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Abstract

The ball screw is a vital component in the feed drive systems of machine tools. It is susceptible to thermal errors that sig-
nificantly impact its accuracy. Current thermal error modeling methods for ball screws face significant challenges in achiev-
ing full-time series prediction. Furthermore, these methods impose stringent requirements for a complex temperature data
collection process, further constrained by the compact structure of machine tools. Additionally, valuable working condition
data in thermal error prediction remains underutilized. This paper proposes a new hybrid-driven model that combines mecha-
nism and data-driven approaches to achieve full-time series thermal error prediction of ball screws. The proposed model
utilizes the operating rotational speed as a key input parameter, eliminating the need for temperature collection during the
modeling stage and the compensation process. The temperature model is proposed as a mechanism-driven model based on
heat transfer theory to calculate the temperature of the thermal sensitive points by utilizing operating rotational speed. The
accuracy of the model is validated through thermal characteristic experiments of ball screws under four different working
conditions. The data-driven models based on different traditional neural networks are established to predict thermal errors
according to the time series temperature data from the temperature model. Moreover, hyperparameters of different neural
networks are optimized by the Beetle Antennae Search (BAS). Comparative analysis among different neural network-based
hybrid-driven models reveals that the convolutional neural network (CNN) model optimized by BAS consistently exhibits
lower absolute errors predominantly below 10 pm, as well as lower root mean squared error (RMSE) and mean absolute
error (MAE) values in each working condition. The BAS-CNN model, within the hybrid-driven model framework, is better
suited for the full-time series prediction of thermal errors in ball screws. The BAS-CNN model is a foundation for thermal
error compensation by utilizing working condition data.
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1 Introduction

Thermally induced errors contribute substantially to the
overall error affecting the machining accuracy [1], par-
ticularly given the current high-speed trend in machine
tools. The thermal-induced errors account for as much as
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75% of the machined geometric errors [2]. Thermal errors
can generally be attributed to the thermal deformations
of the machine elements caused by heat sources within
the structure, i.e., ball screws, bearings, nuts, axis drive
motors, friction on the surfaces, cutting processes, the flow
of coolant/lubricating oil, and the ambient temperature [3].
The ball screw feed drive system (BSFDS) is a crucial
and indispensable transmission mechanism responsible
for converting the motor-generated rotational motion into
the linear motion of a nut-driven carriage. However, the
thermal elastic deformation of ball screws resulting from
heat generation in the motor, nuts, and bearings causes
thermal errors that significantly impact machining accu-
racy. Hence, it is imperative to undertake research aimed at
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mitigating the thermal effects of the ball screw, enhancing
the position accuracy of machine tools.

Thermal error avoidance/control and thermal error
modeling/compensation are the two solutions for reduc-
ing thermal errors of BSFDS. Engineers tend to design
and optimize the structure of the machine [4], add a cool-
ing system [5, 6], separate the heat source, control the
room temperature of the workshop, use new materials with
high thermal conductivity [7] or the negative coefficient of
thermal expansion [8], or employ real-time active thermal
control method [2]. However, certain approaches necessi-
tate modifying the machine tool structure or incorporating
new systems, requiring a profound comprehension of the
machine tool’s structure. Additionally, certain methods
introduce new materials, increasing the concerns regard-
ing material durability.

Thermal error compensation is a cost-effective strategy
to offset thermal-induced errors by actively introducing con-
trolled errors into the system, improving machining accuracy
without necessitating modifications to the machine tool’s
structure. The effectiveness of compensation relies heavily
on precise temperature measurements at sensitive points
and accurate prediction of thermal errors during machin-
ing operations. Consequently, establishing a thermal error
model with high prediction accuracy and robustness is the
fundamental basis for thermal error compensation. Never-
theless, given the nonlinear nature of thermal errors and the
constantly ever-changing and intricate working conditions,
accurately capturing the variation pattern of thermal errors
using a model remains challenging.

Theoretical and empirical modeling are the two main
modeling methods for thermal errors. Theoretical mod-
eling involves utilizing heat transfer theory and appropriate
boundary conditions to solve the temperature distribution
and thermal error. In more intricate scenarios, these param-
eters are commonly obtained via finite element analysis
(FEA) [9, 10]. The finite element modeling method’s pre-
cision hinges on the boundary conditions’ accuracy. How-
ever, obtaining accurate heat source intensity and boundary
conditions is challenging due to the nonlinear temperature
increase in BSFDS. Additionally, applying the FEA method
is constrained by its time-consuming nature, limiting its
widespread usage [11]. Empirical modeling directly builds
a mapping relationship between the machine tool working
conditions and the volumetric thermal error based on experi-
mental data [2].

