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Abstract
Inconel 718 possesses exceptional properties that negatively affect tool life and other key indicators of the cutting mecha-
nism. Owing to the unprecedented failure states of carbide inserts under the synergistic impact of processing conditions and 
the complex superalloy’s metallurgical properties, the imagery signals contain smeared noise, which affects the predictive 
efficiency of data analytics during tool condition monitoring (TCM). Previous studies applied image processing techniques, 
such as edge segmentation, detection, auto-encoders, textural, fractal, Fourier, and wavelet analysis, to extract features from 
tool wear signals despite being inefficient under complex wear morphology. Therefore, this study applies a more efficient 
data-mining analytic called the multi-sectional singular value decomposition (multi-sectional SVD) for dimensionality reduc-
tion and extraction of features from the complex imagery signals, enhancing the predictive efficiency of machine learning 
(ML) during TCM. To achieve this, an interrupted climb-milling of Inconel 718 was conducted at various speeds, feeds, 
and axial depth of cut to generate the dataset through the in-process acquisition of tool wear images, as well as measure-
ment of the progressive VB for the PVD-TiAlN/NbN-coated carbide inserts. Then, the multi-sectional SVD-based ML was 
employed to process the imagery signals and extract latent features that combined with process parameters to predict VB. 
After validating the predicted against the actual VB values, the model yielded a mean average percentage error (MAPE) of 
2.36%, indicating its effectiveness in predicting VB profile under complex flank wear morphology. Furthermore, the system 
was utilized to design an effective cutting condition, where the multi-stage adjustment of speed and feed was employed to 
reduce the VB rate in the early cutting stage.

Keywords  Tool condition monitoring · Machine vision · Multi-sectional SVD · Machine learning · Signal processing

1  Introduction

Nickel-based superalloys, such as Inconel 718, are 
renowned for their remarkable chemical, thermal, and 
mechanical properties, which enable them to retain their 
strength through precipitation hardening of their γʹ and 
γʹʹ phases at high cutting temperatures [1]. Unfortu-
nately, such metallurgical properties also attribute to the 

synergistic wear mechanisms and unprecedented failure 
of the carbide tools, leading to fatigue crack initiation, 
high scrap rate, out-of-tolerance dimension, poor sur-
face finish, and undesirable performance of the aircraft 
engine’s structural components [2]. With tool condition 
monitoring (TCM) being analogous to smart machining 
according to industry 4.0 [3], flank wear depth (VB) is 
predicted online to determine the failure criteria through 
the utilization of optical metrology and data analytics 
[4]. This provides a live update of the wear states and 
prevents the unprecedented failure of the carbide inserts, 
thus minimizing machining errors to satisfy the industrial 
precision standards of the aerospace components during 
CNC milling operation [5]. Previous research applied 
the Gaussian kernel ridge regression (GKRR) ML model 
using features of the cutting speed, feed rate, depth of cut, 
and cutting length to optimize the rate of VB for PVD-
TiAlN/NbN-coated carbide inserts during CNC milling 
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of Inconel 718 [6]. Although this enhanced the quan-
titative understanding of tool wear evolution, features 
of the process parameters are inefficient to extrapolate 
real-time VB profile, especially by considering that most 
industries apply fixed parameters during CNC machin-
ing. Hence, researchers have been working on enhanc-
ing signal processing techniques to extract features from 
time-series tool wear data as direct indicators of VB 
evolution during machining. In the meantime, these fea-
tures are not easily defined due to unprecedented failure 
states of most carbide inserts when milling Inconel 718, 
which induces the heterogeneous pixel distribution and 
unstructured energy layers on the tool’s cutting edge, 
resulting in smeared noise of the imagery signals during 
TCM [7]. As a result, tool wear data acquired under such 
conditions are subjected to pre-processing for denoising, 
dimensionality reduction, and extraction of a feature vec-
tor, as an abstract representation of complex wear mor-
phology during machining. Therefore, feature engineering 
is introduced in Machine Vision-based TCM (MV-TCM) 
for processing and extracting features from time-series 
signals to predict VB and RUL online [8–10].

Previous research has shown that classical image pro-
cessing techniques, such as segmentation and edge detec-
tion, can be used to extract more detailed geometric fea-
tures, such as the area, perimeter, and average width of 
the flank wear region, which can be used to predict VB 
progression during machining [11, 12]. A more related 
study employed auto-segmentation and edge detection to 
extract the average width of the wear region and predict 
the VB rate using a Sobel operator through the automatic 
wear value detection of the PVD- and CVD-coated car-
bide inserts during climb-milling of Inconel 718 [13]. The 
system achieved a mean average percentage error (MAPE) 
of 4.76%, with a high average precision of 96%. Owing 
to the complex wear geometry when machining Inconel 
718, it was believed that the auto-detection and segmen-
tation could still be improved by enhancing it with con-
trast limited adaptive histogram equalization and fractal 
analysis to enhance the extraction of area, perimeter, and 
fractal dimension as predominant features that can pre-
dict VB progression during machining [14]. In this way, 
the artificial neural network (ANN) was able to achieve a 
higher performance, with an accuracy and MAPE of 95.5% 
and 1.099%, respectively. However, the performance was 
also improved due to the features extracted from the side 
cutting edge—a complex process that works for specific 
types of insert geometry. In addition, the edge or contour 
segmentation and detection rely on the bi-modal nature 
of wear images, which becomes unstable for wear regions 
with inconsistent signal-to-noise ratio under complex wear 
morphology [15]. This causes under- or over-detection or 
segmentation of the wear region to the extent that features 

extracted under such complex geometry are not reliable to 
extrapolate VB progression online.

To overcome this shortcoming, textural analysis is used 
to capture the spatial variation of pixel distribution regard-
less of the multi-modal nature of tool wear images dur-
ing machining. For example, the gray-level co-occurrence 
matrix (GLCM) technique was used to extract contrast, 
energy, correlation, and homogeneity of the flank wear 
region, despite the features being undefined under differ-
ent wear resolutions [16]. To improve the extraction of the 
multi-scale textural features on imagery signals with differ-
ent resolutions, the GLCM can be enhanced with watershed, 
wavelet transform, and Markov random field segmentation. 
However, such techniques are not easily optimized, thus, 
techniques like marker-controlled watershed or region merg-
ing can help to reduce over-detection or segmentation of the 
wear region, even though they can also be affected by the 
wear depth during machining [17]. In this case, methods 
like interpolation and search techniques can help to extract 
reliable textural features at varying wear depths during MV-
TCM [18]. Again, these methods are plagued with high 
computational complexity, resulting in unnecessary delays 
during online signal processing.

