
Vol.:(0123456789)

The International Journal of Advanced Manufacturing Technology (2024) 133:2083–2101 
https://doi.org/10.1007/s00170-024-13813-3

CRITICAL REVIEW

A review on error generation and control in efficient precision 
machining of thin‑walled parts

Zhao Yiyang1 · Mao Jian1,2 · Liu Gang1 · Zhao Man1

Received: 26 September 2023 / Accepted: 14 May 2024 / Published online: 10 June 2024 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Thin-walled parts processed by five-axis CNC machine tools are widely used in aerospace and other fields due to their excel-
lent performance. However, due to the weak rigidity of thin-walled parts, they are prone to deformation during milling, which 
poses great difficulties for efficient and precise machining of thin-walled parts. This paper introduces the classification and 
corresponding machining methods of thin-walled parts. By analyzing the causes and evolution mechanisms of errors in the 
machining process of thin-walled parts, and combining modeling methods with factors such as milling force, residual stress, 
and cutting chatter, the current research status of domestic and foreign scholars on deformation factors is summarized. At 
the same time, two deformation control methods, adaptive machining and error compensation, were introduced. Finally, the 
overall research status of thin-walled parts machining was summarized, and prospects for efficient and precise machining of 
thin-walled parts were proposed based on actual machining conditions.
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1 Introduction

In recent years, with the rapid development of the aero-
space industry, large thin-walled parts have been widely 
used due to their advantages such as light overall weight 
and compact structure [1]. However, for large thin-walled 
parts, their high material removal rate, complex structure, 
and low stiffness make it difficult to control the process-
ing quality of such parts. At present, the main processing 
method for thin-walled parts is milling. In actual processing, 
the milling force of the tool can cause significant machining 
deformation of the workpiece, and the actual cutting depth is 
less than the nominal cutting depth, which greatly increases 
the machining error. When the elastic deformation generated 
by the workpiece exceeds the stiffness requirement, cutting 
chatter will occur, which has a great impact on the machin-
ing quality of the thin-walled workpiece surface. At the same 

time, the residual stress generated during the machining pro-
cess can also affect the machining quality and accuracy of 
thin-walled parts. Therefore, studying the evolution mecha-
nism of deformation errors in thin-walled parts, processing 
and controlling them is the key to ensuring the quality and 
accuracy of thin-walled parts processing.

In the current production environment, thin-walled 
parts are developing towards small batches and customi-
zation, and the low production repetition rate makes it 
difficult to control specific production processes [2]. 
However, with the development of technology, Some 
non-conventional machining approaches such as laser-
assisted processes, electrical discharge machining, and 
3D printing have been developed in the manufacturing 
of thin-wall parts. Many thin-walled parts such as blade 
discs that are difficult to process under conventional mill-
ing methods can achieve good processing quality through 
these non-conventional machining methods, saving costs 
while also having extremely high processing efficiency 
and freedom. However, due to limited research on this 
non-conventional processing, it can not effectively ensure 
the physical properties of thin-walled parts with complex 
structures after processing. Usually, various optimiza-
tion methods are needed to remove thermal defects and 
improve the processing qualities. So, traditional milling, 
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which has become more mature in various studies, is still 
the main processing method and research direction for 
thin-walled parts at present. Many scholars use simula-
tion software to simulate the actual production process, 
model factors such as milling force and residual stress, 
and quantitatively analyze the results of later experiments 
and modeling. They have obtained many mathematical 
models that are conducive to controlling the deformation 
of thin-walled parts, which play a great role in the produc-
tion of actual parts.

Based on the characteristics of large thin-walled parts, 
this paper analyzed the main factors that cause the defor-
mation of thin-walled parts during the conventional mill-
ing process, the main evolution process of deformation 
errors, and the research progress of corresponding control 
methods. This paper mainly elaborated on the influence 
of factors such as milling force and residual stress on 
workpiece deformation during processing, introduced 
the modeling methods of corresponding factors, and con-
trolled the processing deformation of thin-walled parts 
based on various models. At the same time, it combined 
advanced technologies such as digital twin technology 
and adaptive auxiliary fixtures to propose prospects for 
the development and application of thin-walled part 
milling, providing a reference for efficient and precise 
machining of thin-walled parts.

2  Classification and processing methods 
of thin‑walled parts

The standard definition of thin-walled parts is mechanical 
parts with a ratio of wall thickness to inner diameter or con-
tour size less than 1:20 [3]. Due to the fact that many thin-
walled parts are non-standard and many are customized in 
the actual production process, the definition of “thin-walled” 
may vary slightly depending on the actual part, but usually, 
the ratio of wall thickness to wall length is at least 1:10.

2.1  Classification and materials of thin‑walled 
components

Various thin-walled components are widely used in indus-
tries such as aerospace, automotive, national defense, and 
manufacturing due to their superior performance [4]. 
According to the structural types of thin-walled parts, 
they can be mainly divided into three categories: plate 
and frame thin-walled parts (aircraft skin, hatch), rib 
thin-walled parts, and rotary thin-walled parts (impeller, 
turbine blade, and blade disc) [5]. The specific structural 
schematic diagram is shown in Fig. 1.

Thin-walled components with different structures have 
slightly different characteristics and the processing materi-
als used are also slightly different. At present, the main pro-
cessing materials for thin-walled parts are aluminum alloy, 
titanium alloy or nickel alloy, and some composite materi-
als. High-strength aluminum alloys (such as ZL205A and 
5B70) have good processing performance and high durability 
while ensuring sufficient physical strength of the workpiece, 
making them suitable for thin-walled parts with moderate 
load-bearing capacity. For thin-walled components such as 
aircraft engine fans, compressors, discs, and blades that are 
subjected to significant forces, titanium or nickel alloys (such 
as SP-700, Ti-6AI-4 V, TC4) are usually used for processing. 
The advantages of titanium and nickel alloys are corrosion 
resistance, high specific strength, light weight, low thermal 
conductivity, small elastic modulus, non-magnetic, and low 
linear expansion coefficient, which can effectively cope with 
extreme working environments of high temperature and high 
pressure in aerospace. However, while possessing high per-
formance, its processing process is extremely difficult and 
the processing cost is also high. With the development of 3D 
printing and other technologies, some high-quality composite 
materials (such as carbon fiber–reinforced plastic, CFRP) are 
gradually being applied in the aerospace field, generally used 
for processing cabin doors, hatch covers, fairing, and less 
stressed or non-load-bearing mechanical components such 
as ailerons and directional components.