The general steps of empirical modeling include select-
ing thermal key points and using algorithms to establish a
mapping relationship between thermal key points’ tempera-
ture and thermal errors. The temperature field of BSFDS
can be mainly reflected by the temperature of thermal sen-
sitive points [11]. Frequently used algorithms for thermal
error modeling include the least square method, multiple
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regression analyses, grey system, support vector machine
(SVM), hybrid model, and neural networks [12] .

Jiang and Yang [13] successfully fitted the thermal
drift error curve of the spindle by employing the Cheby-
shev polynomial-based orthogonal least squares regression
method. The authors concluded that the resulting curve
agreed with the measurement error curve. Specifically, the
maximum modeling residuals in the X, Y, and Z directions
were found within the ranges of 0.8—1 pm, 0.6-0.9 pm,
and 1.2-1 pm, respectively. Pajor and Zaptata [14] devel-
oped an analytical model for the spindle using the multiple
regression approach. The authors reduced the thermal error
from 73 to 13 pm by applying this model for thermal error
compensation of the spindle. Despite these two methods’
relatively simple model structure and reliable performance,
their predictive ability in complex conditions is low. Jiang
and Yang [15] employed a genetic algorithm to optimize
the dimensions and variable weights of a new gray system
model based on the standard gray system model GM (1, 1)
to minimize the residual value of the optimized model. The
resultant optimized model captures the systematic trend of
thermal errors and mitigates the impact of random fluctua-
tions in thermal error, improving the prediction accuracy
of the thermal error model. Although it does not depend on
extensive and comprehensive data information, the model
will be different when the input is altered, and its conver-
gence speed is relatively slow.

Zhang et al. [16] incorporated the grid search method
to optimize the penalty and kernel of the SVM thermal
error model, enhancing the model’s performance. Signifi-
cant reductions of 89.55% and 85.67% were achieved in
the X-axis positioning error and Z-axis positioning error by
applying the optimized model to the X and Z axes of the
CNC platform, respectively. SVM demonstrates strong non-
linear function fitting capability [17]. However, it necessi-
tates significant computing resources, exhibits slow conver-
gence speed, and presents challenges in parameter selection.

Neural network, an emerging data-driven modeling
method originating from artificial intelligence, has found
widespread application in thermal error prediction. The
thermal errors of machine tools in multiple directions can
be accurately fitted and predicted after the network’s learn-
ing and training [18, 19]. Since single modeling methods
often struggle to perform well, hybrid modeling methods
have been proposed to compensate for their shortcomings.
GA, particle swarm optimization (PSO), and grey theory
have been adopted into the neural network to optimize the
initial value and increase the accuracy, convergence, and
robustness [11]. However, mechanism and data hybrid-
driven models in thermal error compensation have not been
reported.

Ma et al. [20] optimized BP algorithm with GA and PSO,
enhancing the machining accuracy of a borer spindle system
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in a precision jig by 67% and 89%, respectively. Tan [21]
combined multiple BP neural network models to enhance
predictive performance. The integrated model was applied
to a horizontal machining center THM6380, resulting in an
RMSE of 5.6522 pm, demonstrating improved accuracy in
prediction. BP neural networks have high robustness and
fault tolerance ability. However, their convergence speed is
slow and can easily fall into value-extremum. Zhang et al.
[22] improved the radial basis function (RBF) neural net-
work and developed a thermal error prediction model by
utilizing the PSO algorithm to optimize critical parameters
of the RBF neural network. Zhang et al. [23] employed
fuzzy clustering and grey relational analysis techniques
to optimize the placement of temperature measurement
points. Subsequently, the authors developed a radial basis
function neural network prediction model using a genetic
algorithm. The enhanced model exhibits enhanced accuracy
and increased robustness compared to the conventional RBF
neural network approach. Moreover, the residual error of
the forecasting model was reduced from 4.88 to 3.80 pm to
2.48-2.14 pm. However, extracting key feature functions
poses a challenging task in utilizing RBF neural networks.
Gao et al. [24] introduced a thermal error prediction method
based on PSO and long short-term memory (LSTM) neural
networks. Comparative analysis of the performance of PSO-
LSTM, BP, and RBF models under various working condi-
tions revealed that the PSO-LSTM model exhibits superior
performance and robustness. As data-driven models, neural
networks generally exhibit high prediction accuracy and
faster training speed.

However, the abovementioned data-driven models
encounter difficulties regarding full-time series prediction.
This limitation arises because model validation is typically
performed solely on a test set representing only a small por-
tion of the entire dataset. Furthermore, all the compensation
mentioned above methods necessitate temperature collec-
tion processes encompassing the selection of thermal error
points, installation of temperature sensors, and precise tem-
perature measurements, serving both thermal error modeling
and compensation stages. Unfortunately, these complex tem-
perature collection processes increase installation and main-
tenance expenses. Moreover, the disregard for the installa-
tion location of temperature sensors during the machine tool
design phase poses challenges in the subsequent installation
of sufficient temperature sensors.

