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Abstract
The ball screw is a vital component in the feed drive systems of machine tools. It is susceptible to thermal errors that sig-
nificantly impact its accuracy. Current thermal error modeling methods for ball screws face significant challenges in achiev-
ing full-time series prediction. Furthermore, these methods impose stringent requirements for a complex temperature data 
collection process, further constrained by the compact structure of machine tools. Additionally, valuable working condition 
data in thermal error prediction remains underutilized. This paper proposes a new hybrid-driven model that combines mecha-
nism and data-driven approaches to achieve full-time series thermal error prediction of ball screws. The proposed model 
utilizes the operating rotational speed as a key input parameter, eliminating the need for temperature collection during the 
modeling stage and the compensation process. The temperature model is proposed as a mechanism-driven model based on 
heat transfer theory to calculate the temperature of the thermal sensitive points by utilizing operating rotational speed. The 
accuracy of the model is validated through thermal characteristic experiments of ball screws under four different working 
conditions. The data-driven models based on different traditional neural networks are established to predict thermal errors 
according to the time series temperature data from the temperature model. Moreover, hyperparameters of different neural 
networks are optimized by the Beetle Antennae Search (BAS). Comparative analysis among different neural network-based 
hybrid-driven models reveals that the convolutional neural network (CNN) model optimized by BAS consistently exhibits 
lower absolute errors predominantly below 10 μm, as well as lower root mean squared error (RMSE) and mean absolute 
error (MAE) values in each working condition. The BAS-CNN model, within the hybrid-driven model framework, is better 
suited for the full-time series prediction of thermal errors in ball screws. The BAS-CNN model is a foundation for thermal 
error compensation by utilizing working condition data.
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1 Introduction

Thermally induced errors contribute substantially to the 
overall error affecting the machining accuracy [1], par-
ticularly given the current high-speed trend in machine 
tools. The thermal-induced errors account for as much as 

75% of the machined geometric errors [2]. Thermal errors 
can generally be attributed to the thermal deformations 
of the machine elements caused by heat sources within 
the structure, i.e., ball screws, bearings, nuts, axis drive 
motors, friction on the surfaces, cutting processes, the flow 
of coolant/lubricating oil, and the ambient temperature [3]. 
The ball screw feed drive system (BSFDS) is a crucial 
and indispensable transmission mechanism responsible 
for converting the motor-generated rotational motion into 
the linear motion of a nut-driven carriage. However, the 
thermal elastic deformation of ball screws resulting from 
heat generation in the motor, nuts, and bearings causes 
thermal errors that significantly impact machining accu-
racy. Hence, it is imperative to undertake research aimed at 
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mitigating the thermal effects of the ball screw, enhancing 
the position accuracy of machine tools.

Thermal error avoidance/control and thermal error 
modeling/compensation are the two solutions for reduc-
ing thermal errors of BSFDS. Engineers tend to design 
and optimize the structure of the machine [4], add a cool-
ing system [5, 6], separate the heat source, control the 
room temperature of the workshop, use new materials with 
high thermal conductivity [7] or the negative coefficient of 
thermal expansion [8], or employ real-time active thermal 
control method [2]. However, certain approaches necessi-
tate modifying the machine tool structure or incorporating 
new systems, requiring a profound comprehension of the 
machine tool’s structure. Additionally, certain methods 
introduce new materials, increasing the concerns regard-
ing material durability.

Thermal error compensation is a cost-effective strategy 
to offset thermal-induced errors by actively introducing con-
trolled errors into the system, improving machining accuracy 
without necessitating modifications to the machine tool’s 
structure. The effectiveness of compensation relies heavily 
on precise temperature measurements at sensitive points 
and accurate prediction of thermal errors during machin-
ing operations. Consequently, establishing a thermal error 
model with high prediction accuracy and robustness is the 
fundamental basis for thermal error compensation. Never-
theless, given the nonlinear nature of thermal errors and the 
constantly ever-changing and intricate working conditions, 
accurately capturing the variation pattern of thermal errors 
using a model remains challenging.

Theoretical and empirical modeling are the two main 
modeling methods for thermal errors. Theoretical mod-
eling involves utilizing heat transfer theory and appropriate 
boundary conditions to solve the temperature distribution 
and thermal error. In more intricate scenarios, these param-
eters are commonly obtained via finite element analysis 
(FEA) [9, 10]. The finite element modeling method’s pre-
cision hinges on the boundary conditions’ accuracy. How-
ever, obtaining accurate heat source intensity and boundary 
conditions is challenging due to the nonlinear temperature 
increase in BSFDS. Additionally, applying the FEA method 
is constrained by its time-consuming nature, limiting its 
widespread usage [11]. Empirical modeling directly builds 
a mapping relationship between the machine tool working 
conditions and the volumetric thermal error based on experi-
mental data [2].

