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Abstract
This study investigated the interface morphology and mechanical properties of titanium (TP 270C)/duplex stainless steel 
(SUS 821L1) near the lower limit of the explosive welding window. Seven samples with different welding parameters 
near the lower limit of the welding window were evaluated; the interface morphology was analyzed by optical microscopy 
(OM), scanning electron microscopy (SEM), computed tomography (CT), and smoothed particle hydrodynamics (SPH) 
simulation. The jet, interface shape, and temperature at the interface were obtained by simulation, demonstrating consistent 
interface shapes in the experimental results and simulation results. The energy produced at the interface was proportional 
to the element diffusion area. To assess the differences in mechanical properties between each sample, tensile shear tests 
and 90 bending tests were conducted. The results revealed that the sample with an average wavelength of 270 µm and 
an average amplitude of 62 µm had the best tensile properties. Furthermore, the maximum tensile strength was about 
503 MP. In the bending test, samples with an average wavelength of 118–270 µm and an average amplitude of 20–62 µm 
showed no cracks at the welding interface after bending; however, cracks appeared at both large and no-wave interfaces.

Keywords  Explosive welding · TP 270C/SUS 821L1 · Weldability window · Interface morphology · Mechanical properties

Nomenclature
VC	� Collision point velocity
β	� Collision angle
VP	� Velocity of flyer plate
VD	� Detonation velocity
r	� Loading ratio (mass of explosive per unit mass of 

flyer plate)
te	� Explosive thickness

s	� Stand-off distance
K	� Gaseous polytropic index of the detonation products
L	� Length
W	� Width
H	� Height
Z	� Distance between TP207C and SUS 821L1 incisions
K	� International unit of temperature, Kelvin
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1  Introduction

Titanium is widely used in aerospace, petrochemical, 
medical, and other fields due to its high strength, good 
toughness, and excellent corrosion resistance [1]. SUS 
821L1 is a new stainless steel material characterized by 
high strength, low cost, and good corrosion resistance [2]. 
At present, the welding methods to connect titanium and 
stainless steel include electron beam welding [3], laser 
welding [4, 5], friction welding [6, 7], and brazing weld-
ing [8]. However, these methods have limitations such as 
uneven heating of the weld seam or excessive residual 
stress, and cannot be effectively used for high-strength 
large-scale welding [9]. Explosive welding is a solid-state 
welding process with great potential for connecting dif-
ferent materials.

Explosive welding is achieved by controlling the energy 
released during the explosion process to form high-speed 
oblique collisions between plates, thereby achieving tight 
welding [10–12]. Wittman [13] and Deribas et al. [14] 
proposed an applicable concept for explosive welded 
windows. The concept takes into account the collision 
point velocity (VC) and collision angle (β) in the horizon-
tal direction. Superior welding results are obtained when 
the welding parameters are kept within the welding win-
dow. Wang et al. [15] determined the appropriate welding 
parameters within the weldability window and success-
fully welded a thick copper plate and a thick steel plate. 
Athar et al. [16] reported a superior welding effect with 
a wave interface obtained while respecting the explosive 
weldability window. Inao et al. [17] mentioned that the 
lower limit of the explosive weldability window can be 
used to improve the quality of explosive welding materi-
als. Much research has been conducted on the influence 
of test parameters such as collision velocity and collision 
angle on welding quality. Akbari et al. [18] determined 
the calculation method of explosive “welded window” 
between CP-titanium and AISI 304 stainless steel. The 
experimental results showed that the wavelength and 
amplitude increased with the explosion load in the “weld-
ing window.” Shi et al. [19] discussed the effect of the 
explosion thickness on the bonding quality of the explo-
sion cladding 410S steel and Q345R steel. The samples 
with microwavy interfaces had minor interfacial defor-
mation, fewer defects, and the highest bonded strength. 
Therefore, investigating the relationship between weld-
ing interface morphology and mechanical properties is of 
great significance.

