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Abstract
The implementation of artificial intelligence (AI) techniques in industrial applications, especially solid-state welding (SSW), 
has transformed modeling, optimization, forecasting, and controlling sophisticated systems. SSW is a better method for 
joining due to the least melting of material thus maintaining Nugget region integrity. This study investigates thoroughly 
how AI-based predictions have impacted SSW by looking at methods like Artificial Neural Networks (ANN), Fuzzy Logic 
(FL), Machine Learning (ML), Meta-Heuristic Algorithms, and Hybrid Methods (HM) as applied to Friction Stir Welding 
(FSW), Ultrasonic Welding (UW), and Diffusion Bonding (DB). Studies on Diffusion Bonding reveal that ANN and Generic 
Algorithms can predict outcomes with an accuracy range of 85 – 99%, while Response Surface Methodology such as Opti-
mization Strategy can achieve up to 95 percent confidence levels in improving bonding strength and optimizing process 
parameters. Using ANNs for FSW gives an average percentage error of about 95%, but using metaheuristics refined it at an 
incrementally improved accuracy rate of about 2%. In UW, ANN, Hybrid ANN, and ML models predict output parameters 
with accuracy levels ranging from 85 to 96%. Integrating AI techniques with optimization algorithms, for instance, GA and 
Particle Swarm Optimization (PSO) significantly improves accuracy, enhancing parameter prediction and optimizing UW 
processes. ANN’s high accuracy of nearly 95% compared to other techniques like FL and ML in predicting welding param-
eters. HM exhibits superior precision, showcasing their potential to enhance weld quality, minimize trial welds, and reduce 
costs and time. Various emerging hybrid methods offer better prediction accuracy.
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Nomenclature
AI  Artificial intelligence
ANN  Artificial neural network
ANOVA  Analysis of variance
CW  Cold welding
DB  Diffusion bonding
EW  Explosion welding
FL  Fuzzy logic
FSW  Friction stir welding
FW  Forge welding
GA  Genetic algorithm
HAZ  Heat affected zone
HM  Hybrid methods
ML  Machine learning
NZ  Nugget zone
RSM  Response surface methodology
SSW  Solid-state welding
SVM  Support vector machine
SZ  Stirring zone
TMAZ  Thermomechanical heat affected zone
UW  Ultrasonic welding
WZ  Weld zone

1 Introduction

In various permanent methods for joining materials, welding 
serves as a highly efficient method for creating robust and 
lasting connections between solid components, resulting in 
integrated parts that cannot be disassembled without caus-
ing harm. It offers a cost-effective and streamlined approach 
to joining materials, whether similar or dissimilar, without 
necessitating the presence of filler materials, external pres-
sure, or excessive heat. Welding’s versatility extends to vari-
ous settings, encompassing outdoor environments, indoor 
spaces, underwater conditions, and even extraterrestrial 
locales [1]. Welding is broadly classified into two groups 
depending upon the procedure of manufacturing (1) Fusion 
Welding (FW) and (2) SSW. FW involves the melting of 
parent materials at their adjoining surfaces; predominantly, 
this is carried out by choosing a proper filler which forms a 
bead over the welded surface. This category encompasses 
various techniques including (a) gas welding, (b) TIG weld-
ing, (c) MIG welding, (d) arc welding, and (e) high-energy 
beam welding [2, 3].

The welding methods mentioned are widely utilized in 
numerous industrial domains, including the manufactur-
ing of automobile outer structures, frames of the aircraft, 
pressure vessels like boilers, and ship frames. They are also 
essential for structural construction and rectifying flaws in 

both welding and cast items. Nonetheless, welding does 
come with certain drawbacks. One of the main issues is the 
development of internal stresses within the welded compo-
nents, which can lead to distortions and lower the structural 
parameters of the weldments. Additionally, in the nugget 
zone, microstructural changes were caused by welding, 
potentially impacting the material properties. Moreover, 
there are several harmful effects associated with welding, 
such as the emission of intense light, ultraviolet radiation, 
high temperatures, and the generation of fumes and gases 
that be hazardous to health and the environment. These fac-
tors are considered for safety measures when employing 
welding techniques in various applications [4–6].