The general steps of empirical modeling include select-
ing thermal key points and using algorithms to establish a 
mapping relationship between thermal key points’ tempera-
ture and thermal errors. The temperature field of BSFDS 
can be mainly reflected by the temperature of thermal sen-
sitive points [11]. Frequently used algorithms for thermal 
error modeling include the least square method, multiple 

regression analyses, grey system, support vector machine 
(SVM), hybrid model, and neural networks [12] .

Jiang and Yang [13] successfully fitted the thermal 
drift error curve of the spindle by employing the Cheby-
shev polynomial-based orthogonal least squares regression 
method. The authors concluded that the resulting curve 
agreed with the measurement error curve. Specifically, the 
maximum modeling residuals in the X, Y, and Z directions 
were found within the ranges of 0.8–1 μm, 0.6–0.9 μm, 
and 1.2–1 μm, respectively. Pajor and Zapłata [14] devel-
oped an analytical model for the spindle using the multiple 
regression approach. The authors reduced the thermal error 
from 73 to 13 μm by applying this model for thermal error 
compensation of the spindle. Despite these two methods’ 
relatively simple model structure and reliable performance, 
their predictive ability in complex conditions is low. Jiang 
and Yang [15] employed a genetic algorithm to optimize 
the dimensions and variable weights of a new gray system 
model based on the standard gray system model GM (1, 1) 
to minimize the residual value of the optimized model. The 
resultant optimized model captures the systematic trend of 
thermal errors and mitigates the impact of random fluctua-
tions in thermal error, improving the prediction accuracy 
of the thermal error model. Although it does not depend on 
extensive and comprehensive data information, the model 
will be different when the input is altered, and its conver-
gence speed is relatively slow.

Zhang et al. [16] incorporated the grid search method 
to optimize the penalty and kernel of the SVM thermal 
error model, enhancing the model’s performance. Signifi-
cant reductions of 89.55% and 85.67% were achieved in 
the X-axis positioning error and Z-axis positioning error by 
applying the optimized model to the X and Z axes of the 
CNC platform, respectively. SVM demonstrates strong non-
linear function fitting capability [17]. However, it necessi-
tates significant computing resources, exhibits slow conver-
gence speed, and presents challenges in parameter selection.

Neural network, an emerging data-driven modeling 
method originating from artificial intelligence, has found 
widespread application in thermal error prediction. The 
thermal errors of machine tools in multiple directions can 
be accurately fitted and predicted after the network’s learn-
ing and training [18, 19]. Since single modeling methods 
often struggle to perform well, hybrid modeling methods 
have been proposed to compensate for their shortcomings. 
GA, particle swarm optimization (PSO), and grey theory 
have been adopted into the neural network to optimize the 
initial value and increase the accuracy, convergence, and 
robustness [11]. However, mechanism and data hybrid-
driven models in thermal error compensation have not been 
reported.

Ma et al. [20] optimized BP algorithm with GA and PSO, 
enhancing the machining accuracy of a borer spindle system 
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in a precision jig by 67% and 89%, respectively. Tan [21] 
combined multiple BP neural network models to enhance 
predictive performance. The integrated model was applied 
to a horizontal machining center THM6380, resulting in an 
RMSE of 5.6522 μm, demonstrating improved accuracy in 
prediction. BP neural networks have high robustness and 
fault tolerance ability. However, their convergence speed is 
slow and can easily fall into value-extremum. Zhang et al. 
[22] improved the radial basis function (RBF) neural net-
work and developed a thermal error prediction model by 
utilizing the PSO algorithm to optimize critical parameters 
of the RBF neural network. Zhang et al. [23] employed 
fuzzy clustering and grey relational analysis techniques 
to optimize the placement of temperature measurement 
points. Subsequently, the authors developed a radial basis 
function neural network prediction model using a genetic 
algorithm. The enhanced model exhibits enhanced accuracy 
and increased robustness compared to the conventional RBF 
neural network approach. Moreover, the residual error of 
the forecasting model was reduced from 4.88 to 3.80 μm to 
2.48–2.14 μm. However, extracting key feature functions 
poses a challenging task in utilizing RBF neural networks. 
Gao et al. [24] introduced a thermal error prediction method 
based on PSO and long short-term memory (LSTM) neural 
networks. Comparative analysis of the performance of PSO-
LSTM, BP, and RBF models under various working condi-
tions revealed that the PSO-LSTM model exhibits superior 
performance and robustness. As data-driven models, neural 
networks generally exhibit high prediction accuracy and 
faster training speed.

However, the abovementioned data-driven models 
encounter difficulties regarding full-time series prediction. 
This limitation arises because model validation is typically 
performed solely on a test set representing only a small por-
tion of the entire dataset. Furthermore, all the compensation 
mentioned above methods necessitate temperature collec-
tion processes encompassing the selection of thermal error 
points, installation of temperature sensors, and precise tem-
perature measurements, serving both thermal error modeling 
and compensation stages. Unfortunately, these complex tem-
perature collection processes increase installation and main-
tenance expenses. Moreover, the disregard for the installa-
tion location of temperature sensors during the machine tool 
design phase poses challenges in the subsequent installation 
of sufficient temperature sensors.