This paper proposes a mechanism and data hybrid-driven
model to address the abovementioned problems. Initially,
a temperature model based on the heat transfer theory and
thermal characteristic parameters of ball screws is proposed
and experimentally validated. Furthermore, the data-driven
models based on different traditional neural networks are
established to predict the thermal error of ball screws with
the calculated temperature as input data. Then, BAS is

employed to optimize the hyperparameters of neural net-
works and improve the model’s performance. Finally, the
predicted performance of the proposed hybrid-driven model
is compared against traditional neural networks.

The hybrid-driven model proposed in this study utilizes
working condition data to enable accurate prediction of ther-
mal errors of ball screws in full-time series without tempera-
ture data collection. Furthermore, the thermal deformation
can be easily converted into thermal error by establishing the
relationship between thermal deformation and error during
compensation. This study’s research logic and roadmap are
visually depicted in Fig. 1.

The remainder of this paper is organized as follows. In
Section 2, the mechanism and data hybrid-driven modeling
method is introduced. The thermal characteristic experiment
is conducted to validate the temperature model and provide
a dataset for data-driven modeling. In Section 3, the perfor-
mance of the proposed mechanism and data hybrid-driven
models is discussed and compared. The paper is summa-
rized, and the main conclusions are drawn in Section 4.

2 Thermal error prediction of ball screws
based on a hybrid-driven model

A hybrid-driven model comprising a mechanism-driven
model and a data-driven model is proposed for the full-
time series prediction of thermally induced errors in ball
screws. Firstly, a temperature model of key thermal sensi-
tive points is developed based on heat transfer theory and
validated through thermal characteristic experiments. Sec-
ondly, data-driven models are proposed based on various
traditional neural networks to predict thermal errors. Then,
the essential hyperparameters of these deep learning mod-
els are optimized using the BAS algorithm. The input and
output of the hybrid-driven model are the rotational speed
and the thermal deformation of the ball screw, respectively.
Finally, the established hybrid-driven model utilizes working
condition data of thermal sensitive points instead of meas-
ured temperatures to predict thermal errors of ball screws in
full-time series.

2.1 Mechanism and data hybrid-driven model
for thermal error prediction of ball screws

Neural network models based on the time-varying character-
istics of the thermal error in the ball screw are employed for
regression prediction of the thermal error. A mechanism and
data hybrid-driven model is proposed for thermal error predic-
tion by integrating a temperature model, providing calculated
temperature data as input for the data-driven model. This part
establishes the mapping relationship between working condi-
tions and thermal error. This approach eliminates the need
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for temperature measurements at thermal sensitive points
because the temperature is theoretically calculated using the
temperature model based on the rotational speed during opera-
tion and other related thermal parameters of the ball screw.
Consequently, the proposed approach circumvents the complex
and costly process of temperature data collection during the
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capability and self-adaptive characteristics offered by the data-
driven model. The mechanism-driven model for theoretical
temperature and data-driven model for thermal errors are
introduced in order.

2.2 Temperature model of ball screws based
on heat transfer theory

2.2.1 Temperature modeling

A temperature model is developed based on the principles of
heat transfer theory and the essential thermal parameters of a
specific ball screw test bench to determine the temperature of
the key thermal sensitive points on the ball screw. This paper
focuses on the high-speed precision ball screw experimental
platform as the primary subject of investigation. The primary
parameters of the ball screw are presented in Table 1.

In the previous research, three thermal error-sensitive points
specifically situated at the contact regions of the fixed bearing,
supporting bearing, and nut of the ball screw [24] were identi-
fied through thermal modal analysis (TMA). Thus, these three
key thermal sensitive points are chosen as the feature points
in this study for computing the thermal parameters (Fig. 3).

The variation in temperature of the ball screw primarily
arises from the generation of frictional heat at the contact sur-
faces and the convective heat transfer with the surrounding
environment. Therefore, the thermal analysis considers heat
generation and diffusion [25]. The real-time temperature of
each component of the ball screw was determined based on the
operational rotational speed, the thermal boundary conditions
of the system, and the relationship between temperature rise
and heat transfer by employing the principles of heat transfer
theory and utilizing the derived solution for the essential ther-
mal parameters of the ball screw. The temperature rise of each
component in the ball screw can be mathematically expressed
as follows:
r,=T+ ok (1)
where T, and T, represent the initial temperature and the
temperature at the specific calculation time of the thermal

Table 1 Parameters of the ball screw

Name of parameters Value
Nominal diameter d, (mm) 32
Ball diameter D, (mm) 5.953
Lead P}, (mm) 5
Helix angle a (°) 5.6833
Dynamic load rating C, (N) 25,628
Length (m) 1.22

['hermal sensitivity
point on supporting

Thermal sensitivity
point on fixed
bearing

['hermal sensitivity

point on nut

Fig.3 Thermal sensitive points on the test bench of the ball screw

sensitive point of the ball screw, respectively, O, denotes
the total heat absorbed by each component of the ball screw
where thermal sensitive points are located, C signifies spe-
cific heat capacity of each component of the ball screw, and
M represents the mess of each component of the ball screw.