Therefore, this research proposes advanced data-mining 
analytics, such as principal component analysis (PCA), sin-
gular value decomposition (SVD), tensor decomposition, 
and deep learning, as leading-edge technology for dimen-
sionality reduction and extraction of image features at low 
computational complexity [19]. However, when dealing with 
full-rank approximation and unique matrix decomposition 
under limited data, SVD is efficient in factorizing time-series 
tool wear images into three parts: an orthogonal matrix (U), 
a diagonal matrix (S), and a transposed orthogonal matrix 
(V), based on the hypothesis of linear algebra that a gray-
scale tool wear image is a 2-D matrix with pixel distribution 
representing rows and columns [20, 21]. Figure 1 illustrates 
the process of factorizing a tool wear image into three sub-
space learning factors: UAB, SAB, and VAB, derived from 
an image matrix AB, where UAB captures the basis vectors 
for the spatial image structure, such as edges, textures, and 
shapes; SAB contains singular values, representing the mag-
nitude or significance of each basis vector in UAB; and VAB 
represents the linear transformation of the original tool wear 
image AB onto the basis vectors of UAB, along with the cor-
responding singular values in SAB.

Furthermore, it was reported that SVD shares a funda-
mental similarity with Fourier analysis, in that both pro-
cesses entail unitary transform or a change in basis vectors 
and have the capacity to approximate reduced-rank images 
[17]. However, SVD outperforms the standard Fourier 
transform in capturing the basis vectors of imagery data, 
as reported in [20, 21], making it a valuable tool to cap-
ture intrinsic feature patterns of the time-series tool wear 
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signals during MV-TCM. It utilizes the strength of singular 
values (SVs) to restore energy layers of the wear region by 
recognizing the patterns of dominant features truncated by 
the largest SVs while removing the noise truncated by the 
smallest SVs [21]–[22]. Such a characteristic localizes the 
noise component orthogonal to the data signal sub-space 
[23], controlling two properties of imagery data: smeared 
noise and prevalent features. It is also worth noting that SVD 
does not rely on covariance matrix; thus, it provides a unique 
decomposition for any given image matrix and ensures no 
loss of information during full-rank truncation as compared 
to PCA, which considers an image as a single object and 
relies on a selected set of principle components to recon-
struct the reduced-rank approximation of the original image 
[24]. In addition, SVD is more efficient for matrix factori-
zation, scales well with large datasets, and yields unique 
solutions with a simpler abstract representation of features 
in the dataset as compared to tensor decomposition, which 
has intricate mathematical formulations and computational 
complexity [25]. In general, SVD has the following char-
acteristics, which qualifies it for signal processing during 
MV-TCM:

Denoising: By utilizing the largest singular values to 
reconstruct tool wear images, SVD can separate the 
intrinsic features from the smeared noise while preserv-
ing the similarity structural index and failure patterns of 
the original wear region.
Dimensionality reduction: It effectively reduces the large 
dimensions of tool wear images by capturing the signifi-
cant pixel information, while removing the noise com-
ponent orthogonal to the data signal sub-space. This can 
reduce the data storage and computational complexity of 
ML models during MV-TCM application.
Image compression: The singular values, acquired in a 
new sub-space, represent the significant energy layers of 
each singular vector of the wear region before decom-

position. The significant feature embeddings and energy 
layers are localized in the first few largest singular values; 
thus, focusing on these values can compress an image 
while retaining its important structural similarity index.
Features extraction: SVD identifies the intrinsic features 
of the wear region by representing the distinctive geome-
try in UAB and VAB singular matrices of the truncated wear 
images. These functions can be considered as state-space 
matrices that represent the significant features for image 
recognition, classification, and clustering.
Computational efficiency: It factorizes the image matrix 
into factors in a new sub-space learning. These factors 
are truncated by the largest singular values to reconstruct 
a reduced-rank approximation without loss of significant 
information in the original tool wear image. The com-
pressed image data require lower computational power 
to extract features for VB prediction. Hence, SVD scales 
well with large dataset without loss of information, sub-
stantial computational complexity, or system crushes.

Therefore, this research’s significance is based on the 
enhancement of the powerful SVD data-mining analytic with 
a multi-sectioning algorithm to extract features from time-
series tool wear signals as key descriptor variables of VB 
and RUL prediction during face milling of Inconel 718. To 
achieve this, small sections or sub-regions (ROIs) were gen-
erated on the flank wear region, and through the factoriza-
tion by SVD, the ROIs that exhibited the highest magnitudes 
of the energy layers along the cutting edge were selected. 
The synergy of these retained ROIs resulted in a thin and tall 
column matrix that represented the magnitude of the high-
est energy layer (Fi), in the direction of the flank wear depth 
(VB). Furthermore, the significance of the Fi feature was 
substantiated by combining it with the process parameters 
to train an ANN for VB prediction, as well as estimation of 
the tools’ RUL before failure. Unlike the previous systems, 
the multi-sectional SVD-based MV-TCM system in this 

Fig. 1   Factorizing tool wear image into 3 sub-space learning factors (UAB, SAB, and VAB) of an image matrix AB
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research was further utilized to design the promising cut-
ting condition that minimized the rate of Fi evolution, thus, 
improving the performance of the carbide inserts during face 
milling of Inconel 718. Therefore, this study demonstrates 
the potential of a multi-sectional SVD for dimensionality 
reduction, feature extraction, and design of optimal process-
ing conditions, which is a significant contribution to online 
signal processing and intelligent machining of superalloys 
according to Industry 4.0. As such, this research contributes 
significantly to the academic and scientific community by 
streamlining dimensionality reduction and feature selection 
for high-dimensional imagery signals during MV-TCM. This 
ensures that the most informative features are retained for 
predictive modeling, thereby improving interpretability by 
focusing on the most relevant aspects of tool wear evolution. 
Consequently, this approach empowers the development of 
more effective and interpretable predictive models capable 
of addressing the complexities of tool wear monitoring in 
challenging CNC machining domains.