When commencing dissimilar metal welding compared to 
traditional fusion welding processes several important things 
need to be considered. These concerns include the primarily 
appropriate filler material, then the melting point, thermal 
expansion coefficient of the base metal that is to be welded. 
These variations can significantly impact the strength of the 
weldment making it crucial to carefully choose compatible 
materials and employ suitable welding techniques to achieve 
successful and reliable joints. In the dissimilar metal weld-
ing process, there would be creation of intermetallic com-
pounds leading to the formation of brittle joints with limi-
tations in mutual solubility [7–10]. Extensive research has 
been conducted on the metals joined through different fusion 
welding techniques to fabricate assemblies with multi-com-
ponent structures. However, these methods often involve the 
use of expensive machinery and equipment. Additionally, 
in the FW process, there would be fumes as well as gases 
would be emitted creating air pollution leading to signifi-
cant health concerns for both humans and the environment 
[11–14]. Technological advancements in fields like rockets 
and missiles, electronics, and atomic energy have brought 
about significant progress. However, these advancements 
have also posed more encounters, particularly in dissimilar 
welding [15]. In dissimilar welding, the traditional weld-
ing process produced joints that had insufficient weldment 
parameters for industrial applications which led to a grow-
ing need for innovative and specialized methods to meet 
the demands of these cutting-edge technologies [16, 17]. 
As materials become increasingly sophisticated and require 
specific properties, conventional welding processes face lim-
itations in addressing these challenges. The complexity of 
advanced materials surpasses the capabilities of traditional 
welding methods, making it difficult to achieve the precise 
properties and characteristics needed for modern applica-
tions. As a result, there is a growing demand for advanced 
welding techniques to effectively materials and to meet the 
upcoming demands of various industries [18]. SSW is an 
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exciting and forward-thinking method that aims to meet the 
modern design industry’s changing needs. It considers the 
problems brought about by advances in materials and tries 
to overcome the limitations and defects associated with con-
ventional welding techniques. This ground-breaking method 
holds much promise for achieving excellent weld quality, 
improved mechanical properties as well as increased reli-
ability. Thus, it offers precious opportunities to a variety of 
industries eager to explore new frontiers of contemporary 
engineering [19, 20].

Even though SSW has been characterized by high cost 
of materials, lengthy processes as well as labor intensive-
ness, AI comes into play for this challenge. The use of AI-
based systems in solid-state welding is significant because 
they are helping in optimizing the welding parameters thus 
revolutionizing the welding industry. Artificial intelligence 
develops algorithms that analyze big data sets which conse-
quently point out the best parameters for welding, increas-
ing accuracy, and productivity and reducing costs incurred 
during operations. By doing so, this approach improves effi-
ciency in welding and improves product quality leading to 
innovation and advancement in the manufacturing sector. 
There are many other methods used by AI such as ANN, 
FL, ML optimization using Heuristic Algorithms, and HM 
Multicriteria Decision Making Approach [21–24].

A methodology that encompasses multiple responses 
is employed to optimize friction stir welding joints. This 
methodology utilizes techniques such as ANN and PSO to 
predict the most effective values of the output parameters of 
tensile strength and hardness of the welding by feeding the 
input and output values. The effectiveness of this approach 
is demonstrated by its high reliability, as it achieves pre-
dictions with an error rate of less than 5% [25]. Analysis 
of weld parameters made by FSW on 5083 Aluminum and 
pure Copper with optimization methods like ANN and PSO, 
optimized parameters including the angle of tool tilt, tool 
rotation speed, and traverse speed of 2°, 1150 rpm, 40 mm/
min respectively to enhance maximum tensile force by 
15–21%[26].

Two fuzzy models, for static and dynamic parameters, 
were employed, demonstrating the efficacy and cost-
effectiveness of FL in predicting and enhancing the tensile 
strength parameter of friction stir spot welding which proved 
to be sustainable and efficient [27]. By incorporating process 
data into a closed loop, a hybrid GA-ANN model is trained 
by the input parameters to predict lap shear strength more 
accurately, and this integration decreases the error of maxi-
mum permitted error from 13.1 to 7.5% [28].

Moreover, a recent study examined the welding quality 
of thin-walled wide AA6063 hollow profiles manufactured 

using a novel three-container extrusion method at different 
temperatures and stem speeds. Tensile tests indicated that 
satisfactory welding quality was attained approximately 
38 mm from the front end, with no tensile failures observed 
at the welds beyond this distance. The metal flow process 
during three-container extrusion was delineated into five 
stages, including material division, smooth flow, welding 
chamber filling, bearing breakthrough, and steady extru-
sion stages. This detailed characterization sheds light on 
the extrusion mechanism and weld formation between bil-
lets [29].