The specific solution procedure of the temperature model
for calculating the temperature rise of the component at
the location of the thermal sensitive point is given in the
Appendix.

2.2.2 Experimental validation

Thermal characteristic experiments were conducted on a
high-speed test bench for the precision ball screw under
four different working conditions to validate the effec-
tiveness and accuracy of the abovementioned temperature
model. The experimental setup and the data acquisition sys-
tem employed for the experiments are illustrated in Fig. 4.
The parameters of the measuring instrument are provided
in Table 2. Three temperature sensors were positioned at
the fixed bearing, supporting bearing, and nut locations to
capture the real-time temperature variation. Additionally, an
eddy current displacement sensor was installed at the end
face of the screw to measure the thermal deformation.
Four thermal characteristic experiments, comprising
two randomly selected speeds, a step speed and a constant
speed, were carried out under the rotational speeds specified
in Table 3. During the experiments, the nut moves with the
screw in the reciprocating cycle. The real-time temperature
of the thermal sensitive points and the thermal deforma-
tion of the screw were collected during the experiment by a
custom-made data acquisition system with a sampling period
set at 1 s. After each experiment, a natural cooling period
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Fig.4 The experimental setup
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Table 2 Parameters of the Type

Product description

experimental instrument
Temperature sensors
Eddy current displacement sensor
Temperature inspection instrument
Displacement inspection instrument

KYW-TC, Kunlunyuanyang, Beijing, China
ML33-01-00-03, Milang, Shenzhen, China
Kunlunyuanyang, Beijing, China
XSAE-CHVBIM2VO0, Milang, Shenzhen, China

Table 3 Rotational speed of four thermal characteristic experiments

Time (min) 0-10 10-20 20-30 30-40 40-50
Random speed 1 (rpm) 400 700 900 500 1000
Random speed 2 (rpm) 300 1000 600 800 700
Step speed (rpm) 500 800 1000 800 500
Constant speed (rpm) 800 800 800 800 800

of 24 h was implemented to allow the temperature of the
components to return to ambient temperature conditions.
The temperature of each thermal sensitive point under
four working conditions was calculated based on the tem-
perature model according to the rotational speed of the ball
screw. Comparative analysis was conducted between the
temperature data collected from the thermal characteristic

@ Springer

experiment of the ball screw and the calculated temperature
data obtained from the temperature model under four work-
ing conditions. The comparative results under random speed
1 are presented in Fig. 5, illustrating a favorable correspond-
ence between the temperature variations of each component
and the rotational speed variation of the ball screw. Similar
consistency was also observed in the comparative results
under the other working conditions (Appendix).
According to the obtained results, it is observed that
the calculated temperature data for the supporting bearing
exhibits minimal deviation and high accuracy. The calcu-
lated temperature data fluctuates around the correspond-
ing experimental temperature data. This indicates a strong
agreement between the calculated results of the temperature
model and the experimental results in terms of capturing the
temperature changes of the supporting bearing.
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Fig.5 Temperature comparison among key thermal sensitive points at random speed 1

However, the nut’s calculated temperature is generally
higher than the experimental temperature. In contrast, the
temperature calculation results for the fixed bearing tend to
be lower than the corresponding experimental values most of
the time. The discrepancies can be attributed to variations in
parameters such as thermal conductivity, specific heat capac-
ity, and heat transfer characteristics between the temperature
model and the physical model in its operational state. The
maximum relative errors between the calculated and experi-
mental temperature for each working condition are presented
in Table 4. Specifically, the maximum relative errors for

the nut, fixed bearing, and supporting bearing under differ-
ent working conditions are 8.097%, 2.787%, and 1.275%,
respectively. The results demonstrate that the temperature
model applied to the thermally sensitive points of the ball
screw exhibits acceptable accuracy, as indicated by the simi-
larity between the fundamental trend of predicted data and
the experimental data presented in the figure and further
supported by the quantified error indicators within accepta-
ble thresholds in the table. Consequently, this accuracy level
facilitates the calculation and simulation of temperature rise
during the actual operation of the ball screw and positions

Table4 Maximum relative
error of calculated temperature
on each work condition

Random speed Random speed Step speed (%) Constant

1 (%) 2 (%) speed (%)
Temperature of nut 8.097 7.282 7.553 7.336
Temperature of fixed bearing 2.600 2.452 2.172 2.787
Temperature of supporting bearing 0.774 0.791 1.275 0.938
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thermal error prediction

Fig. 6 Flowchart of the hybrid-driven modeling process for thermal error prediction of ball screws

the proposed temperature model as a viable alternative to
traditional temperature sensors. Furthermore, discrepancies
between temperature calculated by the temperature model
and real-world conditions can be improved and mitigated
through subsequent application of data-driven modeling
techniques designed to predict thermal errors.