2 � Methodology

2.1 � Materials and experiment

The goal of the experiment was to gather time-series tool 
wear data for training a multi-sectional SVD for features 
extraction and ANN for VB and RUL prediction. A DMC 
835 V-DECKEL MAHO CNC milling machine was utilized 
to cut an Inconel 718 block (100 × 25 × 50 mm) using the 
multi-layer PVD-TiAlN/NbN-coated carbide inserts (made 
by SECO tools, Sweden) with the help of mineral oil-based 
cutting fluid to reduce friction and heat during machining. 
The cutting insert had an approach angle (k) of 45°, a rake 
angle (γ) of 18°, a radial angle (α) of 8°, and a radial depth 

of cut (ae) of 12.5 mm during the down milling operation. 
A 32-mm diameter cutter (R220.53–0032-09-4A, arbor 
mounting) with 4 slots for 4 wear inserts was used during 
the experiment. The physical, chemical, and mechanical 
properties of Inconel 718 used in this research are shown 
in Tables 1 and 2. In addition, Table 3 shows the micro-
mechanical properties of multi-layer PVD-TiAlN-NbN-
coated inserts applied in this research. The experiment used 
a full factorial design based on the levels of process param-
eters listed in Table 4.

Figure  2 illustrates the methodology of developing 
an ML-based MV-TCM system, outlining a systematic 
approach to enhance feature extraction and tool wear pre-
diction during TCM. It involves data collection from the 
CNC machining process of Inconel 718, data pre-processing, 
followed by feature extraction and dimensionality reduction 
to capture relevant information and reduce computational 
complexity. Additionally, it involves ML model develop-
ment, training/validation, and integration into the in-process 
MV-TCM system. During the experiment, the CNC machine 
was stopped at an incremental cutting length of 400 mm (for 
the lowest and medium speed) and 200 mm (for the highest 
speed). The inserts were removed from the cutter, placed 
on a fixture, and then examined under an Olympus optical 
microscope (Olympus U-MSSP4, BX53M, 1000 × magni-
fication, Tokyo, Japan) to measure the actual VB using a 
magnification scale of 50 × . The experiment used failure 
criteria based on the ISO 8688 standard, with a maximum 
VB threshold of 500 μm [26]. It is also worth noting that this 
largest VB criterion was selected to ensure the multi-sec-
tional SVD-based ML model was robust enough to extrapo-
late the VB progression outside the average critical threshold 
of 300 μm. To further substantiate the research findings, 

Table 1   Physical and mechanical properties of Inconel 718

Specific 
density

Thermal 
conduc-
tivity

Hardness σy σUTS % Elon-
gation

8.22 6.5 w/m. 
K

36 HRC 725 MPa 1035 MPa 30 min

Table 2   Chemical composition 
of Inconel 718

Chemical C Cr Mo Ti Ni Nb Al Cu Si Fe

Weight (%) 0.08 21 3.3 1.15 55 5.5 0.8 0.3 0.1 12.8

Table 3   Micro-mechanical 
properties and composition of 
PVD-TiAlN-NbN-coated inserts

Hardness TOXD μf Thickness Ra EDX composition

2800 800 °C 70 2–4 μm 2.105 μm N (69.6%), Nb (28%), Ti (1.5%), Al (0.82%)

Table 4   Factors and their respective levels

Level Speed (Vc m/min) Feed ( f tmm∕tooth
)

Axial depth 
of cut (ap 
mm)

0 40 0.07 0.5
1 60 0.1 0.75
2 80 0.13 1
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the actual RUL was computed by subtracting the incre-
mental cutting time (t, equivalent to L = 200 or 400 mm) 
from the maximum time (T) of each experimental condition 
(RUL = T- t) as an empirical indicator of tool life during 
machining. The actual VB and RUL had the measurement 
error of 34 μm and 23 μm during experiment. Out of 27 
experiments (506 flank wear images), 24 experiments (405 
images) were used to train the multi-sectional SVD-based 
ANN model for VB and RUL prediction. The remaining 
3 experiments (101 images), selected from a condition of 
Vc = 40 m/min, ft = 0.13 mm/tooth, and ap = 1 mm, were used 
to validate the model.

Furthermore, the trained multi-sectional SVD-based 
ML model was applied during MV-TCM for in-process 
prediction of VB progression at an optimal process-
ing condition (Vc = 40 m/min, ft = 0.08 mm/tooth, and 
ap = 0.9 mm), designed by a GKRR model using similar 
data in [6]. At this condition, the Fi magnitude was cor-
related with process parameters to establish the limiting 
threshold values at different VB levels (early, uniform, 
critical, and failure regions), which were then utilized 
to determine the MV-TCM stopping criteria during 

in-process utilization. During this experiment, the flank 
wear images were captured online using an industrial 
camera (Baumer, VCXU-65 M.R, 1/1.8″ CMOS sensor, 
3072 × 2048 resolution, 47 fps, Vitals Vision Technology, 
Singapore) and a telecentric lens (APT08-65, 0.8 × mag-
nification, 1/1.8″ sensor, Vitals Vision Technology, Sin-
gapore), which were oriented at a 45° angle relative to 
the CNC spindle axis. The camera and lens were set at 
a working distance of 65 mm, which was also a focal 
coordinate of a CNC G-code for optimal image capturing. 
Owing to the poor resolution of wear images captured by 
the MV-TCM system, data was then transferred to the 
multi-sectional SVD for dimensionality reduction and 
extraction of Fi magnitude. The Fi feature was combined 
with process parameters to predict the VB and RUL dur-
ing face milling of Inconel 718. Furthermore, at every 
Fi threshold, the CNC machine was stopped to regulate 
the speed and feed based on the rapid rate of Fi evolution 
during machining. This process was iteratively explored 
to design the underlying cutting conditions that optimized 
the rate of Fi evolution at different wear levels during 
machining.

Fig. 2   The methodology of developing an ML-based MV-TCM system
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2.2 � Description of the multi‑sectional SVD 
and machine learning (ML) model

2.2.1 � Dimensionality reduction by the multi‑sectional SVD

Unlike the previous features extraction techniques, the 
multi-sectional SVD in this research extracted features 
from the region of interest (ROI), generated by the multi-
sectioning algorithm, to demarcate the specific area that 
delineated the maximum VB level of 500 μm. Apart from 
the computational complexity, the ROI was found to be 
more effective in extracting the feature embeddings of the 
wear region than using the entire image [27]. In this case, 
the multi-sectioning algorithm was designed to locate 
the ROI slightly above the cutting edge to minimize the 
impact of the built-up edge (BUE) on the energy layers of 
the wear region. This was achieved by dividing the flank 
wear image into 160 sub-regions (A1B1, A2B1, …A20B8), 

and then 40 sub-regions, which localized the ROI were 
selected. This resulted in a 75% reduction (from an area 
of 2,764,800 pixels to 691,200 pixels) in dimensionality 
even before latent features were extracted, thus, reducing 
the computational cost and time during MV-TCM appli-
cation. The ROI was defined by 4 rows (B3–B6) and 10 
columns (A3–A12).