This paper proposes a mechanism and data hybrid-driven 
model to address the abovementioned problems. Initially, 
a temperature model based on the heat transfer theory and 
thermal characteristic parameters of ball screws is proposed 
and experimentally validated. Furthermore, the data-driven 
models based on different traditional neural networks are 
established to predict the thermal error of ball screws with 
the calculated temperature as input data. Then, BAS is 

employed to optimize the hyperparameters of neural net-
works and improve the model’s performance. Finally, the 
predicted performance of the proposed hybrid-driven model 
is compared against traditional neural networks.

The hybrid-driven model proposed in this study utilizes 
working condition data to enable accurate prediction of ther-
mal errors of ball screws in full-time series without tempera-
ture data collection. Furthermore, the thermal deformation 
can be easily converted into thermal error by establishing the 
relationship between thermal deformation and error during 
compensation. This study’s research logic and roadmap are 
visually depicted in Fig. 1.

The remainder of this paper is organized as follows. In 
Section 2, the mechanism and data hybrid-driven modeling 
method is introduced. The thermal characteristic experiment 
is conducted to validate the temperature model and provide 
a dataset for data-driven modeling. In Section 3, the perfor-
mance of the proposed mechanism and data hybrid-driven 
models is discussed and compared. The paper is summa-
rized, and the main conclusions are drawn in Section 4.

2  Thermal error prediction of ball screws 
based on a hybrid‑driven model

A hybrid-driven model comprising a mechanism-driven 
model and a data-driven model is proposed for the full-
time series prediction of thermally induced errors in ball 
screws. Firstly, a temperature model of key thermal sensi-
tive points is developed based on heat transfer theory and 
validated through thermal characteristic experiments. Sec-
ondly, data-driven models are proposed based on various 
traditional neural networks to predict thermal errors. Then, 
the essential hyperparameters of these deep learning mod-
els are optimized using the BAS algorithm. The input and 
output of the hybrid-driven model are the rotational speed 
and the thermal deformation of the ball screw, respectively. 
Finally, the established hybrid-driven model utilizes working 
condition data of thermal sensitive points instead of meas-
ured temperatures to predict thermal errors of ball screws in 
full-time series.

2.1  Mechanism and data hybrid‑driven model 
for thermal error prediction of ball screws

Neural network models based on the time-varying character-
istics of the thermal error in the ball screw are employed for 
regression prediction of the thermal error. A mechanism and 
data hybrid-driven model is proposed for thermal error predic-
tion by integrating a temperature model, providing calculated 
temperature data as input for the data-driven model. This part 
establishes the mapping relationship between working condi-
tions and thermal error. This approach eliminates the need 
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for temperature measurements at thermal sensitive points 
because the temperature is theoretically calculated using the 
temperature model based on the rotational speed during opera-
tion and other related thermal parameters of the ball screw. 
Consequently, the proposed approach circumvents the complex 
and costly process of temperature data collection during the 

modeling and compensation phases. The mapping relation-
ship between the input and output data of the hybrid-driven 
model is depicted in Fig. 2. The proposed mechanism and data 
hybrid-driven model capture the temperature rise mechanism 
and adjust input parameters to accommodate various work-
ing conditions while also possessing the nonlinear mapping 

Fig. 1  Research logic and roadmap of this study

Fig. 2  Mapping relations 
between input and output data 
of a hybrid-driven model
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capability and self-adaptive characteristics offered by the data-
driven model. The mechanism-driven model for theoretical 
temperature and data-driven model for thermal errors are 
introduced in order.

2.2  Temperature model of ball screws based 
on heat transfer theory

2.2.1  Temperature modeling

A temperature model is developed based on the principles of 
heat transfer theory and the essential thermal parameters of a 
specific ball screw test bench to determine the temperature of 
the key thermal sensitive points on the ball screw. This paper 
focuses on the high-speed precision ball screw experimental 
platform as the primary subject of investigation. The primary 
parameters of the ball screw are presented in Table 1.

In the previous research, three thermal error-sensitive points 
specifically situated at the contact regions of the fixed bearing, 
supporting bearing, and nut of the ball screw [24] were identi-
fied through thermal modal analysis (TMA). Thus, these three 
key thermal sensitive points are chosen as the feature points 
in this study for computing the thermal parameters (Fig. 3).

The variation in temperature of the ball screw primarily 
arises from the generation of frictional heat at the contact sur-
faces and the convective heat transfer with the surrounding 
environment. Therefore, the thermal analysis considers heat 
generation and diffusion [25]. The real-time temperature of 
each component of the ball screw was determined based on the 
operational rotational speed, the thermal boundary conditions 
of the system, and the relationship between temperature rise 
and heat transfer by employing the principles of heat transfer 
theory and utilizing the derived solution for the essential ther-
mal parameters of the ball screw. The temperature rise of each 
component in the ball screw can be mathematically expressed 
as follows:

where T1 and T2 represent the initial temperature and the 
temperature at the specific calculation time of the thermal 

(1)T2 = T1+
QZ

CM

sensitive point of the ball screw, respectively, QZ denotes 
the total heat absorbed by each component of the ball screw 
where thermal sensitive points are located, C signifies spe-
cific heat capacity of each component of the ball screw, and 
M represents the mess of each component of the ball screw.