Fig. 1  Plate and frame thin-walled parts, rib thin-walled parts, and rotary thin-walled parts
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2.2  Processing methods for thin‑walled parts

Due to the low stiffness and high material removal rate of 
thin-walled parts, the main processing method currently is 
milling [6]. It can be mainly divided into four processing 
methods: plane milling, side milling, spiral interpolation 
slope milling, and mirror milling. The specific process-
ing schematic is shown in Fig. 2(a), (b), (c), and (d). Plane 
milling is a process where the end face of the cutting tool 
engages with the workpiece to form a flat surface, mainly 
used for the processing of blanks. Side milling is a five-axis 
Computer Numerical Control (CNC) machine tool that uses 
a milling cutter to mill the machined surface of a workpiece 
on the side. The machined surface is formed by line contact, 
with high forming efficiency [7], and is the most common 
and effective method for processing thin-walled parts. Spiral 
interpolation slope milling is a five-axis CNC machine tool 
that performs cavity milling while milling on the Z-axis slope, 
mainly used for machining the internal cavities of thin-walled 
parts. Mirror milling is mainly composed of flexible fixtures 
and two synchronous five-axis or six-axis horizontal machin-
ing machines. The main spindle heads of two synchronous 
five-axis horizontal machining machines are machining heads 
and support heads, respectively. The two main spindle heads 
are distributed on both sides of the skin parts like mirrors, and 
they always move synchronously in the same normal direction 

during the machining process. They are mainly used for the 
machining of aircraft skin and other parts and are a new and 
efficient machining method [8]. 

3  Reasons for machining errors 
in thin‑walled parts

Large thin-walled parts are prone to deformation during the 
entire machining process due to their large size and small 
stiffness, and the main processing error of thin-walled parts 
is caused by the elastic-plastic deformation of the workpiece 
during processing. The main causes of elastic-plastic defor-
mation of large thin-walled parts can be divided into four 
influencing factors: clamping force, milling force, residual 
stress, and cutting chatter, as shown in Fig. 3.

3.1  Clamping force

Before milling thin-walled parts, specialized clamping is 
required to prevent displacement of the workpiece when in 
contact with the cutting tool, making it convenient for washing 
and processing. But after the workpiece is clamped, the fixture 
will generate a clamping force on the workpiece, causing an 
elastic deformation of the workpiece. After the thin-walled part 
is processed and the fixture is released, the clamping force is 

Fig. 2  a Plane milling, b side 
milling, c spiral interpolation 
slope milling, d mirror milling

(a) Plane milling (b) Side milling

(c) Spiral interpolation slope milling (d) Mirror milling
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released, causing a rebound deformation of the thin-walled part. 
The superposition of the two types of deformation will result 
in significant machining errors, as shown in Fig. 4. Therefore, 
when milling thin-walled parts, clamping force is an important 
factor affecting the deformation of the workpiece during pro-
cessing [9], and different clamping methods will produce dif-
ferent clamping forces on the workpiece. During clamping, the 
clamping force may also cause positioning errors in the work-
piece, which together form static deformation, accounting for 
20–60% of the total error. For large thin-walled parts with weak 
rigidity, the error caused by clamping force is inevitable [10]. 
The clamping force is influenced by factors such as fixtures and 
clamping methods, so controlling and reducing the clamping 
force brought by fixtures is one of the keys to improving the 
processing quality of thin-walled parts.

3.2  Milling force

In the process of processing thin-walled parts, due to the 
fact that the hardness of the tool is always greater than the 
hardness of the material, the milling force of the tool on 
the workpiece will cause compression when it comes into 
contact with the workpiece. At this time, the workpiece will 
undergo a certain amount of elastic deformation, leading to 
the phenomenon of “letting the tool” on the workpiece, ulti-
mately resulting in the actual cutting thickness of the work-
piece being less than the nominal cutting thickness. And as 
the material of the workpiece is removed, the deformation of 
the workpiece caused by milling force will increase, and the 
machining error will also increase. The specific deformation 
diagram is shown in Fig. 5. According to research, milling 
force is the main cause of elastic deformation in thin-walled 
parts processing [11]. At the same time, because milling 
force is a dynamic process in the processing of thin-walled 
parts, and is influenced by various factors such as tool hard-
ness, tool wear, workpiece hardness, spindle speed [12], it 
becomes extremely difficult to control milling force.

3.3  Residual stress

Residual stress refers to the self-equilibrium internal stress 
that remains in the object after eliminating external forces 
or uneven temperature fields [13]. In the processing of thin-
walled parts, the plowing effect caused by the tool tip squeez-
ing the workpiece is the main source of residual stress. Resid-
ual stress can be divided into two types: initial residual stress 
and machining residual stress [14]. For the processing of thin-
walled parts, the deformation caused by external forces and 
temperature during the blank stage will bring initial residual 
stress to the workpiece. As the processing progresses, the 
removal of a large amount of material will release and redis-
tribute the initial residual stress contained in the workpiece, 
causing the workpiece to undergo elastic-plastic deformation 
while reaching a new equilibrium state, forming a new pro-
cessing residual stress. At the same time, the large amount of 
heat generated during cutting can also cause residual stress in 
machining. Cutting heat can cause uneven distribution of heat 
on the main and secondary machining surfaces of the work-
piece, and the temperature difference between the two sur-
faces can cause stress accumulation in the workpiece, leading 
to deformation and the formation of new residual stress [15]. 
Therefore, the generation methods of initial residual stress 
and processing residual stress are different, and the degree of 
influence on workpiece deformation is also different. The cou-
pled distribution of the two stresses has a significant impact on 
the deformation of thin-walled workpieces [16]. The release 
and redistribution of processing residual stress can cause seri-
ous deformation of thin-walled workpieces, thereby affecting 
machining accuracy [17].