Figure 3 illustrates the multi-sectional SVD approach for 
dimensionality reduction and feature extraction, depicting 
the decomposition of a high-dimensional tool wear image. 
The most informative features are extracted from the image 
matrix, streamlining the predictive modeling of tool wear 
evolution during machining. The figure demonstrates that 
each sub-region of the original wear image AB∈ ℝ

m×n was 
then decomposed into three factors: UAB, SAB, and VAB, as 
shown in (1) and (2), where m = 180 and n = 96. The matrix 
SAB ∈ ℝ

r×r contained the singular values of the section AB, 
which represented the luminance layer of the wear region. 

Fig. 3   The multi-sectional SVD approach for dimensionality reduction and feature extraction
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The matrices UAB ∈ ℝ
m×r and VAB ∈ ℝ

r×n contained the 
left and right eigenvalues of the sub-region/section AB, 
respectively [20], where uji and vji were the left and right 
eigenvectors, respectively, and SAB contained the singular 

values, 
�
�11, �22 … �rr

�
= [

√
�11,

√
�22 …

√
�rr] , arranged 

in descending order (Eqns. (1) and (2)).

(1)AB = UABSABVAB
T

(2)UAB =

⎡
⎢⎢⎣

u11 … ur1
⋮ ⋱ ⋮

u1m … urm

⎤
⎥⎥⎦
; VAB =

⎡
⎢⎢⎣

v11 … v1n
⋮ ⋱ ⋮

vr1 … vrn

⎤
⎥⎥⎦
; SAB =

⎡
⎢⎢⎣

√
�11 … 0

⋮ ⋱ ⋮

0 …
√
�rr

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

�11 … 0

⋮ ⋱ ⋮

0 … �rr

⎤
⎥⎥⎦

2.2.2 � Features extraction by the multi‑sectional SVD

The singular values represented the strength of different 
energy layers in an image, as explained in [28]. As such, 
an l2-norm, derived from these singular values, was used 
to measure the magnitude of features in this research, also 
applied in other applications, as reported in [20]. l2-norm 
is mathematically equivalent to the largest singular values. 
After image decomposition, it was found that the first 5 sin-
gular values (SVs) had high l2-norms, which represented 
the highest luminous layers of the flank wear region during 
truncation, but they were not useful for identifying unique 
feature embeddings that distinguished progressive change 
in the flank wear depth (VB) during machining. Hence, 
these SVs were only used for image compression, but not to 
compute the SV magnitudes, as they stored invariant energy 
layers that were not capable of distinguishing the feature 
patterns that represented VB progression online. As a result, 
the time-varying features appeared at rank q = 6, where q is 
the effective rank for image compression out of the maxi-
mum rank r during truncation. The remaining [r-q] SVs 
and their corresponding UAB and VAB matrices represented 

a noise component, which was eliminated in the process. 
Therefore, the magnitudes (M (i, j)) of singular values were 
calculated using the l2-norm of the S-diagonal vector (SAB) 
by using Eq. (3) to represent the progressive change in the 
flank wear region.

The magnitude of singular values for the specific ranks 
(M (i, j)) was calculated for i = 3…12 and j = 3…6. From the 
rows (B3–B6), parallel to the main cutting edge, the maxi-
mum M (i, j) values were selected by suppressing the sec-
tions with the lowest l2-norms. After aggregating these max-
imum M(i, j)s, the tall and thin column vector of the highest 
magnitudes was obtained. Figure 4 illustrates how the multi-
sectional SVD separated the high-energy layer (HEL) sec-
tions from low energy layer (LEL) sections to retain the tall 
and column matrix representing the flank wear depth with 
the maximum magnitude of the basis vectors of UAB. At this 
point, the significance of the unprecedented failure modes, 
localized on the wear region, was reduced as the HELs origi-
nated from the ROIs free from chipping, notching, flaking, 

(3)M(i, j) =
�q

r=1
‖SAiBj‖2

Fig. 4   The multi-sectional SVD for dimensionality reduction and extraction of the highest energy layer along the flank wear depth
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and BUE (regions of LELs). This feature matrix was then 
used to compute the final feature (Fi), which represented 
the highest energy layer of the entire flank wear depth, as 
illustrated in Fig. 3. By doing so, the method reduced the 
noise attributed to the unprecedented failure modes, thus 
overcoming the multi-modal effect of smeared images dur-
ing features extraction. This method was validated by cor-
relating the extracted Fi feature with the actual VB at various 
process conditions.

2.2.3 � Evaluating the performance of multi‑sectional SVD

The performance of the multi-sectional SVD was evaluated 
using compression ratio (R) (4), peak signal-to-noise ratio 
(PSNR) (5), mean square error (MSE) (6), and structural 
similarity index measure (SSIM) (8), as described in [20, 
21]. The compression ratio quantified the percentage reduc-
tion of the sub-regions during truncation. Upon decomposi-
tion, if the rank q was equal to the width of the image (n), 
then the dimensions of matrix UAB were congruent to those 
of AB, while if q was equal to the height of the image (m), 
then the dimensions of matrix VAB were equivalent to those 
of AB. Hence, the image was only compressed if q was less 
than m or n. On the other hand, the PSNR served as a loga-
rithmic gauge of the quality of a reconstructed image fol-
lowing compression, thus guaranteeing that the predominant 
features were fully reinstated within the wear region. The 
PSNR was calculated based on the MSE between the original 
AB and the reconstructed image section AB′. It was observed 
that the values of R, SNR, and PSNR estimated the error 
in image reconstruction, while SSIM validates the SVD’s 
ability to recreate the structural interdependence of pixel 
distribution and energy layers between the original image AB 
and the truncated image AB'. SSIM is calculated using small 
windows of 11 × 11 (window ab for AB and ab' for AB') 
pixels, where a value close to 1 indicated a high structural 
similarity of the original and truncated image. The SSIM 
performance of the multi-sectional SVD was evaluated using 
3 structural components namely, luminance (l), contrast (c), 
and structure (s), as shown in (8). Combining all equations 
in (7) gives (8) [20].

(4)R =
(nq + q + mq)

mn
× 100%

(5)PSNR (dB) = 20log10

�
MAXAB√
MSE

�

(6)MSE =
1

mn

∑n

i=1

∑m

j=1

[
AB(i, j) − AB�(i, j)

]2

where q is the final rank of truncating AB′ ; MAXAB is the 
maximum pixel value of AB; �ab and �ab are the mean value 
of windows ab and ab′ ; �ab , �ab′ and �ab,ab are standard 
deviations and covariance of windows ab and ab′ , respec-
tively; q1 , q2, and q3 is a luminance, contrast, and structure 
constants; b is the dynamic range of pixels represented by 
(2bitsperpixel − 1) ; and a1 = 0.01 and  a2 = 0.03 (default values 
when evaluating SSIM). The multi-sectioning algorithm is 
summarized in Algorithm 1.