The investigation employs various ML techniques such as 
Linear Regression, Polynomial Regression, Support Vector 
Regression, Decision Tree Regression, and Random Forest 
Regression to forecast the highest temperatures in aluminum 
alloys that are produced through FSW. The Random Forest 
Regression method is identified as the appropriate approach 
due to its ability to produce welds of excellent quality with-
out any defects is achieved by maintaining a 1000 rpm value 
for tool rotational speed added which as ensured during the 
welding the peak temperature remained less than 300 °C. 
Moreover, the optimization of the diffusion bonding welding 
parameters of aluminum alloys is predicted using RSM and 
the Design of the Experiment, resulting in enhancements in 
shear and tensile strengths [30].

Through an in-depth examination of current literature and 
research findings, the review aims to uncover the significant 
potential offered by AI-driven methods in improving solid-
state welding processes. It underscores their pivotal role in 
guaranteeing high-quality welds and attaining cost-effective-
ness through the utilization of data-driven decision-making 
and process optimization strategies. AI-driven approaches 
hold promise in revolutionizing welding operations by 
streamlining processes, reducing errors, and ultimately 
enhancing productivity across various industries. Figure 1 
presents the visual depiction of the technique and procedure 
implemented in this comprehensive analysis of this work.

2  Solid‑state welding (SSW)

SSW methods offer a distinctive approach where direct applica-
tion of heat is not the primary mechanism. Instead, these tech-
niques rely predominantly on the application of substantial pres-
sure. Consequently, at the contact junctions, heat is generated 
between the materials being joined. However, the temperature 
within this area generally stays under the base metal melting 
point. This controlled heating method facilitates the consolida-
tion and bonding of the materials without necessitating them to 
reach their melting points. This results in the creation of robust 
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and dependable joints while safeguarding the original material’s 
integrity [31]. The lack of material melting in SSW contributes 
to a substantial reduction in the forming of the intermetallic 
compounds and defects formed due to solidification; they are 
the inclusion of non-metal, hot cracking, and gas porosity which 
are often encountered in fusion-welding methods. This unique 
characteristic enhances the quality and integrity of welded joints 
achieved through SSW techniques [32]. This attribute makes 
SSW particularly well-suited for joining dissimilar metals with 
minimal complications. Nonetheless, despite its advantages, 
SSW processes never yield the preferred joint properties for cer-
tain specialized purposes. Depending on the distinct requirements 
of an application, other welding techniques or joining methods 
might be more suitable. Each welding method has its inherent 
strengths and limitations, and the selection of the most suitable 
approach should hinge on factors like the materials involved, the 
application’s demands, and the desired joint properties. Con-
sequently, it is vital to consider the specific necessities of each 
application when opting for the appropriate welding process 
[33–36]. The detailed list of SSW techniques encompasses EW 
(explosion welding), DB, FSW, UW, CW (cold welding), and 
FW (forge welding) [37]. This diverse range of techniques further 
underscores the flexibility and versatility that SSW offers within 
the area of joining processes as shown in Fig. 2.

2.1  Diffusion bonding (DB)

DB is a solid-state joining method that achieves bonding without 
brazing, melting, liquid interface, and solidification. It can cre-
ate strong bonds between similar and different materials below 
their melting temperatures under a specific load while using an 

inert atmosphere or vacuum to prevent oxidation. DB relies on the 
solid-state diffusion principle, where atoms intermingle at high 
temperatures and pressure over time, forming high-quality bonds. 
This process eliminates defects, segregation problems, distortion 
stresses, and cracking common in fluid-phase welding techniques. 
However, it result in some deformation at the nugget region of 
the weldment due to the applied pressure and temperature condi-
tions. Despite this, the benefits of producing reliable, defect-free 
bonds make DB a compelling choice for various applications in 
industries seeking high-performance joints [38, 39]. First, Fick’s 
law equation can be used to explain the process. [37]

E  Diffusion Flux
C  Diffusion Co—efficient
�  Material Concentration
x  Distance

In the DB technique, in this process, the materials that 
need to be bonded are heated gradually to a temperature at 
which bonding between materials is formed called bond-
ing temperature. Then the pressure gradually increased to a 
required level known as bonding pressure. Consequently, the 
bonding pressure and temperature are maintained at a per-
sistent range throughout a certain amount of time known as 
the holding time. After the holding period, the pressure and 
temperature are normalized to the ambient condition [40]. 
Extensive literature sources have thoroughly investigated 

(1)E = C
��

�x

Fig. 1  Methodology of the 
literature review
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and documented the specific bonding factors; they are pres-
sure applied, time, and bonding temperature [41].