2.3 Data-driven models for thermal error prediction
of ball screws

2.3.1 Thermal error modeling

Various neural network models, including BP, LSTM, and
convolutional neural network (CNN), are employed for pre-
dicting the thermal deformation of the ball screw due to their
capability to perform regression prediction and handle time
series data. In these data-driven models, the calculated tem-
perature (Tb1, Tb2, and TN) obtained from the temperature
model under the random speed 1 and the experimental ther-
mal deformation (D) obtained from the thermal characteris-
tic experiment under the random speed 1 are utilized as input
and output data to construct the feature dataset required for
model training. The calculated temperature and experimen-
tal thermal deformation data in full time series under the
other three working conditions are employed as the test sets
to evaluate the performance of the established data-driven

@ Springer

models. The developed data-driven models for full-time
series thermal error prediction are employed to establish the
mapping relationship between the calculated temperature of
thermal sensitive points and thermal deformation. The data-
set configurations, feature parameters, training, and testing
methodologies of the models are kept constant to ensure a
fair comparison among the three data-driven models. Addi-
tionally, the input and output data must be normalized before
model training to mitigate the impact of data from different
dimensions on the training outcomes. Lastly, the maximum
number of training iterations is 100 to avoid excessive com-
putational costs.

2.3.2 Hyperparameter optimization

Determining the optimal hyperparameters of the model is
crucial for developing an accurate thermal error prediction
model with optimal performance. Similar to other optimi-
zation algorithms, such as PSO and GA, the BAS algo-
rithm can automatically search for the best solution. BAS
algorithm is designed to mimic the movement of beetles
towards the direction of antennae with strong odor signals,
enabling efficient and rapid foraging. BAS can solve optimi-
zation problems quickly due to its simplicity and effective
search process. Thus, in this study, the BAS algorithm is
employed to optimize the hyperparameters of the thermal
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Fig. 7 Adaptation curve of the optimization process under different working conditions

error prediction model for quick and automatic convergence
towards high accuracy.

Since the prediction model based on the LSTM neural
network exhibits abnormal and unacceptable prediction
data during the initial prediction stage, the remaining two
prediction models based on BP and CNN are further opti-
mized by BAS. RMSE is utilized as the fitness function for
hyperparameter optimization. The hyperparameters of the
BP and CNN models are separately optimized to obtain the
minimized RMSE value. In the CNN neural network, the
optimized hyperparameters encompass the convolution ker-
nel size for the two convolutional layers, the initial learning
rate of the network, the learning rate decay factor, and the
learning rate decay cycle. Simultaneously, the weights and
thresholds of the BP neural network are optimized using the
BAS algorithm to achieve the network’s optimal prediction
performance. Additionally, the maximum number of itera-
tions for the BAS optimization algorithm is set to 100 to
ensure efficient convergence and accuracy.

2.4 Thermal error prediction based on mechanism
and data hybrid-driven model

Initially, the rotational speed data, serving as the work-
ing condition data, are input into the temperature model
to generate time series temperature data for three thermal
sensitive points. Subsequently, the obtained temperature
data and thermal deformation in the axial direction meas-
ured by the eddy current displacement sensor are fed into
various networks to train the data-driven models, including
CNN, LSTM, BP, BAS-CNN, and BAS-BP. Then, the key
hyperparameters of each network determined by the BAS
optimization algorithm are input into the networks to obtain
the optimal configuration of the models and predict a ther-
mally induced error. The flowchart illustrating the process of
hybrid-driven modeling for thermal error prediction of ball
screws is presented in Fig. 6.

Figure 7 illustrates the changes in fitness of the two models
in the model training stage during the optimization process

@ Springer
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Fig.8 Comparison between thermal error predicted mean results based on different neural networks

Table 5 RMSE results

Model Random speed Step speed Constant speed
LSTM 12.4928 11.6939 6.2886

BP 13.1023 13.0666 8.2121

CNN 9.7497 9.0084 9.9612

Table 6 MAE results

Model Random speed Step speed Constant speed
LSTM 10.3543 10.8388 5.8886

BP 10.7694 11.8556 7.1748

CNN 7.8414 7.1302 8.9819

@ Springer

across various operational conditions, providing compelling
evidence of the algorithm’s effective convergence.