The specific solution procedure of the temperature model 
for calculating the temperature rise of the component at 
the location of the thermal sensitive point is given in the 
Appendix.

2.2.2  Experimental validation

Thermal characteristic experiments were conducted on a 
high-speed test bench for the precision ball screw under 
four different working conditions to validate the effec-
tiveness and accuracy of the abovementioned temperature 
model. The experimental setup and the data acquisition sys-
tem employed for the experiments are illustrated in Fig. 4. 
The parameters of the measuring instrument are provided 
in Table 2. Three temperature sensors were positioned at 
the fixed bearing, supporting bearing, and nut locations to 
capture the real-time temperature variation. Additionally, an 
eddy current displacement sensor was installed at the end 
face of the screw to measure the thermal deformation.

Four thermal characteristic experiments, comprising 
two randomly selected speeds, a step speed and a constant 
speed, were carried out under the rotational speeds specified 
in Table 3. During the experiments, the nut moves with the 
screw in the reciprocating cycle. The real-time temperature 
of the thermal sensitive points and the thermal deforma-
tion of the screw were collected during the experiment by a 
custom-made data acquisition system with a sampling period 
set at 1 s. After each experiment, a natural cooling period 

Table 1  Parameters of the ball screw

Name of parameters Value

Nominal diameter do (mm) 32
Ball diameter Db (mm) 5.953
Lead Ph (mm) 5
Helix angle ɑ (°) 5.6833
Dynamic load rating Ca (N) 25,628
Length (m) 1.22

Fig. 3  Thermal sensitive points on the test bench of the ball screw
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of 24 h was implemented to allow the temperature of the 
components to return to ambient temperature conditions.

The temperature of each thermal sensitive point under 
four working conditions was calculated based on the tem-
perature model according to the rotational speed of the ball 
screw. Comparative analysis was conducted between the 
temperature data collected from the thermal characteristic 

experiment of the ball screw and the calculated temperature 
data obtained from the temperature model under four work-
ing conditions. The comparative results under random speed 
1 are presented in Fig. 5, illustrating a favorable correspond-
ence between the temperature variations of each component 
and the rotational speed variation of the ball screw. Similar 
consistency was also observed in the comparative results 
under the other working conditions (Appendix).

According to the obtained results, it is observed that 
the calculated temperature data for the supporting bearing 
exhibits minimal deviation and high accuracy. The calcu-
lated temperature data fluctuates around the correspond-
ing experimental temperature data. This indicates a strong 
agreement between the calculated results of the temperature 
model and the experimental results in terms of capturing the 
temperature changes of the supporting bearing.

Fig. 4  The experimental setup

a) data acquisition system b) measurement of temperature and thermal 

deformation near supporting bearing

c) temperature measurement near fixed d) temperature measurement on the nut

bearing experimental setup

Table 2  Parameters of the 
experimental instrument

Type Product description

Temperature sensors KYW-TC, Kunlunyuanyang, Beijing, China
Eddy current displacement sensor ML33-01-00-03, Milang, Shenzhen, China
Temperature inspection instrument Kunlunyuanyang, Beijing, China
Displacement inspection instrument XSAE-CHVB1M2V0, Milang, Shenzhen, China

Table 3  Rotational speed of four thermal characteristic experiments

Time (min) 0–10 10–20 20–30 30–40 40–50

Random speed 1 (rpm) 400 700 900 500 1000
Random speed 2 (rpm) 300 1000 600 800 700
Step speed (rpm) 500 800 1000 800 500
Constant speed (rpm) 800 800 800 800 800
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However, the nut’s calculated temperature is generally 
higher than the experimental temperature. In contrast, the 
temperature calculation results for the fixed bearing tend to 
be lower than the corresponding experimental values most of 
the time. The discrepancies can be attributed to variations in 
parameters such as thermal conductivity, specific heat capac-
ity, and heat transfer characteristics between the temperature 
model and the physical model in its operational state. The 
maximum relative errors between the calculated and experi-
mental temperature for each working condition are presented 
in Table 4. Specifically, the maximum relative errors for 

the nut, fixed bearing, and supporting bearing under differ-
ent working conditions are 8.097%, 2.787%, and 1.275%, 
respectively. The results demonstrate that the temperature 
model applied to the thermally sensitive points of the ball 
screw exhibits acceptable accuracy, as indicated by the simi-
larity between the fundamental trend of predicted data and 
the experimental data presented in the figure and further 
supported by the quantified error indicators within accepta-
ble thresholds in the table. Consequently, this accuracy level 
facilitates the calculation and simulation of temperature rise 
during the actual operation of the ball screw and positions 

a) nut temperature

b) temperature of the fixed bearing  c) temperature of the supporting bearing

Fig. 5   Temperature comparison among key thermal sensitive points at random speed 1