Algorithm 1   Multi-section SVD

2.2.4 � Training the ML model

In order to demonstrate the real application of the multi-
sectional SVD during MV-TCM, Fi features were com-
bined with process parameters to train an ML model (ANN 
in MATLAB R2019b), for the purpose of predicting VB 
and RUL progression during face milling of Inconel 718. 
Then, the standard score was applied to normalize the fea-
ture predictive strength before training the ML model. The 
ML applied a Levenberg–Marquardt algorithm (LMA), and 
the performance was measured using the mean squared 
error (MSE) loss function [29]. The backpropagation (10) 
was used to compute the partial derivative (9) to minimize 
the loss function. A purelin transfer function (f) was used 
because the model applied regression analysis to compute 
the VB and RUL values. Considering that the VB and RUL 
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were significantly affected by the cutting speed, feed rate, 
depth of cut, and Fi feature, the ML architecture had 4 neu-
rons in the input layer (corresponding to the 4 inputs) and 
2 neurons in the output layer (corresponding the 2 outputs, 
which are VB and RUL). The optimal number of neurons in 
the hidden layer was determined manually during training.

where xk is the input to a neuron, ε is the error, wkj is the 
weight between neuron k of previous layer and j of the cur-
rent layer, yj is the output of j neuron, VBt is the target flank 
wear, and VBy is the predicted output. After training the 
ML model, it was integrated with the multi-sectional SVD 
architecture and MV-TCM system to extract Fi features and 
predict RUL online during face milling of Inconel 718. At 
this point, the rate of Fi and RUL evolution was evaluated at 
different wear stages to determine the promising speed and 
feed that minimized the wear rate during machining, thereby 
designing the optimal cutting condition that improved the 
performance of the PVD-TiAlN/NbN-coated carbide inserts 
during face milling of Inconel 718.

(9)

MSE =
1

n
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3 � Results and discussion

3.1 � Performance of multi‑sectional SVD

The results showed that the multi-sectional SVD successfully 
reduced the dimensions of tool wear images, denoised the 
wear region, extracted, and selected reliable features that aug-
mented process parameters to predict the rate of VB and RUL 
online, regardless of variations in the image resolution and 
cutting conditions during face milling of Inconel 718. Figure 5 
shows the effects of image truncation at different ranks under 
specific machining conditions. As the rank decreases, rep-
resenting a lower-dimensional approximation of the original 
tool wear image, the compression ratio increases, indicating 
greater data compression achieved through truncation while 
retaining essential image structure and information. Figure 5 
a shows image truncation at various ranks.

The results showed that at the first 5 ranks, the image 
features were not clear enough to distinguish the worn from 
the unworn part of the tool. Thus, the first 5 singular values 
were responsible for capturing the highest energy layers of 
the flank wear images. However, above rank 6, the clarity 
improved, and there were small discrepancies between the 
original and reduced-rank image. In addition, the analysis 
of the average relative norm, RMSE, SNR, and PSNR indi-
cated the steady rate in signal evolution and image restora-
tion after rank 50, as depicted in Fig. 6a, b, c, and d, indicat-
ing noise reduction during truncation. Figure 6 shows the 
performance metrics of the multi-sectional SVD, highlight-
ing its effectiveness through various indicators, such as (a) 
relative-2 norm, (b) root mean square error (RMSE), (c) 

Fig. 5   a Image truncation with varying ranks at Vc = 40 m/min, ft = 0.07 mm/tooth, ap = 1 mm, and L = 4400 mm and b compression ratio
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signal-to-noise ratio (SNR), and (d) peak signal-to-noise 
ratio (PSNR). Each metric provides insights into the char-
acteristics of the decomposed tool wear images, highlighting 
the capability of the Multi-sectional SVD in preserving sig-
nificant features while minimizing noise during truncation. 
Thus, the significant image information was fully restored 
at rank 60, and increasing the rank had no significant effect 
on the image quality and could even reintroduce noise on 
the wear region. As a result, middle SV values (5 < q < 60) 
were used when computing the Fi features. The remain-
ing (r-q) singular values were used to reconstruct the noise 
component.

3.1.1 � Cutting speed

After extracting the Fi features from time-series flank wear 
images, they were correlated with process parameters to 
design a promising cutting condition and feature thresholds 
for in-process utilization during MV-TCM. Figure 7 illustrates 
the correlation of Fi magnitudes with four key machining 
parameters: (a) cutting speed, (b) feed rate, (c) depth of cut, 

and (d) measured VB (flank wear). Each subplot shows the 
relationship between the magnitude of Fi, which provides val-
uable insights into the variations of these parameters and com-
plex tool wear evolution during face milling of Inconel 718. 
The magnitudes of Fi were strongly correlated with the cutting 
speed, as shown in Fig. 7a. At a cutting speed of 80 m/min, the 
high rate of friction and abrasion accelerated the progressive 
change in energy layers on the tool’s cutting edge, resulting 
in the rapid evolution of the Fi magnitudes towards the criti-
cal and failure region. In this case, the Fi features failed to 
exhibit a steady wear phase. On the other hand, at cutting 
speeds of 40 and 60 m/min, the Fi magnitudes displayed a 
uniform wear region. This wear phenomenon was attributed 
to the reduced cutting temperature, which minimized the fric-
tion and abrasion wear mechanisms, thereby maintaining the 
slow evolution of the energy layers in the uniform flank wear 
region. The trend of Fi progression at 40 m/min was consist-
ent with the actual VB profile obtained in [15], indicating a 
high correlation between the Fi magnitudes and actual VB 
progression for the lowest cutting speed. At 60 m/min, there 
was a rapid rate of Fi progression, which was attributed to the 

Fig. 6   Multi-sectional SVD performance curves during image truncation: a Relative-2 norm, b RMSE, c SNR, and d PSNR
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intermittent evolution of energy layers in some sections of the 
flank wear region due to cyclic BUE and chipping formation. 
This eventually caused inconsistent and fluctuating evolution 
of the energy layers and Fi magnitudes, resulting in a shorter 
cutting length and tool life as compared to the lowest cutting 
speed of 40 m/min.