3.4  Cutting chatter

For thin-walled parts processing, the entire processing 
system is composed of thin-walled parts, fixtures, milling 
cutters, and machine tools. Due to the weak rigidity of 

Fig. 3  Factors affecting elastic-
plastic deformation of thin-
walled parts
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thin-walled parts themselves, the stiffness of the entire 
machining system is not uniform, and even varies greatly. 
However, for the entire machining system, once the elastic 
deformation of any machining component exceeds the 
stiffness requirements, cutting chatter will occur, seriously 
affecting machining accuracy [18]. When the cutting depth 
is greater than the critical cutting depth, chatter will be 
eliminated [19]. The main mechanism of cutting chatter 
is caused by a negative damping effect and mode coupling 
or regeneration. According to the physical mechanism of 
cutting chatter, it can be divided into primary chatter and 
secondary chatter and can be further divided into frictional 
chatter, mode-coupled chatter, and thermomechanical 
chatter. Friction chatter is caused by friction in the area 
where the tool and workpiece come into contact, resulting 
in frictional effects [20]. Mode-coupled vibration is the 
vibration generated by the superposition of vibration 
sources in different directions generated during the 
processing of thin-walled parts [21]. Thermomechanical 

vibration is caused by the unstable thermodynamic 
performance of thin-walled parts in the deformation zone 
caused by cutting heat [22]. In addition to these three types 
of vibrations, thin-walled parts may experience secondary 
vibrations due to the interaction between two continuous 
tool rotations and the phase difference between adjacent 
corrugations on the cutting surface [23]. This phenomenon, 
also known as regenerative chatter, is the main reason 
for the instability of the cutting process. Compared with 
other cutting vibrations, regenerative vibrations are more 
common and difficult to control in thin-walled parts 
machining due to the much lower stiffness of thin-walled 
parts compared to machining tools. In addition to the 
stiffness of the tool and workpiece, cutting chatter is also 
influenced by various factors such as milling force, cutting 
power, cutting stability, and the interaction between the 
tool and workpiece. The frequency of chatter generated 
is mainly influenced by the dynamic characteristics of the 
workpiece and the critical mode.

Fig. 4  Workpiece deforma-
tion caused by flexible edge 
clamping

Fig. 5  Schematic diagram of 
deformation during milling of 
thin-walled parts
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4  Current status of research on machining 
deformation of thin‑walled parts

In the entire process of milling thin-walled parts, the elastic-
plastic deformation of thin-walled parts involves the cross-
influence of multiple disciplines and fields such as mate-
rial mechanics, thermodynamics, tribology, and vibration 
[24], which is an extremely complex evolution process. At 
present, milling force, residual stress, and cutting chatter 
have been widely studied as the main influencing factors of 
machining deformation for the three major thin-walled parts. 
Therefore, this chapter mainly introduces the establishment 
of prediction models for milling force, residual stress, and 
cutting chatter.

4.1  Milling force prediction model

Milling force is one of the most important indicators in 
the processing of thin-walled parts, which is influenced by 
multiple cutting parameters such as milling width, milling 
depth, number of milling cutter teeth, feed rate per tooth, and 
milling cutter diameter. However, milling force is a variable 
quantity throughout the entire machining process. Therefore, 
predicting and modeling the milling force is quite complex 
and difficult, and it is difficult to achieve a degree of com-
plete consistency with the actual machining situation. There 
are already various high-precision milling force prediction 
models. These models can be divided into empirical for-
mulas and analytical models, mechanical models, artificial 
intelligence, and finite element models based on modeling 
principles [25].

4.1.1  Empirical formulas and analytical models

The empirical formula model is the earliest model proposed 
for predicting milling forces, mainly considering the three 
major cutting factors of cutting depth, cutting speed, and 
feed rate. Combining a large number of experiments and 
data processing, the undetermined coefficients in Eq. (1) are 
solved to obtain a prediction model for milling forces. The 
empirical formula for milling force is:

Among them, ap is the back feed, f is the feed rate, vc is 
the cutting speed, K is the correction coefficient, and C, m, 
n, and k are undetermined coefficients. Guo [26] studied 
the effects of milling width and milling cutter diameter 
on milling force based on empirical formulas and estab-
lished a numerical control milling force model for alu-
minum alloy AL7075 using a matrix. Wu [27] used the 

(1)F = C×a
m
p
× ��

× v
k
c
× K

strain gradient theory and dislocation density to establish 
the prediction model of orthogonal micro cutting force. 
From the orthogonal experiments, it was found that the 
main cutting force was basically greater than the feed force 
in orthogonal micro cutting. When the feed rate decreases 
at the same cutting speed, the main cutting force and feed 
force change greatly. The main cutting force increases with 
the increase of feed rate, while the feed force decreases 
with the increase of feed rate. Ding [28] et al. designed 
a four-level orthogonal experiment based on the Taguchi 
method for cutting speed, feed rate, radial cutting depth, 
and axial cutting depth. An empirical model of milling 
force was established by measuring three cutting force 
components and conducting range analysis and variance 
analysis. Tang et al. [29] analyzed and studied the influ-
ence of four factors, namely milling speed, milling depth, 
milling width, and feed rate per tooth, on milling force for 
7050-T7451 aluminum alloy material using the orthogo-
nal experimental method and single-factor experimental 
method. The empirical formula for milling force was 
obtained through multiple linear regression analysis. Tao 
et al. [30] studied the correlation between milling force 
and milling speed, feed rate, and milling depth by identi-
fying shear-force coefficients and edge-force coefficients 
based on existing milling force models and specific milling 
conditions and established an empirical formula model for 
milling force.

The analytical model is similar to the empirical formula 
model, but focuses more on the theory of material mechan-
ics in thin-walled parts processing. By studying factors 
such as material stress-strain, friction angle, and shear 
angle, a predictive model for milling force is established. 
Fu [31] takes the material characteristics of the workpiece, 
tool geometry, cutting conditions, and milling methods as 
research objects, considers the effects of tool edge radius, 
variable sliding friction coefficient, and tool runout on 
cutting force, and establishes an analytical model for cut-
ting force of ball end milling cutters based on predictable 
cutting theory. Zhou et al. [32] calculated and analyzed 
the influence of the main deviation angle of the tool in 
the meshing area on the cutting force and modeled it as 
shown in Fig. 6 (a) and (b). They concluded that appropri-
ately increasing the lead angle is beneficial for cutting and 
established an analytical model for milling force based on 
this. Zhou et al. [33] used analytical methods to calculate 
the milling force coefficient and edge coefficient for mill-
ing aviation complex parts and, based on this, established 
a model that can quickly predict milling force. Luo et al. 
[34] focused on curve end milling by differentiating the 
tool along the axis and calculating the working base sur-
face on the micro element edge using curve differential 
geometry. Applying the principle of minimum energy, a 
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cutting force modeling method based on oblique cutting 
is proposed, taking into account the constraints between 
cutting parameters such as force vector, velocity vector, 
chip flow angle, normal friction angle, normal shear angle, 
and shear stress in the micro element blade. The variation 
of cutting force during curve-end milling is experimen-
tally related to the instantaneous feed direction and curve 
curvature. Fu et al. [35] considered material properties, 
cutting parameters, and geometric parameters of the tool 
and established an analytical model of dynamic cutting 
force through simulation experiments. Based on the “mov-
ing heat source method,” as mentioned above, both the 
empirical formula model and the analytical model need to 
solve the unknown parameters in the model through exper-
iments. In contrast, the empirical formula reflects more 
research on the three elements of milling. The model has 
a certain degree of accuracy but cannot reveal the dynamic 
changes of cutting force. The analytical model focuses 
more on the study of milling parameters and tool geo-
metric parameters, which can better reveal the mechanism 
of material removal during the milling process. However, 
in its modeling methods, many geometric parameters and 
constitutive parameters of the material itself are difficult to 
obtain, so it is still quite difficult for practical applications.