Table 1   Mechanical properties 
of materials

Materials Density (g/cm3) Yield strength 
(N/mm2)

Tensile strength 
(N/mm2)

Elongation (%) Hardness (HB)

TP 270C 4.51  ≥ 165 270–410  ≥ 27 -
SUS 821L1 7.80  ≥ 400  ≥ 600  ≥ 25  ≤ 290

Fig. 1   Schematic of explosive welding

Table 2   The experimental 
parameters for explosive 
welding

Sample Thickness of 
explosive (mm)

Stand-off dis-
tance (mm)

Thickness of flyer 
plate (mm)

Thickness of base 
plate (mm)

Welding results

1 28 1.2 3 3 Welded
2 38 2 3 3 Welded
3 38 3 3 3 Welded
4 28 3.5 3 3 Welded
5 28 2.2 3 3 Welded
6 48 5 3 3 Welded
7 48 15 3 3 Welded
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This study is based on previous research describ-
ing the TP 270C/SUS 821L1 weldability window [20]. 
The parameters for welding were set to near the lower 
limit of the weldability window to explore the relation-
ship between the interface morphology and mechanical 
properties, and the optimal parameters were determined 
by applying the artificial neural network concept [21]. 
Optical microscopy (OM), scanning electron micros-
copy (SEM), computed tomography (CT), and energy 
dispersion spectroscopy (EDS) were used to analyze the 
microstructure of the welding interface. The jet, interface 
morphology (including wave and vortex), and interface 
temperature during welding were studied by smoothed 
particle hydrodynamics (SPH) simulation. Tensile shear 
tests and bending tests were carried out to evaluate the 
mechanical properties.

Fig. 2   Test flow chart

Fig. 3   The weldability window of TP 270C/SUS 821L1

Table 3   The calculated values 
of VP, β 

Sample K Explosive 
ratio, r

Detonation velocity, 
VD (m/s)

Velocity of flyer, 
plate, VP (m/s)

Collision angle, β

1 2.20 1.0 2350 316 7.7°
2 2.37 1.4 2450 419 9.8°
3 2.37 1.4 2450 495 11.6°
4 2.20 1.0 2350 483 11.8°
5 2.20 1.0 2350 397 9.7°
6 2.48 1.8 2575 637 14.2
7 2.48 1.8 2575 779 17.4
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2 � Materials and methods

2.1 � Materials

JIS TP 270C and SUS 821L1(ferrite and austenite approx-
imately 50% each) of sizes 200 mm × 100 mm × 3 mm 
(length × width × height)  and low carbon steel 
anvil substrate of 260  mm × 140  mm × 60  mm 
(length × width × height) were used in this study. The 
chemical compositions of TP 270C and SUS 821L1 are 
provided in the reference [2], and the mechanical proper-
ties of the materials are shown in Table 1. The primary 

explosive used in this experiment is ANFO-A (ammonium 
nitrate and fuel oil base), with a density of about 530 kg/
m3. The schematic diagram of explosive welding is illus-
trated in Fig. 1, and the experimental parameters, such as 
the distance between the flyer plate and the base plate, are 
shown in Table 2. In addition, the test method used in this 
study is displayed in Fig. 2.

2.2 � Welding parameters

The weldability window for TP 270C/SUS 821L1 is shown 
in Fig. 3. As described in previous research [20], the single 
jet limit was titanium jet occurs and the double jet limit 
was titanium jet and stainless steel jet both occurs during 
explosive welding. Based on the results of previous stud-
ies [20, 22], the welding parameters were set as follows. 
Sample 1 was located below the single jet limit so that no 
jet was generated in the welding process, whereas samples 
2 and 5 were located above the single jet limit and below 
the double jet limit. In the welding process, a single jet was 
generated only on the titanium side. Samples 3 and 4 were 
located above the double jet limit (wavy interface limit), 
yielding a microwave-shaped interface. Samples 6 and 7 
were located at a certain distance above the double jet limit, 
forming large waves at the interface. Moreover, the collision 
angle of sample 7 was larger than that of sample 6, so the 
interface wave generated by sample 7 was larger than that 
of sample 6. The welding parameters are shown in Fig. 3 
and Table 3. The relationship between the velocity of the 
flyer plate (VP) in the vertical direction and the collision 
angle (β) can be expressed by the following formula [23]:

Fig. 4   Numerical simulation model

Fig. 5   Schematic diagram of 
the tensile shear test sample (a). 
Schematic diagram of the three-
point face bending test sample 
(b and c)
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Fig. 6   Optical analysis and 
numerical simulation of the 
interface: a sample 1; b sample 
2; c sample 3; d sample 4; e 
sample 5; f sample 6; g sample 
7
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Fig. 6   (continued)
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Fig. 6   (continued)
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where VD is the detonation velocity of the explosive. The 
collision angle β is calculated by the equation in reference 
[24].

where r represents the loading ratio (mass of explosive per 
unit mass of flyer plate), te represents the explosive thick-
ness, s represents the stand-off distance, and K is the gaseous 
polytropic index of the detonation products. Parameters K 
and VD were obtained from references [25, 26], as shown 
in Table 3.

(1)V
P
= 2V

D
sin

�

2

(2)� = (

√

K + 1

K − 1
− 1)

π

2

r

r + 2.71 +
0.184t

e

s

2.3 � Numerical simulations

The commercial code ANSYS/Autodyn was used to simu-
late explosive welding. Compared with other methods, the 
smooth particle fluid dynamics (SPH) method is more suit-
able for the simulation of interface characteristics of explo-
sive welding [27]. Therefore, the SPH method was used 
to simulate the welding process, as shown in Fig. 4. The 
size of the titanium and stainless steel plates was 20 mm 
(length) × 3 mm (height), with a particle size of 10 μm. The 
size of the anvil was 60 mm (length) × 30 mm (height), with 
a particle size of 100 μm. The initial velocity and collision 
angle in the simulation use the data in Table 3. Necessary 
physical parameters and EOS parameters were obtained 
from references [2, 20].

Fig. 6   (continued)
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2.4 � Mechanical properties

Mechanical properties were tested by the tensile shear 
test, bending test, and the Vickers hardness test. All 
three tests were performed at room temperature with a 
humidity of 50% [28]. The tensile shear test sample was 
cut along the welding direction, with a reserved incision 
size of 5 mm × 10 mm × 6 mm (length × width × height). 
The loading speed of the test machine was set to 1 mm/
min. The schematic diagram of the tensile test sample is 
shown in Fig. 5a. The bending test sample had a size of 

200 mm × 10 mm × 6 mm (length × width × height). Samples 
were bent on both sides (TP 270C, SUS 821L1), as shown 
in Fig. 5b and c.

3 � Results and discussion

3.1 � Analysis of interface morphology

The samples were polished and etched. The etching solu-
tion consisted of HF (3 mL), HNO3 (6 mL), and H2O 

Fig. 7   Scanning electron 
microscopy images and EDS 
analysis results: a and b sample 
1; c and d sample 4; e and f 
sample 6
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(91 mL) solutions. Optical microscopy was used to ana-
lyze the samples, and the interface obtained by weld-
ing and the simulation results are shown in Fig. 6. As 
displayed in Fig. 6a, sample 1 formed a nearly straight 

interface. The simulation results showed that sample 1 
generated no jet in the welding process and did not form 
a continuous melting area due to the insufficient kinetic 
energy of the flyer plate. As displayed in Fig. 6b and e, 