Table 4  Maximum relative 
error of calculated temperature 
on each work condition

Random speed 
1 (%)

Random speed 
2 (%)

Step speed (%) Constant 
speed (%)

Temperature of nut 8.097 7.282 7.553 7.336
Temperature of fixed bearing 2.600 2.452 2.172 2.787
Temperature of supporting bearing 0.774 0.791 1.275 0.938
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the proposed temperature model as a viable alternative to 
traditional temperature sensors. Furthermore, discrepancies 
between temperature calculated by the temperature model 
and real-world conditions can be improved and mitigated 
through subsequent application of data-driven modeling 
techniques designed to predict thermal errors.

2.3  Data‑driven models for thermal error prediction 
of ball screws

2.3.1  Thermal error modeling

Various neural network models, including BP, LSTM, and 
convolutional neural network (CNN), are employed for pre-
dicting the thermal deformation of the ball screw due to their 
capability to perform regression prediction and handle time 
series data. In these data-driven models, the calculated tem-
perature (Tb1, Tb2, and TN) obtained from the temperature 
model under the random speed 1 and the experimental ther-
mal deformation (D) obtained from the thermal characteris-
tic experiment under the random speed 1 are utilized as input 
and output data to construct the feature dataset required for 
model training. The calculated temperature and experimen-
tal thermal deformation data in full time series under the 
other three working conditions are employed as the test sets 
to evaluate the performance of the established data-driven 

models. The developed data-driven models for full-time 
series thermal error prediction are employed to establish the 
mapping relationship between the calculated temperature of 
thermal sensitive points and thermal deformation. The data-
set configurations, feature parameters, training, and testing 
methodologies of the models are kept constant to ensure a 
fair comparison among the three data-driven models. Addi-
tionally, the input and output data must be normalized before 
model training to mitigate the impact of data from different 
dimensions on the training outcomes. Lastly, the maximum 
number of training iterations is 100 to avoid excessive com-
putational costs.

2.3.2  Hyperparameter optimization

Determining the optimal hyperparameters of the model is 
crucial for developing an accurate thermal error prediction 
model with optimal performance. Similar to other optimi-
zation algorithms, such as PSO and GA, the BAS algo-
rithm can automatically search for the best solution. BAS 
algorithm is designed to mimic the movement of beetles 
towards the direction of antennae with strong odor signals, 
enabling efficient and rapid foraging. BAS can solve optimi-
zation problems quickly due to its simplicity and effective 
search process. Thus, in this study, the BAS algorithm is 
employed to optimize the hyperparameters of the thermal 

Fig. 6  Flowchart of the hybrid-driven modeling process for thermal error prediction of ball screws



1451The International Journal of Advanced Manufacturing Technology (2024) 133:1443–1462 

error prediction model for quick and automatic convergence 
towards high accuracy.

Since the prediction model based on the LSTM neural 
network exhibits abnormal and unacceptable prediction 
data during the initial prediction stage, the remaining two 
prediction models based on BP and CNN are further opti-
mized by BAS. RMSE is utilized as the fitness function for 
hyperparameter optimization. The hyperparameters of the 
BP and CNN models are separately optimized to obtain the 
minimized RMSE value. In the CNN neural network, the 
optimized hyperparameters encompass the convolution ker-
nel size for the two convolutional layers, the initial learning 
rate of the network, the learning rate decay factor, and the 
learning rate decay cycle. Simultaneously, the weights and 
thresholds of the BP neural network are optimized using the 
BAS algorithm to achieve the network’s optimal prediction 
performance. Additionally, the maximum number of itera-
tions for the BAS optimization algorithm is set to 100 to 
ensure efficient convergence and accuracy.

2.4  Thermal error prediction based on mechanism 
and data hybrid‑driven model

Initially, the rotational speed data, serving as the work-
ing condition data, are input into the temperature model 
to generate time series temperature data for three thermal 
sensitive points. Subsequently, the obtained temperature 
data and thermal deformation in the axial direction meas-
ured by the eddy current displacement sensor are fed into 
various networks to train the data-driven models, including 
CNN, LSTM, BP, BAS-CNN, and BAS-BP. Then, the key 
hyperparameters of each network determined by the BAS 
optimization algorithm are input into the networks to obtain 
the optimal configuration of the models and predict a ther-
mally induced error. The flowchart illustrating the process of 
hybrid-driven modeling for thermal error prediction of ball 
screws is presented in Fig. 6.

Figure 7 illustrates the changes in fitness of the two models 
in the model training stage during the optimization process 

a) random speed working condition                      b) step speed working condition

c) constant speed working condition

Fig. 7  Adaptation curve of the optimization process under different working conditions
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across various operational conditions, providing compelling 
evidence of the algorithm’s effective convergence.