4.1.2  Mechanical model

The mechanical model is currently the most widely used 
milling force prediction model in practical applications. The 
mechanical model can better reveal the actual milling pro-
cess and perform equivalent treatment in some of the situa-
tions, simplifying the milling force appropriately while also 
possessing high accuracy. In response to the difficulty in cal-
culating the instantaneous undeformed chip thickness during 
the milling process, Wang et al. [36] established a micro 
element milling force model and proposed a five-axis side 

milling IUCT calculation model for flat-end milling cutters. 
Jiang [37] considered the multiple time-delay effects associ-
ated with variable tooth angle tool cutting and tool jumping, 
established an IUCT model including dynamic and static 
moduli, and, based on the assumption of the linear relation-
ship between cutting force and instantaneous undeformed 
cutting thickness, further established a dynamic cutting force 
model for multi-point contact and provided an expression 
of cutting force in modal space as shown in Fig. 7. Li et al. 
[38] established a transient cutting force prediction model 
for the side milling process of a cylindrical spiral end mill-
ing cutter by vector summing and synthesizing the cutting 
forces of the micro elements. Experiments were conducted 
on milling forces at different feed rates, and the average cut-
ting force was fitted to calculate the instantaneous cutting 
force of the four-edge solid carbide-end milling cutter under 

Fig. 6  a Coordinate system and 
lead angle [32]. b Geometric 
modeling of milling cutters [32]

(a) Coordinate System and Lead Angle[32] (b) Geometric Modeling of Milling 

Fig. 7   Schematic diagram of cutting load and instantaneous unde-
formed cutting thickness [37]
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different cutting parameters. Lu et al. [39] established an 
instantaneous milling force prediction model based on the 
radial runout of milling cutters using an improved particle 
swarm optimization algorithm and conducted experiments 
under different milling parameters, as shown in Fig. 8 and 
9. The results showed that the model had high prediction 
accuracy. Dong et al. [40] proposed a semi-analytical solu-
tion method for the cutting contact area of the tool based 
on the principle of homogeneous coordinate inverse trans-
formation by using a spherical surface instead of a cutter 
tooth to sweep the machining surface. By using coordinate 
transformation, the instantaneous static milling force was 
solved by integrating the micro element milling force, and a 
semi-analytical modeling method for the static milling force 
of the ball end milling cutter was established. Experiments 
have shown that this method can effectively predict milling 
forces and has higher computational efficiency compared to 
the improved Z-MAP method. Guan et al. [41] established 
a milling layer thickness model based on cycloid trajectory 
based on the motion laws of cutting edge and tool rotation 
and feed. Compared to most instantaneous milling thickness 
models that equate the trajectory of the milling cutter tip 
to an arc or equal thickness, the hypocycloid instantane-
ous thickness model is closer to the actual machining tool 
tip trajectory and therefore has higher prediction accuracy. 
Zhang [42] analyzed the true motion trajectory of the mill-
ing cutter and derived the parameter equations of the cycloid 
and hypocycloid. After considering the residual sector on the 
milling cutter side milling surface, he established a math-
ematical model of the end milling cutter tool surface and 
the cutting edge and provided a formula for calculating the 
height of the sector residual.

4.1.3  Artificial intelligence and finite element modeling

The artificial intelligence model is a relatively advanced 
prediction model that combines machine learning with 
empirical formula models. It mainly uses machine learning 
methods such as neural networks, ant colony algorithms, and 

genetic algorithms to train combined with experimental data 
and ultimately obtains a prediction model with high accu-
racy. Wei [44] used regression analysis and artificial neural 
network methods to predict surface roughness and three-
dimensional milling force and found that the artificial neural 
network model had higher prediction accuracy. After com-
bining artificial neural networks with genetic algorithms and 
optimizing cutting parameters, it is of great help to actual 
milling processing. Li [45] considered the data character-
istics of multi-source information and proposed a milling 
force prediction model based on the TrAdaBoost.R2 trans-
fer learning algorithm. Combined with the particle swarm 
optimization PSO algorithm, a milling deformation error 
prediction model was constructed based on SVR and RF 
machine learning algorithms. At the same time, a workpiece 
deformation error prediction model was proposed based on 
deep learning and convolutional neural networks. Huang 
et al. [46] first extracted milling forces through experiments 
and used variance analysis to determine the degree of influ-
ence of different parameters on milling forces. After con-
ducting comparative experiments using parameters that have 
a significant impact, BP neural network models and multiple 
linear regression models were established to predict milling 
forces. After analyzing the results, it was found that cut-
ting depth has the greatest impact on milling forces, and the 

Fig. 8   Comparison of predicted milling force and actual milling force [39]

Fig. 9   Convolutional neural network milling force prediction model [43]
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prediction accuracy and stability of the BP neural network 
model are higher than those of the multiple linear regression 
model. Zhao et al. [47] first established a three-dimensional 
simulation model for alloy cutting tools, and obtained data 
on the impact of milling speed, feed rate per tooth, axial 
cutting depth, and tool rake angle on axial milling force 
through experiments. After using convolutional neural 
network, random forest, and logistic regression machine 
learning algorithms to predict the axial milling force, the 
maximum error between the simulation value and the experi-
mental value was 14.2%, resulting in high accuracy of the 
prediction model. Zhang [48] proposed a data-enhanced tool 
wear state recognition model, which integrates deep learning 
methods such as generative adversarial networks, maximum 
mean difference, continuous wavelet transform, and convolu-
tional neural networks. By generating adversarial networks 
to generate artificial samples to enhance data, and comparing 
experimental and simulation values to determine tool wear, 
milling forces can be predicted. Experiments have shown 
that this method has higher accuracy compared to methods 
with unbalanced data. Dai et al. [49] established a milling 
force prediction model for cutting parameters such as spindle 
speed, tooth feed rate, and milling width. The milling force 
was predicted using a neural network model. The feasibil-
ity of the model was verified, and the prediction accuracy 
was ensured by comparing actual experimental data with the 
predicted values. Peng et al. [43] proposed an instantaneous 
milling force prediction model based on the non-linear map-
ping relationship between spindle current and milling force. 
The model uses a current signal neural network model to 
identify the current signal and combines feature informa-
tion to predict the instantaneous milling force. Experimental 
results show that the model can accurately predict the instan-
taneous milling force under different milling parameters.