Fig. 8   Overall 3D diagram of SUS 821L1 and separation diagram: a and b sample 1; c and d sample 3; e and f sample 5; g and h sample 6; i and 
j sample 7
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higher collision velocity and collision angle were pro-
duced in samples 2 and 5, producing a weak jet with no 
wavy interface and a continuous melting zone. Saresoja 
et al. also demonstrated that melting was a prerequisite 
for jet formation [29] using atomic simulation. In Fig. 6c, 
d, f, and g, samples 3, 4, 6, and 7 clearly showed a wavy 
interface with periodic changes at the welding interface, 
which was also the most significant feature in explo-
sive welding [30]. Some studies also reported that the 
welding interface changed from a straight interface to 
a wavy interface as the explosives were increased [31]. 
The numerical simulation results verified the validity of 
the welding parameters determined by the window theory 
and were consistent with experimental results. Although 
the overall wavelength and amplitude of samples 3, 4, 6, 
and 7 were stable, the microscopic morphology of the 
vortex region of each wave was slightly different. The 

average wavelength of the welding interface of samples 
3 and 4 were 118 µm and 125 µm, and the average ampli-
tudes were 20 µm and 22 µm, respectively. The average 
wavelength of the welding interface of samples 6 and 
7 was 270 µm and 691 µm, and the average amplitudes 
were 62 µm and 190 µm, respectively. An obvious adi-
abatic shear band (ASB) was observed in samples 6 and 
7, which represented one of the mechanisms of material 
failure caused by high strain rates in explosive welding 
and other processes [32].

The simulation results of the temperature field showed 
that the molten particles were concentrated in the vortex 
region, and a few were distributed along the entire length 
of the interface in the form of discrete points. The melting 
of the sample interface below the single and double jet 
limits (wavy limit) of the welding window was significantly 
less than that above the double jet limits (wavy limit). 

Fig. 8   (continued)
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Green particles represented the base metal heat-affected 
zone near the interface, with a temperature range of about 
1000–1450 K. In particular, the average simulated thick-
ness of the heat-affected zone on the side of samples 6 and 
7 reached 105 µm and 172 µm. The interface reached a 
significantly higher temperature than the melting point of 
the metal, exceeding 2500 K. In the von Mises stress cloud 
map, the region with Mises stress of 0 indicated the melt-
ing region and samples with large collision point velocity 
and collision angle showed a larger melting region. These 
findings are attributed to the oblique impact, strong plas-
tic deformation, shear, friction, and agitation between the 
two materials, leading to a rapid increase in temperature at 
the interface [33]. High temperature promotes interatomic 
diffusion, forming different degrees of element diffusion 
at the interface.

3.2 � Element diffusion of the interface in SEM

In order to study the diffusion of elements at the weld-
ing interface, element line analysis was carried out by 
energy dispersive spectroscopy (EDS). The EDS results 
are shown in Fig. 6. The black line in Fig. 5 indicates 
the EDS scanning line. The EDS results showed that 
the diffusion zone of elements in sample 1 was 0.4 µm, 
while that of sample 4 was 1.6 µm, and that in sample 6 
was 4.7–6.4 µm. This is due to the dissipation of kinetic 
energy at the welding interface being accompanied by a 
rapid temperature rise in the bonding zone, resulting in 
the mutual diffusion of titanium and iron elements [34]. 
According to the simulation results of temperature at the 
interface in Fig. 7, the interface temperature was propor-
tionate to the element diffusion area.

3.2.1 � CT test

The CT test was performed to further observe the micro-
structure characteristics of the samples on the three-
dimensional scale. The overall 3D picture of the sample 
and the 3D picture of the stainless steel side are shown 
in Fig. 8. Figure 8a, b, e, and f show a macroscopic per-
spective of the interface, which shows a flat surface with 
no wavy features between the titanium and stainless steel 
plates. In Fig. 8c and d, small wavy features can barely 
be observed at the interface from the macroscopic pic-
ture, and light wavy traces can be observed from the 3d 
drawing of stainless steel. In Fig. 8g and h, the interface 
shows an obvious wavy structure, with more regular and 
orderly. In Fig. 8i and j, the wavelength and amplitude 
of the interface are larger, and the wavy traces are more 
obvious. Figure 8h shows that the interface waves are not 
constant all the time.
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3.3 � Mechanical properties