3.1.2 � Feed/tooth

The magnitudes of Fi also correlated with the feed per tooth, 
as depicted in Fig. 7b. At 0.13 mm/tooth, the formation of 
built-up edge (BUE) was attributed to the largest chip load, 
which led to progressive chipping under moderate abrasion 
at medium speed of 60 m/min. This caused the Fi magni-
tudes to fluctuate towards the critical and failure regions, 
resulting in an unpredictable trend that cannot accurately 
extrapolate the VB profile. At 0.1 mm/tooth, the Fi pro-
gressed uniformly, owing to the consistent evolution of the 
energy layers at the flank wear region due to less chipping 
and BUE formation at a medium speed. At the lowest feed 

rate of 0.07 mm/tooth, the reduced chip load resulted in a 
rubbing action between the tool and workpiece, generating 
more friction and abrasion wear mechanism, especially at a 
medium speed of 60 m/min. This led to higher energy layers 
as compared to 0.1 mm/tooth, which progressed consistently 
to generate the uniform evolution of Fi magnitude. There-
fore, the progressive trend of Fi magnitudes at the lowest 
feed/tooth was in accordance with the VB curve obtained in 
[15], indicating high predictive efficiency for a uniform VB 
rate during face milling of Inconel 718.

3.1.3 � Depth of cut

Furthermore, the magnitudes of Fi were correlated with 
the ADOC, as shown in Fig. 7c. It was observed that at 
0.5 mm ADOC, Fi progressed exponentially due to severe 
chipping at the DOC line, as the effective cutting edge was 
used to remove the precipitation hardened layer of Inconel 
718. At a 0.75 mm ADOC, the cutting edge still experienced 
progressive chipping at the DOC line, but at a slower rate 

Fig. 7   Correlation of Fi magnitudes with a cutting speed; b feed rate; c depth of cut; and d measured VB
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as compared to 0.5 mm due to the reduced impact of the 
precipitation-hardening at slightly larger ADOC. At 1 mm, 
the magnitudes of Fi evolved uniformly due to lower chip-
ping magnitudes as most of the cutting edge was used to cut 
the subjacent layers of the workpiece material, free from 
the precipitation hardening effect. Additionally, the syner-
gistic effect of the largest ADOC, medium feed, and speed 
increased the chip load and friction, generating high-energy 
layers that stabilized the evolution of Fi magnitudes in the 
uniform wear stage. Therefore, the results of Fi evolution at 
the largest ADOC agreed with the VB curve in [15].

3.1.4 � Lowest speed and feed

In summary, the evolution of the Fi magnitudes was a strong 
predictor variable of the flank wear depth at the lowest speed 
of 40 m/min, lowest feed of 0.07 mm/tooth, and largest 
ADOC of 1 mm. Therefore, the mean values of Fi magni-
tudes were plotted together with the measured VB at this 
cutting condition, as shown in Fig. 7d. The results showed 
that Fi values ranged between 2,000,000 and 7,000,000 pix-
els for all flank wear levels, including early, uniform, critical, 
and failure stages, with 7,000,000 corresponding to the max-
imum failure criteria of VB = 500 μm. This multicollinear 
correlation was used to establish Fi thresholds at various 
flank wear levels, as shown in Table 5. It is also worth noting 
that the Fi magnitudes were strong predictors of the flank 
wear evolution in the early and uniform wear region, where 
the impact of the synergistic wear mechanisms was insig-
nificant. However, the unprecedented failure modes, which 
exacerbated the loss in energy layers for some sections of 
the wear region, especially in the critical and failure stages, 
fluctuates the Fi feature, making it unstable to predict flank 
wear depth during machining.

3.2 � Performance of ML using multi‑sectional SVD 
features

From the analysis above, it is evident that the Fi feature 
strongly correlated with flank wear depth; thus, it can be 
used as a predictor variable of VB and RUL evolution in 
addition to the process parameters. This means there were 
4 predictor variables of VB and RUL. However, in cases 
where the input parameters are fixed during the machining 
process, the Fi feature becomes the only indicator of tool 

wear evolution, making it more significant for online VB 
and RUL prediction during MV-TCM as most machining 
industries operate under fixed cutting conditions. To further 
substantiate the effectiveness of the multi-sectional SVD, 
a machine learning model (ANN) was trained with input 
features of speed, feed, axial depth of cut, and Fi magnitude 
to predict the progressive VB and RUL of the tools during 
face milling of Inconel 718. When developing an ML, train-
ing data was further split into 80% training, 10% validation, 
and 10% testing within the learning process. The learning 
rate of the model was set at 0.0001. After evaluating the 
training performance, the architecture with 8 neurons in 
the hidden layer showed the best performance at epochs 16, 
with a validation MSE of 0.17479 mm, as shown in Fig. 8, 
relative to the weights and biases in Table 6. Each plot of 
Fig. 8 shows the mean square error metric across different 
stages of model training, validation, and testing, indicating 
how well the model generalizes to the unknown conditions, 
thus providing insights into its ability to effectively learn 
from the training data and make accurate predictions on 
new data. After evaluating the individual performances, 
the VB and RUL errors were distributed between − 0.3331 
to 0.4275 μm and − 0.2245 to 0.1195 μm, respectively, with 
the highest instances at − 0.01288 μm and − 0.00728 min 
close to the zero-error line. Figure 9 shows histograms of 
the machine learning model for both (a) VB (flank wear) 
and (b) RUL (remaining useful life) predictions. The sub-
plots depict error distribution between the predicted and 
actual VB and RUL values, respectively, providing insights 
into the accuracy and precision of the model across differ-
ent prediction tasks.

Furthermore, Fig. 10 evaluates the relationship between 
the predicted values and the actual measurements, providing 
insights into the model’s predictive accuracy and its ability 
to estimate VB and RUL effectively, thereby understanding 
the model’s performance across the predictions of different 
conditions and allowing for the examination of any poten-
tial biases or trends in the predictions. The ANN-regression 
coefficient of 0.98053 in Fig. 10a and 0.99927 in Fig. 10b 
confirms the highest correlation of the predicted against 
actual VB and RUL, respectively. This phenomenon was 
attributed to uniform flank wear or microchipping, which 
barely affected the energy layers on the flank wear region 
in the early cutting stages. However, near the failure region, 
the tools experienced severe chipping and BUE (built-up 
edge), which distorted the pixel distribution, reducing the 
wear region’s energy layers and Fi magnitudes. In addition, 
the chipping or flaking exposed the tool substrate, disrupting 
the pixel distribution and evolution of the Fi magnitudes.