With the development of technology, many finite element 
software are becoming increasingly mature. The power-
ful finite element software can perform three-dimensional 
modeling of milling cutters and workpieces and simulate 
the actual milling process. Through the simulation process, 
it is difficult to obtain data such as cutting load, tool and 

workpiece deformation, and milling heat, in actual machin-
ing, greatly reducing the difficulty of experiments and play-
ing a great role in the research of milling forces. Liu [50] 
used the DEFORM software to establish a three-dimensional 
thermal coupling analysis model for the milling process of 
thin-walled blades and designed orthogonal experiments to 
study the influence of milling parameters on milling force. 
At the same time, ANSYS finite element software and itera-
tive format were used to calculate the deformation at the 
discrete tool contact points of the blade surface, fitted the 
blade deformation prediction surface, and analyzed the 
deformation law of the blade, achieving elastic deforma-
tion prediction and error compensation in thin-walled blade 
milling processing. Sun et al. [51] proposed a method that 
combines the finite element method with regression analy-
sis to simulate the cutting edge micro elements at differ-
ent height positions. Based on the trajectory of the cutting 
edge, a model of the cutting edge and height position was 
established, as shown in Fig. 10. After obtaining the cutting 
force of the micro element through regression analysis, it 
was compared with the actual cutting force and predicted. 
Ma et al. [52] established genetic algorithm–optimized back-
propagation and particle swarm optimization backpropaga-
tion models for material deformation, tool eccentricity, and 
system vibration. Through finite element simulation and 
experimental comparison analysis, it was proved that the 
predicted model is consistent with the simulation results 
and can be used to predict the average cutting force and 
transient cutting force of different milling processes on alu-
minum alloy 7050. Wang et al. [53] established a multi-point 
contact dynamic model considering deformation by using 
Workbench software to extract workpiece features for fitting 
and modal analysis in response to the phenomenon of sig-
nificant changes in dynamic parameters of thin-walled parts 
along the cutter axis during side milling. Charalaampus [54] 
established machine learning and finite element models to 
study the dependence of cutting forces on cutting parameters 
such as cutting speed, radial cutting depth, and feed rate per 
tooth. Considering sufficient convergence, accurate predic-
tion of cutting forces can be achieved.

Fig. 10   Changes in milling force per unit length of X-axis, Y-axis, and Z-axis micro element [51]
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In summary, there are many modeling methods for 
predicting milling forces with different focuses. In practi-
cal research, milling parameters are usually considered as 
fixed values first. However, milling parameters constantly 
change with the progress of machining. Current research 
methods find it difficult to provide real-time feedback on the 
changes of these parameters, resulting in a certain degree of 
prediction lag and difficulties in predicting milling forces. 
Moreover, the predictive modeling of milling force is also 
influenced by many other factors. Combining machine learn-
ing with mechanical models can be considered to study 
milling force. Using machine learning to analyze experi-
mental results and optimize parameters can help complete 
mechanical models. It can save experimental costs while 
obtaining a relatively accurate prediction model. How to 
optimize machine learning algorithms to better integrate 
with mechanical models will be the focus of future research.

4.2  Residual stress prediction model

In the milling process of thin-walled parts, the influence 
of residual stress on the elastic-plastic deformation of the 
workpiece is the most complex. As the material is cut off, 
new residual stresses will continue to be introduced. The 
comprehensive effect of various residual stresses makes 
it difficult to model residual stresses. At present, the main 
research methods for residual stress prediction models can 
be divided into experimental analysis method and finite ele-
ment analysis method.

Yang et al. [55] conducted simulation experiments on 
the quenching compression process of 7085 aluminum 
alloy workpieces using MSC, Marc simulation software. 
After measuring the true residual stress values by X-ray 
diffraction and drilling methods, the numerical simulation 
was performed using the least squares method to obtain the 
predicted distribution of residual stress values. The experi-
ments showed that the residual stress of the workpieces was 
the main cause of deformation in the processing of the sup-
port head. Chen et al. [56] measured the residual stress of 
thin-walled parts under ultra-precision milling using the 
GIXRD, TEM, and dynamic interferometer measurement 
and established the relationship between residual stress and 

grain state as well as deformation, revealing the mechanism 
of residual stress influence. Experiments have shown that 
reducing the cutting depth within a certain range can reduce 
residual stress. Daniel et al. [57] identified the relationship 
between cutting heat and residual stress through in situ 
measurements of temperature and in-plane displacement 
fields of thin-walled parts during the manufacturing pro-
cess using infrared and optical cameras and established cor-
responding prediction models. Wang et al. [58] conducted 
simulation experiments on the manufacturing process of the 
entire aviation engine casing and derived potential energy 
expressions based on the curves of deformation energy and 
strain energy with material removal, as shown in Fig. 11, in 
order to predict residual stress.

Zhang et al. [59] established a mathematical relation-
ship between average MIRS and specimen deformation 
by analyzing the numerical distribution of residual stress 
and workpiece deformation after processing and predicted 
residual stress using the finite element method. The experi-
mental results showed an error of less than 20% compared 
to the predicted values. Li et al. [60] established a thermally 
coupled finite element model based on the Goldak double 
ellipsoidal heat source. Through experiments, the evolution 
process of thermal stress and the distribution of residual 
stress were obtained, and numerical fitting and prediction 
were carried out based on this. The results showed that the 
geometric features of the part would produce asymmet-
ric lateral residual stress distribution on the surface of the 
workpiece, with the smallest impact on longitudinal residual 
stress. The residual stress distribution of the component is 
uneven in space, and the longitudinal tensile residual stress 
is the protruding residual stress in the central area of the 
component. Based on the small deflection bending theory 
of thin-walled parts, Li et al. [61] established a mechani-
cal model of thin-walled planar components under vacuum 
adsorption and conducted finite element simulation experi-
ments. The results showed that the fixture relying on vacuum 
clamping would generate clamping residual stress on the 
upper and lower surfaces of thin-walled parts, and torque 
along the middle surface. However, the surface residual 
stress and deformation of thin-walled parts would increase 
with the increase of vacuum degree and eventually stabilize. 