2.1.1  Defects in diffusion bonding

2‑D imperfections (defects) The metallic lattice can exhibit 
two-dimensional flaws in the form of phases and grain 
boundaries, and these defects have an impact on the DB 
process. The dislocation propagation in the lattice region is 
hindered by the presence of grain boundaries, making them 
obstacles for dislocation motion. Consequently, materials 
with smaller grain sizes experience less deformation caused 
by dislocation movement under constant strain [42]. In the 
realm of database systems, the temperature that is imposed 
upon the region where two material interfaces can cause 
the enlargement of grains, thereby resulting in altered char-
acteristics at the surfaces where the joining occurs. When 
subjected to high temperatures, the deformation of materials 
is usually depicted by the sliding movement of grain bound-
aries, coble creep, or the flow of vacant spaces, which is 
commonly known as Nabarro-Herring creep. Consequently, 
materials with coarse grain structures are prone to experi-
encing more pronounced deformation during DB due to the 

diminished hindrance to movement in dislocation and the 
affinity of grain slides relative to one another. Hence, both 
the grain size and the temperature applied play crucial roles 
in determining the level of deformation and the rate of creep 
in the DB process. [43, 44].

3‑D imperfections (defects) Dissimilar metal welds serve as 
an important exhibit for understanding coupled long-range 
diffusion and precipitation in the context of DB [45]. Among 
the extensively studied cases are welds between two ferrite 
steels with varying chromium contents and those involving 
low-alloy ferrite steel and austenite stainless steel. Notably, 
carbon diffusion forms a critical role in the weld, as carbon 
migrates from the side that possesses low alloy content to 
the side with high alloy content when the steels have similar 
carbon content [46–48]. It is not only the concentration of 
carbon that acts as a driving force for its diffusion but also 
the gradient in the activity of carbon between the steels. 
This kind of diffusion also has significant microstructural 
effects around the bond interface [49]. In addition, in fer-
rite stainless steel, carbide precipitation takes place faster 
because they have high carbon content leading to low values 
of solubility of carbon in ferritic medium compared to aus-
tenitic steels. These findings provide important information 

Fig. 2  SSW types [37]
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about dissimilar welding to the distribution of carbon within 
microstructure and mechanical property improvements, thus 
broadening our understanding regarding steel metallurgy 
and diffusion bonding operations [50].

2.2  Friction stir welding (FSW)

This method of welding is developed on the basic idea of 
preventing intermediate materials such as fillers and melt-
ing of the welding materials. This cutting-edge technology 
was developed by the Welding Institute in 1991 at Cam-
bridge. This groundbreaking innovation has since opened 
new possibilities for efficient and high-quality metal joining 
processes in various industries and applications [51]. FSW 
is apt for joining nonferrous materials whose melting point 
is low such as magnesium, aluminium, as well as titanium 
[52]. FSW is recognized for creating welding joints that 
consist of four distinctive zones. The zones encompass the 
Nugget zone (NZ) in which the metal experiences mechani-
cal mixing and forging through the welding tool rotation, 
the Thermo Mechanically Affected Zone (TMAZ) which 
encounters elevated temperature and reduced strain, and the 
Heat Affected Zone (HAZ) where the material undergoes 
temperature variations without substantial mechanical defor-
mation than the zone that remains unaffected by welding, 
namely the parent or base material as illustrated in Fig. 3.

The FSW method employs a stirring tool that is not 
expended, unlike fusion techniques. This tool rotates between 
two material plates that are securely clamped to create a joint. 
Typically, the tool is circular in shape and features a shoul-
der for attachment to the rotating head. Additionally, it has a 
pin that can either be threaded or solid without threads. The 
chuck of the welding machine serves as the point of fixation 
for the tool on the headstock. As it rotates under the influence 
of an axial load, it generates heat in the welding specimen. 
Key factors such as tool geometry, feed rate, tool rotational 
speed, pin profile, pin length, tool angle, axial force, and 
plunge depth during FSW play significant roles in influenc-
ing the (a) physical properties, (b) mechanical properties, and 
(c) microstructural properties of the welded joints [54–56]. 
For illustration, augmenting the tool transverse speed reduces 
maximum temperatures and elevates strain rates in the weld 
zone. Conversely, raising the tool speed leads to a notable 

rise in peak temperatures within the stirring zone (SZ). It is 
imperative to comprehend and regulate these parameters to 
attain the desired welding characteristics and performance in 
FSW applications. [57]. The peak temperature can be numer-
ically calculated by using the formula Eq. (2) [58].