Three test data sets in full-time series corresponding to
different working conditions are utilized to validate the accu-
racy of the established mechanism and data hybrid-driven
model. The prediction results will be discussed in the next
chapter.

3 Prediction results and discussion

Comparative analyses are conducted among hybrid-driven
models based on different neural networks to assess the
proposed mechanism and data hybrid-driven models’



The International Journal of Advanced Manufacturing Technology (2024) 133:1443-1462

1453

250 T T T T T T T
—=— Experimental result

—e— Predicted result of BAS-CNN

[ —<«— Predicted result of CNN

[d
(=4
(=}

2150} i
e
)
_g 100 |+ -
5
=
50 R
0F i
1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Time/s

a) random speed working condition

250 T T

250 T T T T T T T
—=— Experimental result

—o— Predicted result of BAS-CNN

| —<— Predicted result of CNN

(]
(=4
o

2150} |
9]
=
LY
S 100 - -
=
2
=
50 F 4
0k A
1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Time/s

b) step speed working condition

[ [
W [=3
(=] (=]

S
3

—=— Experimental result
| —*— Predicted result of BAS-CNN
—<— Predicted result of CNN

Thermal error/um

N
o
T

0 500

1000

1500 2000 2500 3000
Time/s

¢) constant speed working condition

Fig.9 BAS-CNN-based thermal error prediction results for different working conditions

performance, validate the optimization algorithm’s effec-
tiveness, and determine the optimal model with the high-
est accuracy. The comparison results are then thoroughly
examined and discussed.

3.1 Comparison between hybrid-driven models
based on CNN, BP, and LSTM

The average thermal error values of the five predicted results
from CNN, LSTM, and BP neural network prediction mod-
els under different working conditions are presented in Fig. 8
to compare the predicted results and performance of the
mechanism and data hybrid-driven models. The prediction
accuracy of all three hybrid-driven models is relatively high
during the early prediction stage. In contrast, the prediction
errors mainly occur in the latter half of the prediction pro-
cess. Furthermore, the prediction results indicate superior
performance of all three models under the constant speed

condition compared to other working conditions. Specifi-
cally, the CNN prediction model demonstrates the high-
est accuracy, followed by the LSTM and BP models. It is
worth noting that the LSTM prediction model exhibits better
overall prediction accuracy compared to others under the
constant speed condition. However, it is characterized by
occasional local deviation points in its prediction results.
Two evaluation metrics, RMSE and MAE, are employed
to quantitatively assess the model’s predictive performance.
A lower value for these evaluation metrics indicates a higher
accuracy of the established model. The evaluation results for
the thermal error prediction model of the ball screw in the
full-time series are presented in Tables 5 and 6. The model
utilizing the CNN network as the data-driven framework
demonstrates the closest alignment between the predicted
and experimental results under random and step speed work-
ing conditions. This model exhibits superior performance
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Fig. 10 BAS-BP-based thermal error prediction results for different working conditions

compared to the other two hybrid-driven models. Moreo-
ver, the hybrid-driven prediction model based on the CNN
neural network framework is characterized by a relatively
stable prediction accuracy without any local mutation points
observed during the initial prediction period (unlike the
LSTM model).

In conclusion, the hybrid-driven prediction model with
the CNN network as the data-driven framework exhibits the
highest accuracy among the three models, particularly under
random and step speed working conditions. This model dem-
onstrates stable prediction accuracy in full-time series and
avoids local mutation points observed in the initial predic-
tion period of the LSTM model.

@ Springer

3.2 Comparison between optimized
and unoptimized models

The predicted thermal errors of the ball screw under three
working conditions obtained from the BAS-CNN, CNN,
BAS-BP, and BP prediction models are compared with the
corresponding experimental results. Figures 9 and 10 illus-
trate the comparison.

The thermal error prediction results based on the BAS-
CNN and BAS-BP models demonstrate a closer alignment
with the experimental values throughout the full-time series
prediction than the unoptimized prediction model. The
optimized models exhibit higher prediction accuracy and
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Fig. 11 Comparison of thermal error prediction results based on BAS-CNN and BAS-BP

stability, validating the efficiency of the BAS-optimized
algorithm. Although there may be some fluctuations in the
predicted thermal error values compared to the experimental
values under certain working conditions, these fluctuations
have a limited impact on the overall prediction accuracy and
stability.

3.3 Comparison between BAS-CNN and BAS-BP

The predicted thermal errors obtained from the BAS-CNN
and the BAS-BP models under the same working conditions
are compared with the corresponding experimental results
in Fig. 11.