Fig. 11   Simulation of residual 
stress in machining [58]
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Huang et al. [62] established a finite element model for 
predicting residual stress in partition frames using the life 
and death element technique. Based on the deformation 
law of the workpiece during the material removal process, 
the residual stress is predicted by analyzing the superpo-
sition of the initial stress of the blank and the additional 
bending stress generated by the material removal process 
and compared with the calculation results of the analytical 
model. The experimental results obtained are similar. Zhao 
[63] studied the effect of residual stress on the machining 
deformation of aluminum alloy structural components. The 
finite element method and orthogonal experiments were used 
to study the effect of different milling parameters on the 
residual stress on the machining surface of aluminum alloy 
components. The empirical formula for machining residual 
stress was obtained by considering the initial residual stress 
of the blank and machining residual stress. The experiment 
shows that the predicted value of residual stress is similar 
to the experimental results, and adjusting the corresponding 
milling parameters based on the predicted residual stress 
value can improve the machining quality.

In summary, residual stress is related to various factors 
such as cutting heat and fixtures, and even cutting force can 
cause significant changes in residual stress. Considering the 
comprehensive effects of multiple factors and the mecha-
nism of residual stress variation has important guiding sig-
nificance for the actual processing of thin-walled parts.

4.3  Prediction and identification of cutting chatter

Cutting chatter is mainly caused by the different stiffness 
between the workpiece and the machining system, and its 
mechanism is relatively complex. In actual production, it 
is difficult to distinguish the specific mechanism, making 
it difficult to adjust the machining process and having 
a significant impact on the machining quality of thin-
walled parts. Wan et al. [64] conducted research on the 
mechanism of cutting chatter generation. By simplifying 
the milling process into a 2-degree-of-freedom vibration 
system, a dynamic model was established. At the same 
time, the relative transfer function theory was introduced to 

comprehensively consider the relative transfer functions of 
the tool and workpiece subsystems, and the relative transfer 
function of the milling system was derived. A thin-walled 
workpiece milling chatter stability model was established, 
which can accurately predict chatter phenomena in cutting. 
Liu et al. [65] established a dynamic model of thin-walled 
parts and solved the critical conditions based on the relative 
transfer function relationship between the tool and the 
thin-walled part system. A semi-discretization method 
was used to predict the critical region of chatter stability 
for the small stiffness frequency response characteristics 
of thin-walled parts. The experimental results showed 
that the critical conditions of cutting chatter stability are 
closely related to factors such as tool speed, cutting depth, 
tool geometry, and meshing conditions. Faraz et al. [66] 
compared the performance of standard tools, variable pitch 
tools, and wave crest tools in suppressing chatter when 
milling thin-walled parts. By comparing the stability lobes 
generated by the stability limit changes of the workpiece 
during the process, the results showed that the peak tool 
had the best suppression effect on chatter, and the optimal 
peak tool parameters were obtained, as shown in Fig. 12. Li 
et al. [67] proposed a time-varying dynamic update method 
for thin-walled components based on degree of freedom 
reduction, which mainly divide thin-walled parts into two 
sub-structures: processed and unprocessed, simplify them 
using a finite element model, and then couple the two sub-
structures to solve the characteristic values of thin-walled 
parts. Finally, the time-varying dynamics method was 
merged with the milling dynamics model to predict cutting 
chatter, and the experimental results were consistent with 
the simulation results. Jia et al. [68] considered the elastic 
deflection of thin-walled parts and tools and used the 
Lagrange equation and Rayleigh Ritz method to obtain the 
dynamic characteristics of thin-walled parts as they change 
with the cutting position of the tool, thereby obtaining the 
dynamic characteristics of the system. They also simulated 
and plotted stability lobes in the time domain and compared 
the results with experiments. It was found that the model 
can predict cutting chatter with limited accuracy. Xu [69] 
achieved real-time monitoring of cutting chatter generated 

Fig. 12   Stability of tools with 
different peaks at 2123 RPM [66]
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during the processing of thin-walled parts through the 
intelligent monitoring method of CNC milling machine 
cutting chatter based on multi-source data fusion and 
distinguished the causes of cutting chatter with an average 
accuracy of 99.65%. Wu et al. [70] analyzed the nonlinear 
characteristics of stable milling vibration signals, chatter 
incubation vibration signals, and chatter vibration signals 
during variable depth milling based on the phase difference, 
maximum Lyapunov exponent, and arrangement entropy 
of workpiece chatter signals and established a method for 
identifying cutting chatter. Zhao et al. [71] analyzed the 
time-frequency characteristics of self-excited vibration in 
cutting chatter based on the method of multi-sensor signal 
fusion. By extracting the nonlinear energy entropy of each 
IMF signal and constructing feature vectors, a support vector 
machine chatter identification model based on multi-sensor 
signal fusion was established. Liu et al. [72] proposed an 
online flutter identification method for thin-walled parts 
based on improved multi-sensor signal fusion and multi-
scale entropy to address changes in tool position, material 
removal, and vibration signal attenuation characteristics. By 
utilizing the fused vibration signals, the vibration status of 
thin-walled components was correctly identified, accurately 
reflecting the vibration status of the tool contact area. 
Han et al. [73] proposed a deep learning–based vibration 
detection method for thin-walled workpiece milling. This 
method evaluates the multi-channel signal features of time, 
frequency, and time-frequency domain and identifies the 
cutting chatter state by calculating the changes and weights 
of the features multiple times. The experiment shows that 
this method can accurately detect chatter under different 
processing conditions.

In summary, research on the factors affecting the defor-
mation of various thin-walled parts has revealed the mecha-
nism of the influencing factors on the milling process of thin-
walled parts from a certain perspective, which has important 
guiding significance for adjusting the corresponding process 
parameters or processes in actual processing. At the same 
time, it also provides theoretical support for controlling the 
deformation of thin-walled parts during processing.