3.3.1 � Tensile shear test

In order to evaluate the welding strength of the welded 
plates [35, 36], a tensile shear test was conducted. The 
experimental parameters and results are shown in Table 4. 
Figure 9 illustrates the sample after the tensile test, and 
the tensile curve is shown in Fig. 10. The tensile strength 
of the samples ranked from small to large was sample 
1 (98–160 MPa, no jet), samples 2, 5 (204–221 MPa, 
206–240  MPa, no wavy interface), samples 3, 4 

(236–252  MPa, 247–263  MPa, microwavy interface), 
sample 7 (416–462 MPa, large wavy interface), and sam-
ple 6 (460–503 MPa, small wavy interface). The tensile 
strength of the small wavy interface samples was 273% 
and 116% higher than the no-jet and no-wave samples, 
88% higher than the microwave samples, and 10% higher 
than the large wave samples. The relationship between 
tensile strength and wavelength/amplitude is shown in 
Fig. 11. The experimental results show that excessively 
large or small interface waves are detrimental to the bond-
ing strength of the interface, with moderate-sized waves 
being optimal.

Fig. 9   Samples after stretching

Fig. 10   Tensile curves Fig. 11   Tensile shear curves
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In order to determine the accurate fracture location and 
characteristics of the samples, the fracture surface was 
analyzed from a macroscopic and microscopic perspective, 
as shown in Figs. 9 and 12. Samples 1 and 2 were frac-
tured at the welding interface, as shown in Fig. 9. Accord-
ing to the EDS analysis, the TP 270C elements in samples 
1 and 2 contained 96.85 wt% and 69.18 wt% Ti elements, 

respectively. In comparison, the SUS 821L1 side con-
tained Fe elements of 88.01 wt% and 92.73wt%, respec-
tively. The results indicated that the fracture of samples 1 
and 2 occurred at the welding interface, with the fracture 
surface showing the cleavage features and the groove. The 
fracture was mainly brittle, which was consistent with the 
tensile curve in Fig. 10 suggesting that the failure was 

Fig. 12   Fracture analysis on 
the titanium and stainless steel 
sides:a and b sample 1;c and d 
sample 2; e and f sample 3; g 
and h sample 4; i and j sample 
5; k and l sample 6; m and n 
sample 7
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caused by sliding shear. Sample 3 was fractured at the 
titanium side as displayed in Fig. 9. According to Fig. 12, 
the fracture of sample 3 was full of dimples and pores; 
the fracture exhibited characteristics of ductile fracture. 
The tensile shear curve of sample 3 was similar to the 

tensile curve of TP 270C and showed excellent resilience. 
Samples 4 and 5 were fractured at the titanium side, while 
samples 6 and 7 were fractured at the welding interface, 
as displayed in Fig. 9. According to the EDS analysis, the 
TP 270C side of samples 6 and 7 contained Ti elements 

Fig. 12   (continued)
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of 95.02 wt% and 94.24 wt%. Instead, the SUS 821L1 side 
contained 5.74 wt% and 4.15 wt% Fe elements, indicating 
that the fracture of samples 6 and 7 occurred on the tita-
nium side. The curve was suggestive of a brittle fracture, 

mainly showing quasi-cleavage morphology, which may 
be related to the adiabatic shear band generated on the 
titanium side near the interface [2]. Therefore, different 
welding parameters produce different fracture results and 
fracture morphology.