Tmax  Maximum temperature (K)
�  Tool speed (rpm)
�  Feedrate (mm/min)
Tm  Melting temperature (K)
K  0.64 and 
�  0.04 

The investigators carried out an extensively meticulous 
and comprehensive examination, presenting a comprehen-
sive evaluation of the bonding behavior of the FSW pro-
cedure under different operational circumstances. Though 
their approach to solid-state bonding models differed from 
the rest, they stood out by taking creep fracture at the grain 
boundary in high-temperature polycrystalline materials 
as against volumetric inter-diffusion for interface gap clo-
sure. This new model provided novel insights into FSW’s 
underlying mechanisms and highlighted the complex pro-
cesses responsible for strong and reliable weld bonds. FSW 
predominantly hinges on the strain rate generated by the 
creep process within the neighboring fusion zones with a 
slight dependence on interfacial diffusion and stress triax-
iality. This experiment revealed that the degree of bond-
ing increased with increasing tool rpm and the depth of 
the plunge decreased accordingly. It has been noted that 
the maximum extent of bonding achieved during cladding 
operation as well as the maximum thickness achievable cor-
responded almost exactly to 0.5R where R is the radius of 
the tool itself [59–61].

2.3  Ultrasonic welding (UW)

UW has become a highly efficient and effective approach for 
joining thin metal parts. Its benefits surpass traditional spot-
welding methods due to its minimal energy requirements. 

(2)Tmax =
[

�2

�×104

]�

× Tm × K

Fig. 3  Various zones in FSW [53]
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UW is especially appealing for dissimilar welding needs 
across diverse industries, notably the automotive sector. Its 
energy-efficient capability for facilitating dissimilar weld-
ing renders it a compelling option for ensuring dependable 
and top-notch joints in various applications [62]. The UW 
apparatus comprises 5 vital modules. Initially, a source 
generates electrical pulses at high frequency, typically at a 
20 kHz rate. Following this, a piezo transducer for generat-
ing the mechanical vibration from the high-frequency pulses 
and amplifying the vibration wedge is used. The consist-
ent pressure and vibration to the weldment is ensured by 
the sonotrode which is the most vital role in this process. 
Finally, a pneumatic cylinder supplies the requisite pres-
sure for clamping to firmly hold the welding materials. This 
combination of components enables precise and efficient 
UW, making it an optimal method for consistently and reli-
ably joining various metal parts [63, 64]. In this welding, 
the transducer movement automatically gets aligned to the 
direction of vibration as the energy given is linear as well 
as directional. This alignment creates shear forces which 
are aligned parallel to the material interface which ensures 
robust joints [65].

There are two designs in UW. First is the wedge reed 
system, and second is the lateral drive system. The vibrating 
reed vertical in direction is propelled by a coupler which is 
wedge-shaped, to the perpendicular direction to the reed is 
the transducer assembly. The tip of the sonotrode spreads 
the shear thereby conforming the effective welding of the 
joint. The anvil of this system is mobile but vibrates out of 
sync with the reed. On the contrary, the mechanism of the 
side drive is more straightforward, enabling direct tracking 
of vibrations using transducers. This system substitutes the 
vertical reed with a booster and horn that are in line with 
the transducer and run parallel to the sheets being joined. 
The horn, which is attached to the clamping mechanism, is 
responsible for generating the needed lateral movement and 
compressive force. Although the side drive system not be 
appropriate for welding wires and terminals that are tinned 
or have undergone oxidation, it can achieve acceptable welds 
on thinner materials due to their reduced rigidity [66–68].

In the UW process, the combination of mechanical vibra-
tions and clamping force works to break down the oxide 
layers between the contact points of the materials. This is 
achieved through high friction at the interface, which pro-
duces heat, softening the materials. This results in localized 
sticking and the creation of tiny welds, which then spread 
to cover the entire welding area. Operating at relatively low 
temperatures around 300 °C and with rapid weld cycles, 
often under 0.5 s, the process ensures a seamless network of 
micro-welds. Several hypotheses for the bonding mechanisms 
include metallurgical adhesion from plastic deformation, dif-
fusion at the weld interface, chemical reactions, mechanical 

engagement, and localized melting from frictional heating. 
Nonetheless, the exact mechanisms of bonding are still not 
completely understood. The heat produced and the tempera-
tures reached during welding are determined by the oscil-
latory movement between the sheets to be welded and the 
friction involved, shaping how the materials deform and 
bond. USW is distinctive as it commonly does not have a 
heat-affected zone seen in traditional Resistance Spot Weld-
ing, which often results in superior mechanical properties 
of the joints [69]. Key parameters in UW include the fre-
quency and amplitude of vibrations, clamping pressure, 
welding power, and energy, plus the duration of weld time. 
Accurately controlling these parameters is complex due to 
their interrelated nature. Frequencies used range from 15 to 
75 kHz, with 20 kHz being the standard for metal welding. 
This frequency range enables significant strain rates between 
 10−3 and  103  s−1, effectively shearing through tiny asperities 
on the material surfaces. Fine-tuning these settings allows for 
robust and accurate welding, resulting in strong and reliable 
joints [70]. The rate of shear strain to frequency is formulated 
by [71] given in Eq. (3).