5  Deformation control method 
for thin‑walled parts processing

Aviation thin-walled parts are subject to various influencing 
factors during the machining process, resulting in machin-
ing deformation [74]. The control methods for machining 
deformation of thin-walled parts can be roughly divided into 
two categories: one is the error compensation method for 
reverse deformation of thin-walled parts based on predic-
tion models such as milling force and residual stress, and 
the other is based on adaptive fixtures, etc., by identifying 

the physical state of thin-walled parts during the machining 
process, adjusting the clamping position of the workpiece 
methods such as machining allowance, and changing the 
tool path to reduce deformation errors caused by machining.

5.1  Error compensation

The error compensation method is an important method to 
improve the machining accuracy and quality of thin-walled 
parts during the machining process, mainly targeting the 
deformation of workpieces caused by milling forces and 
residual stresses. Compared to the adaptive machining 
method, it does not require the introduction of new fixtures 
and saves processing costs. However, in contrast, the error 
compensation method requires in-depth research on the 
mechanism of the deformation of the workpiece caused 
by error-influencing factors. By combining simulation and 
experiments, effective control of thin-walled workpiece 
processing deformation can be achieved. Error compensation 
can be divided into two types: predictive compensation and 
real-time compensation.

For predictive compensation, it is mainly based on the 
prediction model of workpiece processing deformation 
for machining compensation. Ruan [75] modeled the 
error of a dual five-axis mirror milling CNC machine tool 
and analyzed the geometric error elements, thermal error 
elements, and other errors of the machine tool during 
the milling process using the principle of coordinate 
transformation. The compensation amount of the error was 
obtained through a step-by-step decoupling calculation 
method, and corresponding error compensation strategies 
were proposed. Chen et al. [76] used the finite element 
method to simulate thin-walled parts and obtained the 
relationship between deformation and cutting depth. 
After curve fitting, the tool trajectory was compensated 
based on the derived correction function. Li et  al. [77] 
proposed a comprehensive method to compensate for the 
deformation error of five-axis side milling. By establishing 
a mathematical model and algorithm to minimize the surface 
error caused by deformation, the milling cutter trajectory is 
optimized to reduce the machining error of flexible blade 
side milling. Ge [78] established an iterative cutting force 
error prediction model considering the dynamic interaction 
between tool and workpiece based on the stiffness matrix 
fast deformation calculation method. By using the prediction 
model for thin-walled parts for machining compensation, the 
machining error was reduced by more than 53.6%. Wang 
et al. [79] conducted finite element modeling of surface 
errors caused by milling forces during the processing of 
thin-walled parts, obtained analytical solutions for milling 
cutter deformation, and achieved prediction of surface 
errors. At the same time, surface processing errors were 
reduced through error compensation. Li et al. [80] proposed 
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a force-induced deformation prediction model based on the 
static substructure method and provided a flexible error 
compensation strategy for side milling thin-walled parts 
and tool deformation accordingly. Si et al. [81] proposed an 
iterative compensation strategy based on the cantilever beam 
model and finite element model to predict the deformation of 
the tool or workpiece, which reduces surface errors caused 
by a tool or workpiece deformation during the milling 
process of thin-walled parts by modifying the position of 
the tool tip and the direction of the tool axis. Yuan [82] 
established a blade milling force model and deformation 
formula for the blade milling process. Based on this model, 
differential compensation was carried out for the bending and 
torsional deformation of the blade, effectively suppressing 
bending and torsional deformation and cutting error. Jiang 
[83] conducted a finite element simulation on the residual 
stress state during the machining process of titanium alloy 
blades to obtain the magnitude and distribution pattern of 
residual stress at various positions of the workpiece. At the 
same time, the release order and redistribution of residual 
stress on the machining deformation were analyzed through 
the finite element method and experimental method, and 
a compensation strategy for milling cutter trajectory was 
established to effectively control the machining deformation 
of the workpiece. Yu [84] studied the elastic deformation of 
blades caused by milling forces and the deformation caused 
by the release of initial residual stress. By using a three-
dimensional milling force model with a ball end milling 
cutter, the residual stress was equivalent to an external 
force, revealing the mechanism of the influence of initial 
residual stress on workpiece deformation. Finally, based 
on the principle of reverse deformation, a compensation 
method and strategy for machining errors were obtained. 
Zhou [85] established a prediction model for workpiece 
clamping deformation. The combination of the finite element 
method and genetic algorithm was used to synchronously 
optimize the fixture layout and clamping force. On the 
basis of predicting clamping errors, a method of error 
compensation is achieved by correcting the machining path. 
At the same time, an optimization model for a clamping 
layout scheme with the goal of minimizing the maximum 
clamping deformation and its genetic algorithm solution 

algorithm was proposed. Zhao [86] established a thin-
walled component clamping deformation prediction model 
based on BP neural network. The clamping process of the 
workpiece subjected to multiple clamping was analyzed, and 
the friction cone constraint conditions and unilateral contact 
constraint conditions were determined. After obtaining 
the objective solution function based on the minimum 
residual energy, calculate the clamping deformation of thin-
walled parts under different clamping forces, positioning 
component positions, and clamping sequences. Finally, a 
genetic algorithm was used to optimize the clamping layout 
parameters of thin-walled parts, and the optimal clamping 
layout parameters were obtained.

The real-time compensation law is based on the real-
time measurement and monitoring of the state of the 
workpiece after a single milling, comparing the difference 
between the theoretical shape and the actual shape, and then 
compensating through the next milling. Feng et al. [87] 
proposed a comprehensive error real-time compensation 
method, which models the geometric and thermal errors 
of machine tools, transfers the error source to the same 
coordinate system using machine measurement methods, 
and compensates for geometric, thermal, and force-induced 
errors in real-time. Experiments have shown that the 
compensation method reduces machining errors by more 
than 74% and improves machining efficiency by more than 
41%. Du [88] calibrated the error of complex curved thin-
walled parts based on the automatic measurement path 
planning technology of online detection. By accurately 
collecting the monitoring points of machine tools and 
measuring heads, a mathematical model based on the margin 
optimization method was proposed, and experiments were 
conducted on complex surfaces of typical aviation structural 
parts to verify the feasibility of the model. Liu et al. [89] 
established a dynamic feature model for thin-walled parts 
and obtained a real-time correlation between workpiece 
stiffness, geometric state, and milling force. Based on this, 
they proposed a real-time deformation error compensation 
method, which compensates for workpiece thickness errors 
of less than 10%, as shown in Fig. 13a,b. Diez et al. [90] 
measured the estimated force between milling force and 
rigid machining for workpiece size errors caused by milling 