After training the ML model, it was validated using the 
test dataset, which was obtained from a cutting condition 
outside the vicinity of the training process parameters. Fig-
ure 11 demonstrates the validation of machine learning (ML) 

Table 5   Thresholds of VB and Fi magnitudes for determining the 
failure criteria

Levels LTVearly LTVUniform LTVcritical LTVFailure

VB (μm) 100 200 300 500
Fi (Pixels) 2,000,000 4,000,000 5,000,000 7,000,000
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Fig. 8   Training, validation, and 
test performance curves of the 
ML model

Table 6   Parameters of the ML 
model [IW1, B1– weight and 
bias for layer 1; OW– output 
layer weight]

IW1 1W2 1W3 1W4 OW1 OW1 B1 B2

2.667  − 0.888 0.980 3.152 0.42 0.077 3.526  − 0.002
 − 0.3704.637 3.009  − 0.160 1.355 0.17 0.0621  − 2.112

 − 2317  − 0.379  − 1.807  − 1.804  − 0.84  − 0.094  − 1.017
 − 1.344  − 0.268  − 0.145  − 1.599 0.04  − 0.345 0.336
 − 3.689  − 2.400 0.590  − 1.063 0.10 2.321 1.819
 − 0.685 1.280 1.046  − 1.324  − 0.16  − 0.342  − 0.380
 − 0.444 0.091 0.225  − 0.542 0.55 1.281  − 0.246
1.163 4348 1.703  − 1.013  − 0.176  − 0.467  − 2.438

Fig. 9   Error histograms of the ML a VB and b RUL
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performance for VB prediction using test data, where the 
boxplot compares the distribution of actual and predicted 
VB, thereby providing accuracy and variability of the mod-
el's predictions. Figure 11b shows the boxplot for VB dur-
ing testing. The median skewed towards small values less 
than 200 μm, indicating high prediction accuracy for small 
VB values. The results showed that the mean predicted VB 
(data2) had a small deviation of 45.5 μm with measured 
values. It yielded a mean absolute error of 2.36%, which is 
lower than the values obtained in previous studies [30] and 
[31], where only geometric features were used to predict 

VB progression during machining. Additionally, the box-
plot indicates that there were no outliers, which means the 
predicted data strongly fitted within the expected range of 
measured values. The substantial decrease in predicted VB 
near the critical and failure regions, as shown in Fig. 11a, 
was attributed to the severe chipping, notching, flaking, and 
catastrophic failure of the tool cutting edge when milling 
Inconel 718. Furthermore, Fig. 12 illustrates the validation 
of machine learning (ML), which is depicted through an 
RUL curve, providing the insights into the accuracy and 
precision of the model’s predictions over the entire range 

Fig. 10   The regression analysis of the ML a VB and b RUL

Fig. 11   a Validation of ML performance for VB prediction using test data, b boxplot for actual and predicted VB
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of RUL. Figure 12b illustrates the boxplot of RUL during 
testing, with a median difference of − 5.3 min, indicating 
that the predicted values were slightly higher than the actual 
RUL values, which is a normal case for ANN models as 
they cannot produce a zero-output value during regression 
analysis. The plot shows that there was no substantial dif-
ference between actual (data1) and predicted RUL (data2). 
Additionally, the RUL boxplot had no outliers, which means 
the ML model predicted multicollinear data that perfectly 
fitted within the expected range of the measured values.

However, it was noted that the substantial reduction in 
RUL at the early cutting stage was attributed to the severe 
BUE (built-up edge) due to a large chip load at the highest 
feed of 0.13 mm/tooth. Figure 13 visualizes how different 
failure modes change over the course of cutting operations 
and varying cutting lengths, facilitating the understanding 
of the impact of cutting parameters on tool wear behavior 
and optimization of the machining processes for improved 
tool life extension. After subsequent passes, the BUE was 
removed by continuous chip flow, resulting in notching and 
chipping on the tool cutting edge, as shown in Fig. 13c and 
d. Such unprecedented failure modes increased the wear rate 
and RUL, making the models unable to achieve the expected 
value of 0 min at the end of tool life. This is why Fig. 12a 
shows that the RUL of the tools was 1.7 min at a maximum 
cutting length of 2000 mm. Furthermore, the median of the 
predicted RUL was skewed towards larger values, indicating 
a shorter RUL in the failure region as compared to the actual 
measurements. This was attributed to the rapid failure of the 
tools in the critical and failure wear stages. Nevertheless, the 
ML model still yielded a high performance, with a MAPE 
of 3.078%, indicating a high correlation between actual and 
predicted RUL.

3.3 � In‑process control of Fi feature

After training and validating the multi-sectional SVD-
based ML model for tool wear prediction, it was applied for 
optimizing the tool life by adjusting the cutting parameters 
to minimize the rate of Fi and RUL during the machining 
process. At this point, due to high correlation between Fi 
and VB, it was believed that the Fi feature was a direct 
predictor and indicator of tool wear evolution. This means 
minimizing this feature was as good as minimizing the VB 
progression during face milling of Inconel 718. According 
to the experimental findings in [2] and [15], the uniform 
flank wear evolution, whose magnitude was detected by Fi 
feature was the most preferred failure mode during face 
milling of Inconel 718. For this reason, the severe abra-
sion wear, which is the main causative mechanism of the 
non-uniform flank wear progression [32], was supposed to 
be minimized to reduce the rapid evolution of the unprec-
edented failure modes, and improve the rate of RUL. In this 
case, the lowest speed below 40 m/min reduced the cutting 
temperature and severe abrasion wear mechanism, which 
in the long run reduces the macro-chipping during machin-
ing. On the other hand, the feed rate below 0.08 mm/tooth 
reduced the cyclic adhesion and BUE due to moderate chip 
load [33], especially in the critical and failure wear stages, 
resulting in the low rate of Fi evolution as no significant 
BUE got removed together with the aggressive chip flow. 
In addition, the ADOC greater than 0.9 mm reduced the 
localized chipping in the depth of cut (DOC) region, mak-
ing the tools survive more impact forces at the lowest speed 
and feed/tooth. However, the ADOC had less impact on Fi 
evolution as compared to the speed and feed/tooth; as a 
result, it was kept constant during the optimization process. 

Fig. 12   Validation of ML performance for RUL prediction using test data: a RUL curve and b boxplot of RUL
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Therefore, the cutting speed of 35 and 40 m/min, and feed 
rate of 0.06, 0.07, and 0.08 mm/tooth was significant levels 
of speed and feed, whose synergy was believed to extend 
tool life, according to the findings presented in [6].