Three test data sets in full-time series corresponding to 
different working conditions are utilized to validate the accu-
racy of the established mechanism and data hybrid-driven 
model. The prediction results will be discussed in the next 
chapter.

3  Prediction results and discussion

Comparative analyses are conducted among hybrid-driven 
models based on different neural networks to assess the 
proposed mechanism and data hybrid-driven models’ 

a) random speed working condition

b) step speed working condition               c) constant speed working condition

Fig. 8   Comparison between thermal error predicted mean results based on different neural networks

Table 5  RMSE results

Model Random speed Step speed Constant speed

LSTM 12.4928 11.6939 6.2886
BP 13.1023 13.0666 8.2121
CNN 9.7497 9.0084 9.9612

Table 6  MAE results

Model Random speed Step speed Constant speed

LSTM 10.3543 10.8388 5.8886
BP 10.7694 11.8556 7.1748
CNN 7.8414 7.1302 8.9819
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performance, validate the optimization algorithm’s effec-
tiveness, and determine the optimal model with the high-
est accuracy. The comparison results are then thoroughly 
examined and discussed.

3.1  Comparison between hybrid‑driven models 
based on CNN, BP, and LSTM

The average thermal error values of the five predicted results 
from CNN, LSTM, and BP neural network prediction mod-
els under different working conditions are presented in Fig. 8 
to compare the predicted results and performance of the 
mechanism and data hybrid-driven models. The prediction 
accuracy of all three hybrid-driven models is relatively high 
during the early prediction stage. In contrast, the prediction 
errors mainly occur in the latter half of the prediction pro-
cess. Furthermore, the prediction results indicate superior 
performance of all three models under the constant speed 

condition compared to other working conditions. Specifi-
cally, the CNN prediction model demonstrates the high-
est accuracy, followed by the LSTM and BP models. It is 
worth noting that the LSTM prediction model exhibits better 
overall prediction accuracy compared to others under the 
constant speed condition. However, it is characterized by 
occasional local deviation points in its prediction results.

Two evaluation metrics, RMSE and MAE, are employed 
to quantitatively assess the model’s predictive performance. 
A lower value for these evaluation metrics indicates a higher 
accuracy of the established model. The evaluation results for 
the thermal error prediction model of the ball screw in the 
full-time series are presented in Tables 5 and 6. The model 
utilizing the CNN network as the data-driven framework 
demonstrates the closest alignment between the predicted 
and experimental results under random and step speed work-
ing conditions. This model exhibits superior performance 

a) random speed working condition b) step speed working condition

c) constant speed working condition

Fig. 9  BAS-CNN-based thermal error prediction results for different working conditions
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compared to the other two hybrid-driven models. Moreo-
ver, the hybrid-driven prediction model based on the CNN 
neural network framework is characterized by a relatively 
stable prediction accuracy without any local mutation points 
observed during the initial prediction period (unlike the 
LSTM model).

In conclusion, the hybrid-driven prediction model with 
the CNN network as the data-driven framework exhibits the 
highest accuracy among the three models, particularly under 
random and step speed working conditions. This model dem-
onstrates stable prediction accuracy in full-time series and 
avoids local mutation points observed in the initial predic-
tion period of the LSTM model.

3.2  Comparison between optimized 
and unoptimized models

The predicted thermal errors of the ball screw under three 
working conditions obtained from the BAS-CNN, CNN, 
BAS-BP, and BP prediction models are compared with the 
corresponding experimental results. Figures 9 and 10 illus-
trate the comparison.

The thermal error prediction results based on the BAS-
CNN and BAS-BP models demonstrate a closer alignment 
with the experimental values throughout the full-time series 
prediction than the unoptimized prediction model. The 
optimized models exhibit higher prediction accuracy and 

a) random speed working condition b) step speed working condition

c) constant speed work condition

Fig. 10  BAS-BP-based thermal error prediction results for different working conditions
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stability, validating the efficiency of the BAS-optimized 
algorithm. Although there may be some fluctuations in the 
predicted thermal error values compared to the experimental 
values under certain working conditions, these fluctuations 
have a limited impact on the overall prediction accuracy and 
stability.

3.3  Comparison between BAS‑CNN and BAS‑BP

The predicted thermal errors obtained from the BAS-CNN 
and the BAS-BP models under the same working conditions 
are compared with the corresponding experimental results 
in Fig. 11.

Both models exhibit favorable prediction performance 
under random and constant speed conditions. Both models 

exhibit fluctuations in the predicted values for the step speed 
condition. However, the BAS-BP prediction model exhib-
its stages in certain prediction times that deviate from the 
observed trend of the experimental thermal error. Further-
more, the BAS-BP model displays higher prediction errors 
than the BAS-CNN model at the initial and final stages of 
the prediction process under random and step speed work-
ing conditions.