3.3.2 � Bending test

In order to evaluate the deformation resistance of the 
explosive welded parts [37, 38], a three-point bending test 
was adopted for the samples, and 90° bending was meas-
ured. For samples 1–5, A and B (TP 270C, SUS 821L1) 
were bent on both sides, while the bending results and test 
data of samples 6 and 7 were referred to in the literature 
[22]. The results are shown in Fig. 13 and Fig. 14. The 
macroscopic results showed no macroscopic separation 
and fracture after bending, with a larger bending curvature 
towards the B-plane. Optical microscopy analysis was per-
formed on samples 1, 3, and 5 to further explore whether 
there are cracks in the welding interface after bending 
toward the B-plane. In Fig. 15a, cracks appeared on the 
interface, while in Fig. 15b and c, no cracks were observed 
on the interface. Moreover, no crack was observed at the 
interface of sample 6, while cracks were found at the inter-
face of sample 7. This disparity indicated that the small 
wavy interface had strong resistance to plastic deformation 
[23]. In addition, the bending strength toward B was gen-
erally higher than that toward A, and the bending strength 
of samples 3 and 4 was higher than that of samples 1, 2, 
and 5. This difference can be attributed to the stronger 
work hardening (the flyer plate velocity of samples 3 and 
4 was higher than samples 1, 2, and 5). The experimental 
results showed that the samples placed below the single jet 
line of the weldability window were prone to cracks, and 
the samples with excessively large interface waves also 
exhibited cracks after bending. However, the interfaces 
with microwave and small wavy shapes demonstrated 
good bending resistance.

Fig. 13   Samples after bending

Fig. 14   Bending curves
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3.3.3 � The Vickers hardness

This study used a microhardness testing machine for hard-
ness testing, with a load of 0.2 kg and a residence time of 
15 s. The results are displayed in Fig. 16. The microhardness 
value was highest near the weld interface of the sample, and 

decreased gradually as the distance from the weld interface 
was increased. In addition, the hardness value near the small 
wave interface (sample 6) was greater than the microwave 
interface and the no-wave interface. This was mainly due to the 
large plastic deformation of the small wave interface. Similar 
results were observed by Athar et al. [39] and Huang et al. [40].

Fig. 15   Bending results: a sam-
ple 1; b sample 3; c sample 5; d 
sample 6[22]; e sample 7 [22]
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4 � Conclusions

In this study, seven TP 270C/SUS 821L1 plates with dif-
ferent welding parameters near the lower limit of the weld-
ability window were successfully fabricated by explosive 
welding. The relationship between the interface morphology 
and mechanical properties of explosive welding was studied. 
The following conclusions can be drawn.

1.	 The results of the metallographic experiment and simu-
lation showed that no jet was generated in the welding 
process of sample 1. In the welding process of samples 
2 and 5, only the titanium side produced a jet, while no 
jet was produced on the stainless steel side. Samples 
3 and 4 produced a microwave interface with an aver-
age wavelength of 118 µm and 125 µm and an average 
amplitude of 20 µm and 22 µm, respectively. In contrast, 
samples 6 and 7 produced large wave interfaces, with 
an average wavelength of 270 µm and 691 µm and an 
average amplitude of 62 µm and 190 µm, respectively. 
However, sample 7 produced a larger interface wave 
than sample 6. The experimental and simulation results 
were consistent with the design.

2.	 The results of EDS and CT analyses showed an element 
diffusion zone of 0.4 µm in sample 1, 1.6 µm in sample 
4, and 4.7–6.4 µm in sample 6. Higher collision point 
velocity and collision angle resulted in a larger amount 
of energy generated in the welding process, a higher 
interface temperature, a larger element diffusion area, 
and a more regular wavy structure.

3.	 The results of the tensile shear test and bending test 
showed that the welding interface with an average wave-

length of 270 µm and an average amplitude of 62 µm 
has the best tensile shear performance. Furthermore, 
the maximum tensile shear strength was about 503 MP; 
compared with other samples, the tensile shear perfor-
mance was improved by 10 to 273%. With an average 
wavelength of 118–270 µm and an average amplitude 
of 20–62 µm, no crack was observed in the welding 
interface after bending. In contrast, cracks occurred in 
both large and microwavy interfaces. The microhardness 
value was highest near the weld interface of the sample.
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