Both models exhibit favorable prediction performance
under random and constant speed conditions. Both models

exhibit fluctuations in the predicted values for the step speed
condition. However, the BAS-BP prediction model exhib-
its stages in certain prediction times that deviate from the
observed trend of the experimental thermal error. Further-
more, the BAS-BP model displays higher prediction errors
than the BAS-CNN model at the initial and final stages of
the prediction process under random and step speed work-
ing conditions.

The distribution of relative and absolute errors in the
prediction results of the BAS-CNN and BAS-BP models
is presented in Figs. 12 and 13, respectively, to assess their
full-time series prediction performance and reliability. It
can be observed that the prediction errors under the three
different working conditions are acceptable in engineer-
ing. Specifically, for the random, step, and constant speed
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Fig. 12 BAS-CNN-based error analysis of thermal error prediction for different working conditions

conditions, most absolute error values in the thermal error
prediction results obtained from the BAS-CNN model are
below 5 pm, 10 pm, and 9 pm, respectively. Similarly,
most absolute error values in the thermal error prediction
results obtained from the BAS-BP model are below 7 pm,
12 pm, and 14 pm for the respective working conditions.
However, few absolute error values exceed the aforemen-
tioned thresholds. The maximum absolute errors in the
prediction results of both models under the three working
conditions are summarized in Table 7.

RMSE and MAE of both models were calculated to
quantitively compare the prediction performance of the
prediction model before and after optimizing and to quan-
tify the performance of the optimized model. The results
are presented in Tables 8 and 9.

The optimized prediction model exhibits smaller RMSE
and MAE values than the thermal error prediction model
before hyperparameter optimization. Additionally, the
RMSE and MAE values of the BAS-CNN model are con-
sistently lower than those of the BAS-BP model under
the three working conditions. It can be concluded that the
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BAS-CNN model achieves high prediction accuracy and
superior performance. Furthermore, the BAS-CNN model
presented in this study consistently demonstrates relatively
high predictive accuracy for thermal error prediction
across various working conditions and random rotational
speeds, emphasizing the model’s excellent robustness.

4 Conclusions

Traditional thermal error neural network models face chal-
lenges in achieving full-time series prediction. Addition-
ally, the existing thermal error modeling methods rely on
operating temperature data at thermal sensitive points
collected through a complex and costly temperature col-
lection process. In this paper, a new mechanism and data
hybrid-driven model using rotational speed as input data
was proposed for the prediction of thermal-induced errors
of ball screws in full-time series without temperature data
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Fig. 13 BAS-BP-based error analysis of thermal error prediction for different working conditions

Table 7 Maximum absolute errors in the prediction results of two

models
Model Random speed ~ Step speed (um) Constant
(pm) speed
(pm)
BAS-CNN 9.01 18.90 13.51
BAS-BP 13.39 26.41 17.37

Table 8 RMSE results

Data-driven model =~ Random speed  Step speed  Constant speed
BAS-BP 6.0480 9.7277 8.1902
BAS-CNN 3.6629 8.0580 7.2500

Table 9 MAE results

Data-driven model =~ Random speed ~ Step speed  Constant speed
BAS-BP 4.9750 8.4172 6.9879
BAS-CNN 2.9986 6.8731 5.9435

collection during operation. The following conclusions are
drawn:

(1) A mechanism and data hybrid-driven model for ther-

2)

3

mal error prediction of ball screws comprising the tem-
perature model and the BAS-CNN was proposed. The
model enables the prediction of thermal errors solely
based on working condition data (specifically the rota-
tional speed) without the requirement of collecting
operating temperature data for ball screws.

A data-driven model based on BAS-CNN was proposed
to achieve full-time series thermal error prediction of
the ball screw. A comparison between the BAS-CNN
model and the experimental data in full-time series
demonstrates that the proposed model can accurately
predict the thermal error of ball screws. Furthermore,
the model exhibits excellent robustness, laying a solid
foundation for thermal error compensation applica-
tions.

Comparative analyses were performed among the
proposed hybrid-driven models based on different tra-
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Fig. 14 Temperature comparison among key thermal sensitive points at random speed 2

ditional neural networks. The results reveal that the
hybrid-driven model utilizing BAS-CNN as the data-
driven component achieves higher accuracy and lower
error than CNN, BP, LSTM, and BAS-BP models. The
BAS-CNN model exhibits the smallest RMSE and
MAE values. Therefore, it can be concluded that the
hybrid-driven model based on BAS-CNN outperforms
the other models.

