, how to design a control system with 
higher accuracy and stability is a problem that needs to be 
solved.

On the other hand, most of the current closed-loop control 
studies regulate a single monitoring feature with a single 
process parameter, which cannot elucidate its complex form-
ing mechanism and the dynamic evolutionary behavior of 
the melt pool under multi-field coupling. Even though Song 

et al. [35] designed a multi-input system for layer height 
and temperature, it still fundamentally consists of the series 
connection of two single-input controllers.

4.2  Future research

The DED-LB process has multi-scale information such as 
surface morphology (macro-scale), cracks (meso-scale), and 
grain size (micro-scale). A single monitoring signal can-
not guarantee the accuracy and comprehensiveness of the 
information. In order to adapt to the multi-field and multi-
parameter coupling of DED-LB, the future on-line moni-
toring technology research should continuously improve on 
the existing monitoring equipment and develop integrated 
sensors with multi-information monitoring effects. By com-
bining multiple monitoring means, a multimodal monitoring 
system can be created to provide more detailed information 
and feedback for the processing.

Both software and hardware are essential in enhancing 
the performance and functionality of on-line monitoring sys-
tems. Therefore, there is a need to explore multi-scale qual-
ity online assessment methods. For instance, a method that 
uses only a single sensor but realizes multi-scale mass moni-
toring to address macroscopic high instability and micro-
scopic porosity was recently proposed by Li et al. [148]. A 
CMOS camera with optical feature enhancement techniques 
was employed to capture deposition profiles and melt pool 
images. Additionally, physical model–driven monitoring 
algorithms were designed to predict porosity. This provides 
a good research direction to revolutionize the multi-scale 
on-line monitoring technique.

Intelligent optimization methods have begun to be applied 
to pre-processing and processing of DED-LB. On the one 
hand, while these methods can enhance model accuracy 
through computer-experiment interaction [20], they may 
also introduce challenges such as insufficient response speed 
and lack of robustness [40]. Even though there are limited 
reports on their utilization for control system output input 
modeling, they indicate the future development of on-line 
control systems for DED-LB.

On the other hand, using the optimal solution obtained 
from the predictive model as an input for the initial process 
parameter combinations of the controller will result in a con-
trol system with faster convergence, higher control accuracy, 
and reduced cost. Furthermore, the optimized model can be 
used to develop a cloud database for storing information 
such as equipment status, historical data, and control com-
mands [149, 150]. The control system developed based on 
the cloud database has powerful data storage and process-
ing capabilities, which have already been applied in other 
engineering fields. This will provide valuable ideas for the 
improvement of DED-LB control systems.
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Taken together, it is necessary to build a multi-sensor 
fusion on-line monitoring and control integrated DED-LB 
system in the future. As shown in Fig. 21, the image, tem-
perature, plasma spectrum, acoustic emission, and X-ray sig-
nals collected by the on-line monitoring equipment are made 
to do real-time signal processing, from which the effective 
characteristic parameters are extracted and sent to the adap-
tive control system synchronously. In addition, intelligent 
optimization algorithms and advanced control strategies can 
be integrated into the control system model pre-processing 
and parameter tuning to reduce the response time while 
improving the control accuracy. Such a monitoring-control 
system has stronger information characterization capabilities 
and reduces post-processing costs. This will lay the founda-
tion for deepening and expanding the application field of 
DED-LB.

5  Conclusion

This paper primarily focuses on the current development 
status of DED-LB, examining both on-line monitoring and 
process control. Through the above discussion and analy-
sis of different monitoring signals, sensing devices, control 

strategies and optimization algorithms, the following conclu-
sions can be drawn:

1. Through the image, temperature, spectra, AE, and X-ray 
signals and a variety of monitoring equipment men-
tioned in this paper for on-line monitoring and signal 
processing, the process changes generated by DED-LB 
can be grasped in real time. It also provides more basis 
for quality regulation. In addition, through the process 
of closed-loop control, it can be found and recognized 
when the relevant defects immediately respond to avoid 
the quality problems caused by inappropriate process 
parameters. Therefore, on-line monitoring and real-time 
control play a pivotal role in optimizing and stabilizing 
DED-LB quality, enhancing production efficiency, and 
ensuring repeatability.

2. Most of the current on-line monitoring efforts are still 
limited to the use of a single monitoring device to obtain 
a single signal type, which cannot ensure the compre-
hensiveness and accuracy of the information. Future 
work should prioritize the integration of multi-sensor 
systems to achieve complementarity in terms of ability 
to acquire special information, sensitivity, accuracy, and 
anti-interference capability.

Fig. 21  Multi-sensor fusion for on-line monitoring of laser-directed energy deposition -adaptive system and parameter mapping relationship
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3. Emerging technologies such as X-ray imaging, diffrac-
tion, and SAXS with stronger process information char-
acterization capabilities have been gradually applied to 
DED-LB on-line monitoring. However, their utilization 
is limited by factors such as cost and specific operational 
requirements, necessitating the design of specialized 
DED-LB systems to accommodate them. Therefore, it 
is necessary to optimize the robustness of the monitor-
ing equipment and the ability to extract and analyze data 
while working on the development of advanced on-line 
monitoring means.

4. Incorporating machine learning and optimization algo-
rithms into the control strategy can significantly improve 
the control effect and quality stability. Even though few 
studies reported in this area, related works such as multi-
parameter higher-order model prediction and offline 
process parameter optimization provide ideas for the 
improvement of DED-LB control strategies. Not only 
can the optimization algorithm be used for the tuning of 
controller parameters in adaptive control, but also the 
optimal solution obtained from the model incorporating 
the optimization algorithm can be used for the initial 
process parameter inputs to the controller. This leads 
to faster convergence speed and higher accuracy of the 
control system.

5. Control systems developed based on cloud database 
or digital twin are not old ways of quality regulation 
and prediction. Based on digital twin, Chen et al. [151] 
developed a multi-sensor fusion local quality predic-
tion system using a coaxial camera, a microphone, and 
an off-axis short-wavelength infrared camera. In short, 
real-time monitoring and remote control can be real-
ized through cloud database and digital twin, which are 
artificial intelligence products. At the same time, data 
sharing and collaboration between multiple users can 
be realized to promote the integrated, automated and 
intelligent development of DED-LB on-line monitoring 
and control technology.
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