Figure 14 presents the evolution of Fi magnitudes and 
RUL profiles at varying speeds and feeds. The figure pro-
vides insights into the effects of these parameters on tool life 
extension, thereby offering an understanding of the dynamic 
behavior of tool wear evolution under varying processing 
conditions. The speed and feed adjustment were first per-
formed at a speed of 40 m/min, feed of 0.08 mm/tooth, and 
ADOC of 0.9 mm, which was the initial optimal condition 
designed by the GKRR model in [6]. It was perceived that 
the tools sustained a moderate temperature, friction, and chip 
load, which were attributed to the moderate adhesion wear 
mechanism on the tool’s cutting edge. The moderate chip 
load and speed resulted in high friction and plastic defor-
mation, which exacerbated the asperities deformation in the 
early cutting stages, producing a protective layer superja-
cent to the TiAlN/NbN coating [33]. This layer prevented 
the tool’s coating or substrate from further degradation or 
chipping by severe abrasion wear mechanism in the subse-
quent passes of the machining process. As a result, tools at 

this condition experienced the lowest Fi magnitudes in the 
uniform wear region, as shown in Fig. 14a. However, the 
moderate chip load at 0.08 mm/tooth feed rate exacerbated 
the cyclic adhesion and abrasion, which resulted in severe 
chipping in the critical and failure regions, thus reducing the 
rate of RUL (Fig. 14b).

After randomly reducing the speed from 40 to 35 m/min, 
and feed from 0.08 to 0.07 mm/tooth, the tools experienced 
low friction, galling, and asperities deformation due to low 
temperature and reduced chip load on the tool’s cutting edge. 
This reduced the BUE, thereby preventing the formation of the 
protective layer superjacent to the TiAlN/NbN coating, mak-
ing the rate of tool degradation faster as compared to the 40 m/
min and 0.08 mm/tooth. The same had the maximum rate of 
RUL in all the cutting stages (Fig. 14b). Although this wear 
phenomenon minimized the evolution of the chipping magni-
tudes in the critical and failure wear stages, the absence of the 
protective layer hastened the rate of Fi and RUL progression 
due to abrasion wear mechanism, especially in the early cutting 
stages. By further decreasing the feed rate to 0.06 mm/tooth, the 
detrimental effects of intense friction and rubbing action further 
reduced the chipping rate in the early cutting stages. Contrary, 
such wear phenomenon also increased the energy layers on the 

Fig. 13   Evolution of failure modes with cutting length (L) at Vc = 40 m/min, f = 0.13 mm/tooth, and ap = 1 mm

Fig. 14   a Evolution of Fi magnitudes and b the RUL profiles at various speeds and feeds
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wear region, leading to high Fi and RUL evolution. Neverthe-
less, it reduced the impact of the cyclic adhesion and severe 
abrasion wear mechanisms, which, in the long run, minimized 
the progressive chipping in the critical wear stage as no BUE 
was plucked together with chip flow. This yielded a longer cut-
ting length in the critical and failure regions as compared to 
the previous condition of Vc = 40 m/min and ft = 0.08 mm/tooth.

Therefore, 40 m/min and 0.08 mm/tooth yielded a better 
performance in the early cutting stages, whereas 35 m/min and 
0.07 mm/tooth yielded a better performance in the critical and 
failure stages. Thus, the combination of moderate VB rate in 
the critical and failure wear phases at a cutting speed of 35 m/
min and a feed rate of 0.07 mm/tooth was successfully inte-
grated with the effectiveness of Fi evolution achieved at 40 m/
min and 0.08 mm/tooth in reducing the rate of RUL, particu-
larly in the early cutting phases. As previously noted, the for-
mer helped to minimize cyclic adhesion, thereby reducing the 
impact of chipping progression in critical and failure regions, 
whereas the latter introduced the protective layer superjacent 
to the TiAlN/NbN coating, which prevented the premature tool 
failure, especially in the early cutting stages, when face milling 
Inconel 718. Therefore, a multi-stage adjustment of speed and 
feed rate at different wear stages was found to be more effective 
in minimizing the rate of Fi and RUL evolution as compared to 
a one-time adjustment of the processing conditions.

4 � Conclusion

This research shows the potential of a multi-sectional SVD-
based ML in dimensionality reduction, feature extraction form 
time-series tool wear signals, and prediction of progressive VB 
and RUL during face milling of Inconel 718. The magnitudes 
of singular values (Fi features) had a strong correlation with the 
flank wear depth at various processing conditions. Unlike the 
previous models, the proposed multi-sectional SVD-based ML 
was effective in predicting VB and RUL under limited data-
set during MV-TCM. The ML model showed high prediction 
accuracy at early cutting stages, where the tools experienced 
less discrepancies on the evolution of energy layers due to 
minimum occurrence of the unprecedented failure modes and 
wear mechanisms. However, the prediction accuracy decreased 
near the critical and failure stages due to severe chipping and 
BUE formation, which distorted the wear region’s pixel dis-
tribution and energy layers, resulting in low SV magnitudes 
and inconsistent rate of the Fi, VB, and RUL features on the 
flank wear region. It was also observed that the energy layers 
and Fi magnitudes fluctuated under unstable lighting condi-
tions; thus, a good MV-TCM set-up should ensure consistent 
lighting conditions to yield enhanced resolution of tool wear 
images before features extraction. Nevertheless, the multi-
sectional SVD-based ML yielded the high performance, with 
a MAPE of 2.36% and 3.078% for VB and RUL, respectively. 

The model was further applied to design the promising cutting 
condition, where it was revealed that the multi-stage adjust-
ment of speed and feed can improve the tool performance dur-
ing face milling of Inconel 718. It was believed that the sys-
tem’s performance can be improved through the utilization of 
the multi-plex MV-TCM cameras, stacked auto-encoders and 
deep learning architectures, which provide complex computing 
techniques to improve the feature engineering process.

The research offers some proven evidence of advances 
in the field of MV-TCM. The methodology of this research 
demonstrated model’s effectiveness in dimensionality 
reduction, features selection, and tool wear prediction in 
challenging CNC machining domains and materials, with 
a case study conducted on Inconel 718. This provides evi-
dence of a possible on-going exploration of other high-per-
formance aerospace materials, such as Waspaloy, Titanium, 
and fiber-reinforced composites. Moreover, continued 
investigation of the model’s generalization could enhance 
its significant application across various manufacturing 
industries. In the meantime, rigorous online experiments 
are needed to validate the versatility and reliability of the 
multi-sectional SVD-based ML technique in predicting 
VB and RUL across various CNC machining operations, 
tools, and workpiece materials. Furthermore, the integra-
tion of this system with emerging technologies such as the 
Internet of Things (IoT) can enable adaptive monitoring 
and control of tool wear evolution in challenging CNC 
machining domains. This integration ushers in a new era 
of transformative machining practices during intelligent 
manufacturing of superalloy components.
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