�  Rate of shears strain
f   frequency
A  Amplitude
h0  Sheet thickness

The constant force pressing on the interface of the adjoin-
ing sheets depends on the pneumatic system that provides the 
force for both the welding tip and the clamping mechanism. 
It is essential to apply only the necessary amount of clamp-
ing force to maintain tight contact between the surfaces with-
out causing slip or adhesion, as these issues could cause too 
much heat and possible harm to the tool. Alternatively, using 
too much clamping force might cause extensive deformation 
and increase the power required for the welding process [72]. 
During the welding procedure, the power input is precisely 
adjusted to transmit ultrasound across the tools and materials. 
Simultaneously, the control unit monitors the welding dura-
tion to ensure the target energy level is achieved. Once this 
energy threshold is met, the welding cycle is complete, result-
ing in strong and reliable joints [73].

3  Artificial intelligence (AI)

AI refers to the ability of a system equipped with the necessary 
technology controlled by computers to execute activities asso-
ciated with complex cognitive processes [74]. These functions 

(3)� =
2fA

h
0
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include reasoning, deriving meaning, generalizing knowledge, 
and learning from past experiences. AI enables machines to 
mimic and emulate human-like reasoning capabilities, permit-
ting them to process complex data, make decisions, and adapt 
their behavior based on amassed data and knowledge [75–77]. 
Artificial intelligence technology is instrumental in boosting 
business efficiency and productivity through the automation of 
tasks traditionally carried out by humans. Its unparalleled capac-
ity for processing and analyzing large datasets allows companies 
to glean significant insights and make decisions informed by 
data, at a volume and speed that surpasses human capabilities 
[78–80]. The utilization of AI techniques is on the rise across 
various fields, including the manufacturing sector, particularly in 
FSW applications [81]. Detailed literature studies highlight the 
prominence of AI methods such as ANN, FL, ML, metaheuris-
tic, and HM in FSW. These AI techniques are chosen based 
on their distinct advantages and limitations, offering tailored 
solutions to specific SSW challenges [82–86]. As AI contin-
ues to evolve and find broader applications, its integration into 
FSW and other industries promises to reshape processes, boost 
efficiency, and foster innovation for sustained growth and suc-
cess [87]. Figure 4 shows the possible AI methods that can be 
implemented.

3.1  Artificial neural network (ANN)

The human brain has the most interesting capabilities which 
motivated scientists to study, analyze to reproduce its neuro-
physical performance through mathematical modeling. To 
understand and mimic the behaviors exhibited by the human 
brain, distinct neural network models and artificial cells were 
formulated for achieving precise representation [88]. Among 
the various models, ANN is notable as computer systems engi-
neered to replicate the learning function of the human brain. 
Their primary feature is their similarity to the structure of the 
human brain, enabling them to learn from provided examples. 
An ANN consists of interconnected artificial neural cells, where 
each connection between cells holds a precise index. The data 
processed by the ANN is encoded within this index and propa-
gated throughout the unit of the network. Through these net-
works, scientists aim to harness the potential for intelligent 
problem-solving, pattern recognition, and decision-making that 
mirrors the cognitive abilities of the human brain. [89–91].

This network consists of multiple layers that handle infor-
mation concurrently. The data is initially received by the input 
layer, then processed by several hidden layers, and ultimately 
delivered to the output layer. The presence of numerous hidden 
layers interspersed between the input and output enhances the 
network’s ability to work with complex data shown in Fig. 5 
[92]. To achieve precise outputs for given inputs, the network’s 
connections are endowed with weights, which undergo adjust-
ments during the training phase. Initially randomized, these 
weights are refined through iterative training, during which each 

sample from the training set is presented to the network to fine-
tune the weights according to the learning rule. This iterative 
procedure persists until the network accurately produces correct 
outputs for all training samples, thereby enabling it to effectively 
process new data and yield meaningful results [93, 94]. ANN 
offers numerous benefits, including information storage across 
the network, adept handling of missing data, fault tolerance, 
distributed memory, ML capabilities, and parallel processing 
capabilities. However, they also present some challenges, such 
as reliance on hardware, the complication of determining the 
optimum network structure, challenges in presenting problems 
to the network, and uncertainty regarding network duration [95]. 
Various ANN models like Perceptron, Assisted Reproductive 
Technology, Adaline, Radial Basis Function, Hopfield, Recur-
rent, Self-Organizing Map, and Principle Component Analysis 
have been developed for specific purposes and different fields 
[96–100]. ANN requires analyzing the relationships between 
input data, which is achieved through two main learning meth-
ods, supervised and unsupervised learning. Additionally, hybrid 
approaches that combine supervised and unsupervised learning 
techniques are employed to tackle complex problems effectively 
and achieve optimal outcomes [101].