Fig. 13  Distribution of work-
piece thickness without com-
pensation and with compensa-
tion [89]
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force and designed an online workpiece error compensation 
system based on this. The tool workpiece was calibrated by a 
piezoelectric actuator to achieve real-time compensation for 
thin-walled workpiece machining. Zhang et al. [91] proposed 
a method for real-time measurement and compensation of 
thickness error in mirror milling, which achieved stable 
real-time closed-loop error control through improved Smith 
predictor and disturbance observer, resulting in a 30% 
increase in machining accuracy. Zhao et al. [92] established 
a first-order error compensation model and compared the 
geometric and physical characteristics obtained by CAM 
and structural dynamic methods with measured values to 
calculate the workpiece size error. Based on the estimated 
compensation value, machining compensation was carried 
out to reduce the thickness error of the workpiece. Wang 
et al. [93] proposed an accelerated ACD iterative adjustment 
convergence method to replace the commonly used first-
order convergence compensation method for machining 
compensation of large thin-walled parts, which is prone to 
significant static deformation during the milling process. 
Experimental results have demonstrated the superiority and 
effectiveness of this method.

5.2  Adaptive machining

Adaptive machining mainly includes key machining tech-
nologies such as adaptive clamping of workpieces, adaptive 
positioning, and CNC programming tool paths. Adaptive 
machining systems can adjust the path of fixtures and mill-
ing cutters, milling parameters, and other factors based on 
the physical state of workpiece deformation and position 
during actual machining, thereby achieving the goal of 
controlling the deformation of thin-walled parts. Hao [94] 
designed a stress-free auxiliary fixture based on the reverse 
segmented machining method, which improves the stiff-
ness of thin-walled parts while significantly improving the 
machining accuracy of thin-walled parts. Zhao et al. [95] 
proposed an adaptive optimization method for flat milling 
process parameters based on real-time milling vibration 
data. The specific optimization process is shown in Figs. 14 
and 15. This method conducts stability analysis by measur-
ing the vibration data of thin-walled parts during process-
ing and uses a genetic algorithm to calculate the optimal 
process parameters for the next step. Parameter adjustments 
are made to the thin-walled parts during washing process-
ing, resulting in a 33% improvement in processing effi-
ciency. Wang [96] proposed an adaptive spatiotemporal 
dependent PD control method, which effectively suppresses 
cutting chatter of thin-walled parts through a loop control 
strategy that relies on acceleration input feedback. Zhang 
et al. [97] proposed a fast method for calculating workpiece 
deformation by discretizing the machining trajectory and 
performing adaptive point selection calculations, which 

greatly saves computational time and provides a theoreti-
cal basis for machining compensation. Gonzalo et al. [98] 
proposed an adaptive fixture for thin-walled bearing boxes, 

Fig. 14   Principle and flowchart of adaptive optimization of process 
parameters for thin-walled parts [95]

Fig. 15   Three-dimensional flutter stability flap diagram of thin wall 
parts [95]
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which automatically adjusts the clamping force at each 
clamping point, as shown in Fig. 16. This fixture effec-
tively reduces clamping force and machining errors. Hao 
et al. [99] designed an improved adaptive auxiliary fixture 
to address the issue of cutting chatter during the machin-
ing of aircraft engine blades, which effectively reduces the 
problem of cutting chatter. Wu et al. [100] analyzed the 
adaptive machining technology and designed a new type 
of adaptive fixture. Through finite element analysis, it was 
found that the fixture can effectively reduce local deforma-
tion of blades, achieving high-precision machining. Huang 
et al. [101] established a tool deviation path compensation 
model based on real-time measurement of blade machin-
ing deformation using automatic measurement systems. 
Through iterative algorithms, adaptive tool path optimi-
zation was formed, effectively reducing blade machining 
deformation and improving machining accuracy. Liu et al. 
[102] reconstructed the global residual stress distribution 
of the machined workpiece blank and, based on a floating 
clamp adaptive machining process, as shown in Fig. 17, 
optimized the machining posture of the workpiece to 
achieve effective control of thin-walled workpiece machin-
ing deformation. Zhao et al. [103] proposed a direct spatial 
deformation–based machining method for workpiece shape 
adaptation based on tool position, which effectively solves 
the transition problem of poor shape accuracy and size con-
sistency in hybrid machining processes.

6  Conclusion and outlook

• Thin-walled components are widely used in many fields 
due to their excellent performance. This paper sum-
marizes and analyzes various factors that cause errors 
in the machining process of thin-walled components 
and elaborates in detail on the causes of elastic-plastic 
deformation and its evolution mechanism. Predictive 
modeling methods and corresponding deformation con-
trol methods are summarized from aspects such as mill-
ing force, residual stress, and cutting chatter.

• At present, the research method of combining simula-
tion and experiment has made the mechanism of error 
generation and control methods for thin-walled part pro-
cessing deformation more mature. However, the efficient 
and precise machining of thin-walled parts still faces the 
following challenges:

1) The research on machining deformation is currently mainly 
limited to the deformation caused by a single force factor of 
cutting force and residual stress. Cutting heat, as one of the 
main factors in the machining process, is rarely considered. 
In order to obtain a more reasonable and comprehensive 
milling force prediction model, it is necessary to consider 
a research model under the coupling of force and heat.

2) Machine learning can help obtain a relatively accurate 
prediction model. However, how to improve the algo-
rithm to better integrate with mechanical models to opti-
mize parameters is still a research focus.

3) The processing process of thin-walled parts is numerous 
and complex, and individual error control for each process 
will incur significant costs and have poor control effects. 
Efficient precision machining requires consideration of 
the integration of the entire machining system, intelli-
gence of fixtures, and integration of production processes, 
in order to comprehensively control machining errors.

4) Further research will be conducted on the mechanism 
of cutting chatter, using machine detection devices to 
effectively identify the chatter generated during machin-

Fig. 16   Schematic diagram of adaptive fixture for thin-walled bear-
ings [98]

Fig. 17   Adaptive machining 
principle for floating clamping 
[102]
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ing. Then, adaptive fixtures, dampers, and other tools 
will be used to effectively control the chatter phenom-
enon in real-time, thereby achieving the goal of reducing 
machining deformation.
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