The distribution of relative and absolute errors in the 
prediction results of the BAS-CNN and BAS-BP models 
is presented in Figs. 12 and 13, respectively, to assess their 
full-time series prediction performance and reliability. It 
can be observed that the prediction errors under the three 
different working conditions are acceptable in engineer-
ing. Specifically, for the random, step, and constant speed 

a) random speed working condition b) step speed working condition

c) constant speed working condition

Fig. 11  Comparison of thermal error prediction results based on BAS-CNN and BAS-BP
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conditions, most absolute error values in the thermal error 
prediction results obtained from the BAS-CNN model are 
below 5 μm, 10 μm, and 9 μm, respectively. Similarly, 
most absolute error values in the thermal error prediction 
results obtained from the BAS-BP model are below 7 μm, 
12 μm, and 14 μm for the respective working conditions. 
However, few absolute error values exceed the aforemen-
tioned thresholds. The maximum absolute errors in the 
prediction results of both models under the three working 
conditions are summarized in Table 7.

RMSE and MAE of both models were calculated to 
quantitively compare the prediction performance of the 
prediction model before and after optimizing and to quan-
tify the performance of the optimized model. The results 
are presented in Tables 8 and 9.

The optimized prediction model exhibits smaller RMSE 
and MAE values than the thermal error prediction model 
before hyperparameter optimization. Additionally, the 
RMSE and MAE values of the BAS-CNN model are con-
sistently lower than those of the BAS-BP model under 
the three working conditions. It can be concluded that the 

BAS-CNN model achieves high prediction accuracy and 
superior performance. Furthermore, the BAS-CNN model 
presented in this study consistently demonstrates relatively 
high predictive accuracy for thermal error prediction 
across various working conditions and random rotational 
speeds, emphasizing the model’s excellent robustness.

4  Conclusions

Traditional thermal error neural network models face chal-
lenges in achieving full-time series prediction. Addition-
ally, the existing thermal error modeling methods rely on 
operating temperature data at thermal sensitive points 
collected through a complex and costly temperature col-
lection process. In this paper, a new mechanism and data 
hybrid-driven model using rotational speed as input data 
was proposed for the prediction of thermal-induced errors 
of ball screws in full-time series without temperature data 

a) random speed working condition b) step speed working condition

c) constant speed working condition

Fig. 12  BAS-CNN-based error analysis of thermal error prediction for different working conditions
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collection during operation. The following conclusions are 
drawn:

(1) A mechanism and data hybrid-driven model for ther-
mal error prediction of ball screws comprising the tem-
perature model and the BAS-CNN was proposed. The 
model enables the prediction of thermal errors solely 
based on working condition data (specifically the rota-
tional speed) without the requirement of collecting 
operating temperature data for ball screws.

(2) A data-driven model based on BAS-CNN was proposed 
to achieve full-time series thermal error prediction of 
the ball screw. A comparison between the BAS-CNN 
model and the experimental data in full-time series 
demonstrates that the proposed model can accurately 
predict the thermal error of ball screws. Furthermore, 
the model exhibits excellent robustness, laying a solid 
foundation for thermal error compensation applica-
tions.

(3) Comparative analyses were performed among the 
proposed hybrid-driven models based on different tra-

a) random speed working condition b) step speed working condition

c) constant speed working condition

Fig. 13  BAS-BP-based error analysis of thermal error prediction for different working conditions

Table 7  Maximum absolute errors in the prediction results of two 
models

Model Random speed 
(μm)

Step speed (μm) Constant 
speed 
(μm)

BAS-CNN 9.01 18.90 13.51
BAS-BP 13.39 26.41 17.37

Table 8  RMSE results

Data-driven model Random speed Step speed Constant speed

BAS-BP 6.0480 9.7277 8.1902
BAS-CNN 3.6629 8.0580 7.2500

Table 9  MAE results

Data-driven model Random speed Step speed Constant speed

BAS-BP 4.9750 8.4172 6.9879
BAS-CNN 2.9986 6.8731 5.9435
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ditional neural networks. The results reveal that the 
hybrid-driven model utilizing BAS-CNN as the data-
driven component achieves higher accuracy and lower 
error than CNN, BP, LSTM, and BAS-BP models. The 
BAS-CNN model exhibits the smallest RMSE and 
MAE values. Therefore, it can be concluded that the 
hybrid-driven model based on BAS-CNN outperforms 
the other models.

Even though this study provides a new thermal error 
prediction model architecture, the efficacy of thermal error 
compensation has not yet been assessed. Thermal error 
compensation will be explored in the subsequent research 
stages based on the proposed mechanism and hybrid-
driven model, and its impact on reducing thermal errors 
will be evaluated.

Appendix

The specific solution procedure of the temperature model 
for calculating the component’s temperature increase at the 
location of the thermal sensitive point is as follows:

(1) Calculating the bearing heat generation intensity Qb

The frictional heat generated by the bearing is one of the 
main heat sources in the ball screw. It is influenced by the 
frictional torque between the rolling elements, raceways, and 
retainers inside the bearing, as well as the stirring resist-
ance of the lubricant. The heat generation of bearing can be 
expressed as follows:

(2)Qb =
2�NMb

60

a) nut temperature

b) temperature of the fixed bearing c) temperature of the supporting bearing

Fig. 14  Temperature comparison among key thermal sensitive points at random speed 2
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where N represents the bearing’s rotational speed (r/min) 
and Mb represents the frictional torque of the bearing (N·m).