3.2  Fuzzy logic (FL)

FL has demonstrated its efficacy in controlling nonlinear, 
complex processes that are challenging to model and involve 
uncertain or imprecise information. Like human reasoning, FL 
operates based on intermediate values like “very long,” “long,” 
“medium,” “short,” and “very short.” The concept of fuzzy logic 
was initially introduced by Lotfi A. Zadeh in 1965 in an article 
proposing fuzzy set theory. [102]. Classical logic-based mathe-
matical analysis techniques are suitable for managing simplified 
and straightforward conditions but fall short when confronting 
complex and subjective evaluation systems. In these situations, 
FL stands out by accommodating uncertainty and imprecision, 
rendering it a valuable tool for tackling real-world problems 
where traditional methods prove insufficient [103, 104]. A 
fuzzy system consists of multiple components, as depicted in 
Fig. 6, that show the input units, fuzzy rule base, fuzzy infer-
ence engine, defuzzification, and output units. The input units 
manage the data supplied to the system, which can encompass 
both numerical and verbal information.

Fuzzification is the process of mapping digital input data 
to degrees of membership in fuzzy sets, which are described 
using linguistic terms. The fuzzy rule base contains If–Then 
rules that associate input data with output variables, with 
each rule establishing logical connections between portions 
of the input domain and the output domain by fuzzy sets. 
The fuzzy inference engine then combines these established 
relationships from the rule base to ascertain the system’s 
response and output in light of the specific input [105]. To 
acquire accurate numerical output values, the defuzzification 
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phase transforms the fuzzy inference outcomes into clear, 
numerical outputs. Afterward, the output unit involves 
aggregating output data resulting from the interface between 
statistics and the rules of the fuzzy. FL is categorized into 
Mamdani and Sugeno types and is widely utilized across 
diverse domains for tasks including control and prediction. It 
presents a robust method for addressing complex, uncertain, 

and imprecise information, rendering it invaluable in resolv-
ing real-world challenges across diverse fields [106–110].

3.3  Optimization (meta‑heuristic algorithms)

Optimization entails identifying the optimal solution among 
multiple potential solutions to a problem. To achieve this, 

Fig. 4  Classifications of AI

Fig. 5  Network architecture of 
ANN
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different algorithms are deployed, falling under two main cate-
gories: heuristic optimization algorithms and mathematical opti-
mization algorithms. Mathematical optimization algorithms aim 
to resolve problems by exhaustively searching for the full set of 
possible solutions, which can be computationally demanding for 
problems that have many potential solutions. On the other hand, 
heuristic optimization algorithms take a more intuitive strategy, 
seeking to find the optimal or a close-to-optimal solution in a 
more efficient manner. Consequently, heuristic optimization 
algorithms are generally favored for problems that encompass 
a wide array of potential solutions [111]. It is important to note 
that for all the test functions, one single optimization technique 
cannot produce proper prediction value. Therefore, it becomes 
crucial to identify the most appropriate algorithm for specific 
problem types. In the current trend, the progress of optimiza-
tion algorithms is driven by the effective utilization of the basic 
heuristic methods. High-level heuristic approaches involve the 
use of probability-based investigation for getting the new solu-
tion using the current scenario by iterations. This approach aims 
to move towards the most suitable solution while addressing the 
limitations associated with selecting local best points. Addition-
ally, the presence of a well-defined objective function is vital 
for the effective implementation of optimization algorithms in 
achieving the desired solution efficiently [112]. The introduc-
tion of the GA leads to lots of new algorithms being proposed 
day by day some of the effective algorithms applied are Scatter 
Search, Simulated Annealing, Tabu search, Artificial Immune 
System, Ant Colony Algorithm, Differential Evolution, multi-
objective GA, PSO, Imperialist Competitive Algorithm, Teach-
ing Learning-Based Optimization, and Artificial Bee Colony 
algorithm [113–128].