Even though this study provides a new thermal error
prediction model architecture, the efficacy of thermal error
compensation has not yet been assessed. Thermal error
compensation will be explored in the subsequent research
stages based on the proposed mechanism and hybrid-
driven model, and its impact on reducing thermal errors
will be evaluated.
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Appendix

The specific solution procedure of the temperature model
for calculating the component’s temperature increase at the
location of the thermal sensitive point is as follows:

(1) Calculating the bearing heat generation intensity Oy,

The frictional heat generated by the bearing is one of the
main heat sources in the ball screw. It is influenced by the
frictional torque between the rolling elements, raceways, and
retainers inside the bearing, as well as the stirring resist-
ance of the lubricant. The heat generation of bearing can be
expressed as follows:

_ 27NM,

b= g @)
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Fig. 15 Temperature comparison among key thermal sensitive points at step speed

where N represents the bearing’s rotational speed (r/min)
and M, represents the frictional torque of the bearing (N-m).

The frictional torque during the bearing’s operation pri-
marily arises from rolling friction caused by material elastic
hysteresis, friction induced by rolling element spinning and
sliding, pure sliding friction in sliding contact areas, and
viscous friction of the lubricant [26]. The frictional torque
M, mainly comprises M, and M,:

M, =M,+ M, 3)

where M, is the frictional torque related to the bearing type,
rotational speed, and lubricant properties; M, is the fric-
tional torque associated with the bearing load.

Parameter M, reflects the fluid dynamic loss of the lubri-
cant and is calculated via Eq. (4).

2
M, = 107f,(N)3D3  vN > 2000

“
M, =160 x 10‘7f0D[3n vN < 2000

where D, is the average diameter of the bearing (mm); f
is a coefficient related to the bearing type and lubrication
obtained from reference tables; v is the kinematic viscosity
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Fig. 16 Temperature comparison among key thermal sensitive points at a constant speed

of the lubricant at the operating temperature of the bearing
(mmZ/s).

M, reflects frictional losses due to elastic hysteresis and
differential sliding at the contact surfaces and can be calcu-
lated using Eq. (5).
M, =fP 1D, 5)
where f is a coefficient related to the bearing type and load,
and P, is the bearing load.

No axial load was applied in the experimental setup of
the ball screw test bench used in this study. Therefore, the
friction torque related to the load is neglected.

(2) Calculating the nut heat generation intensity Q,

@ Springer

The calculation of the nut heat generation intensity Q,
of the ball screw is closely related to its friction torque
M and similar to calculating the bearing heat generation
intensity:

2nNM
O = 60

(6)

where N represents the rotational speed of the ball screw
(r/min); M represents the total friction torque of the ball
screw (N-m) comprising the driving torque M, and the
resistance torque My exerted by the preloading force.

The driving torque My, of the ball screw is the torque
required to drive the nut to perform reciprocating motion by
overcoming the axial load generated by the worktable mass
and cutting forces:
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FDPh
D=

2nn 7
where P, represents the lead of the ball screw (mm);
Fp represents the axial force acting on the nut (N);
represents the transmission efficiency of the screw and
the nut.

The resistance torque M, of the ball screw is the torque
required to drive the screw when the nut is preloaded, and
there is no axial load:

FoP
M, = plh

2
2 (I =79 8)

where Fp represents the axial preload force on the nut (N).
(3) Calculating the heat generation in servo motors

Various losses in servo motors, including mechanical,
electrical, and magnetic losses, are intrinsic factors con-
tributing to heat generation. The heat generation in servo
motors can be calculated using Eq. (9).

Mn
Ou (1=m) ®

9550
where My represents the output torque of the servo motor
(N-mm), and # represents the mechanical efficiency of the
Servo motor.

(4) Convective heat transfer boundary conditions

Fixed components experience a temperature rise during
system operation in the ball screw feed system. Some of
these surfaces exchange heat with the surrounding air, a
process known as convective heat transfer. Examples of
such surfaces include bearing seats and motor enclosures.
These components adhere to natural convective heat trans-
fer principles in an unbounded space. The convective heat
transfer can be expressed as follows [26]:

Nu = C(Gr - Pr)"
gad® At (10)
Gr= —
v
where Nu is the Nusselt number; Gr is the Grashof number;
Pr is the Prandtl number; g is the acceleration due to grav-
ity; a is the volumetric expansion coefficient of air; d is the
characteristic dimension; At is the temperature difference
between the surface of the component and the surrounding
air; v is the kinematic viscosity of air.
Parameters C and n in Eq. (10) can be selected based on the
flow state of the fluid and the shape of the heat transfer surface.

During the nut’s operation, forced convection heat trans-
fer occurs between its outer cylindrical surface and the sur-
rounding air. The criterion correlation for the average con-
vective heat transfer coefficient can be expressed as follows
[27]:

Nu = 0.906Re!/? pr'/3

ud
Re == an
Nu- A
h =
d

where Re represents the Reynolds number; u denotes the
velocity of the air; & represents the convective heat transfer
coefficient; A represents the thermal conductivity of the air.

Figures 14, 15, and 16 illustrate the temperature com-
parison of key thermal sensitive points under other working
conditions.
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