The frictional torque during the bearing’s operation pri-
marily arises from rolling friction caused by material elastic 
hysteresis, friction induced by rolling element spinning and 
sliding, pure sliding friction in sliding contact areas, and 
viscous friction of the lubricant [26]. The frictional torque 
Mb mainly comprises M0 and M1:

(3)Mb = M0 +M1

where M0 is the frictional torque related to the bearing type, 
rotational speed, and lubricant properties; M1 is the fric-
tional torque associated with the bearing load.

Parameter M0 reflects the fluid dynamic loss of the lubri-
cant and is calculated via Eq. (4).

where Dm is the average diameter of the bearing (mm); f0 
is a coefficient related to the bearing type and lubrication 
obtained from reference tables; v is the kinematic viscosity 

(4)

{

M0 = 10−7f0(vN)
2

3D3

m
vN ⩾ 2000

M0 = 160 × 10−7f0D
3

m
vN < 2000

,

a) nut temperature

b) temperature of the fixed bearing c) temperature of the supporting bearing

Fig. 15  Temperature comparison among key thermal sensitive points at step speed
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of the lubricant at the operating temperature of the bearing 
 (mm2/s).

M1 reflects frictional losses due to elastic hysteresis and 
differential sliding at the contact surfaces and can be calcu-
lated using Eq. (5).

where f1 is a coefficient related to the bearing type and load, 
and P1 is the bearing load.

No axial load was applied in the experimental setup of 
the ball screw test bench used in this study. Therefore, the 
friction torque related to the load is neglected.

(2) Calculating the nut heat generation intensity Qn

(5)M1 = f1P1Dm

The calculation of the nut heat generation intensity Qn 
of the ball screw is closely related to its friction torque 
M and similar to calculating the bearing heat generation 
intensity:

where N represents the rotational speed of the ball screw 
(r/min); M represents the total friction torque of the ball 
screw (N·m) comprising the driving torque MD and the 
resistance torque MP exerted by the preloading force.

The driving torque MD of the ball screw is the torque 
required to drive the nut to perform reciprocating motion by 
overcoming the axial load generated by the worktable mass 
and cutting forces:

(6)Qn =
2πNM

60

a) nut temperature

b) temperature of the fixed bearing c) temperature of the supporting bearing

Fig. 16  Temperature comparison among key thermal sensitive points at a constant speed
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where Ph represents the lead of the ball screw (mm); 
FD represents the axial force acting on the nut (N); η 
represents the transmission efficiency of the screw and 
the nut.

The resistance torque MP of the ball screw is the torque 
required to drive the screw when the nut is preloaded, and 
there is no axial load:

where FP represents the axial preload force on the nut (N).

(3) Calculating the heat generation in servo motors

Various losses in servo motors, including mechanical, 
electrical, and magnetic losses, are intrinsic factors con-
tributing to heat generation. The heat generation in servo 
motors can be calculated using Eq. (9).

where MT represents the output torque of the servo motor 
(N·mm), and η represents the mechanical efficiency of the 
servo motor.

(4) Convective heat transfer boundary conditions

Fixed components experience a temperature rise during 
system operation in the ball screw feed system. Some of 
these surfaces exchange heat with the surrounding air, a 
process known as convective heat transfer. Examples of 
such surfaces include bearing seats and motor enclosures. 
These components adhere to natural convective heat trans-
fer principles in an unbounded space. The convective heat 
transfer can be expressed as follows [26]:

where Nu is the Nusselt number; Gr is the Grashof number; 
Pr is the Prandtl number; g is the acceleration due to grav-
ity; α is the volumetric expansion coefficient of air; d is the 
characteristic dimension; Δt is the temperature difference 
between the surface of the component and the surrounding 
air; v is the kinematic viscosity of air.

Parameters C and n in Eq. (10) can be selected based on the 
flow state of the fluid and the shape of the heat transfer surface.

(7)MD =
FDPh

2π�

(8)MP =
FPPh

2π�
(1 − �2)

(9)QM =
MTn

9550
(1 − �)

(10)

⎧

⎪

⎨

⎪

⎩

Nu = C(Gr ⋅ Pr)n

Gr =
g�d3Δt

v2

During the nut’s operation, forced convection heat trans-
fer occurs between its outer cylindrical surface and the sur-
rounding air. The criterion correlation for the average con-
vective heat transfer coefficient can be expressed as follows 
[27]:

where Re represents the Reynolds number; u denotes the 
velocity of the air; h represents the convective heat transfer 
coefficient; λ represents the thermal conductivity of the air.

Figures 14, 15, and 16 illustrate the temperature com-
parison of key thermal sensitive points under other working 
conditions.
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