3.4  Hybrid methods (HM)

HM in AI brings together two or more algorithms to create a 
more potent and efficient approach to solving a variety of prob-
lems. The efficiency of HM can potentially be influenced by 
multiple factors, encompassing precision, network configura-
tion, the algorithm of learning, parameters, and the caliber of 
historical data that is integrated into the procedure. In essence, 
hybrid techniques offer a promising avenue in AI, providing 
inventive solutions to real-world issues across different domains 

and applications [129–131]. Hybrid smart systems are increas-
ingly being employed to address complex real-world problems 
characterized by uncertainty, vagueness, and high dimensional-
ity. These systems leverage the strengths of various algorithms 
to enhance effectiveness and adaptability [132–134]. Among 
the commonly utilized hybrid techniques are Auto-Regressive 
Integrated Moving Average, GA-ANN, Adaptive Neuro Fuzzy 
Inference System, Genetic Programming, and Support Vector 
Machine [135–139]. These methodologies collectively underline 
the potential of hybrid approaches in AI to provide innovative 
solutions that address real-world challenges with increased effi-
cacy and versatility.

4  Artificial intelligence – friction stir 
welding

A comparative analysis shown in Fig. 7, which is the out-
comes from the three prediction models, revealed a dis-
tinct trend. In the given dataset, the Random Forest Model 
exhibited superior accuracy as compared to both the multiple 
regression and the support vector machine models. Impres-
sively, the Random Forest Model achieved an impressive R2 
value of 96%, which significantly outperformed the other 
models by margins of 22% and 21%, respectively [140].

Fig. 6  Network architecture of 
fuzzy

Fig. 7  Comparison data of Multiple Regression, Random Forest, 
Support Vector Machine vs Experimental method [140]
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The discovery emphasizes the remarkable suitability of the 
enhanced Random Forest algorithm for handling intricate non-
linear difficulties, such as those experienced in the process of 
ultrasonic-assisted FSW. This result substantially enhances our 
comprehension of the capabilities of machine learning meth-
odologies within the manufacturing domain. Issac et al. [141] 
investigated FSW with varying material coatings including  B4C, 
TiC, SiC,  Al2O3, and WC. They explored parameters like feed 
rate, groove width, and tool rotational speed. To optimize results, 
they employed an ANN using the feed-forward backpropagation 
method, aiming to minimize mean squared error. Interestingly, 
the TiC-infused aluminum matrix composite (AMC) showcased 
the most favorable wear rate. On the contrary, the  Al2O3-infused 

Fig. 8  Effects of individual 
parameters [141]. F, feed rate; 
G, groove width; N, rotational 
speed

Fig. 9  Prediction of various ML 
methods with FSW parameters 
[142]

Fig. 10  Prediction of various ML methods with FSW parameters [142]
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AMC exhibited the maximum wear rate among the tested com-
posites, as depicted in Fig. 8.

Nadeau et al. [142] premeditated the assessment of vari-
ous ML methodologies, encompassing Principal Compo-
nent Analysis, K-nearest neighbor, Multilayer Perceptron, 
Multilayer Regression, and Support Vector Machine in pre-
dicting the defect index of FSW detailed in Figs. 9 and 10. 
The graphs clearly show that within the K-nearest neighbor 
model, the primary input parameters of FSW — specifi-
cally rotational and travel speeds, alongside the forging force 
emerge as the most pivotal factors, collectively contributing 
to 60% of the predictive accuracy. A summary of literature 
reviews related to AI-based friction stir processing is pro-
vided at the end of Sect. 6 (Table 3, 4, and 5).

In Dewan et al. [143], the investigation focused on 
exploring the significant impact of three crucial input 
factors, namely tool speed (N), axial force (Fz), feed rate 
(V), and Empirical Force Index for the analysis of the 
ultimate tensile strength which is the output parameter. 
This investigation involved meticulously executing 73 

weld schedules and subsequently measuring the tensile 
properties of the experiments. Utilizing this extensive 
dataset, for optimization an Adaptive Neuro Fuzzy model 
was formulated which involved creating 1200 models 
with varying factors. This neuro fuzzy predictive capa-
bility was found to be superior to that of the optimized 
ANN models, thereby highlighting its potential as a 
robust tool for ultimate tensile strength prediction in 
FSW joints. Notably, the Empirical Force Index exhibited 
a strong correlation with ultimate tensile strength com-
pared to the other parameters, as evidenced by extensive 
experimental research. Thorough investigations revealed 
that the Empirical Force Index emerged as a nonlinearly 
interconnected factor with the input factors (N, V, Fz). 
The performance of the Neuro Fuzzy model was signifi-
cantly influenced by these findings as the inclusion of 
input parameters (V, Fz, and EFI) resulted in the low-
est root mean square value of tensile strength that was 
29.7 MPa and mean absolute percentage error value of 
7.7% as shown in Fig. 11.

Fig. 11  a Experimental vs predicted ultimate tensile strength by input parameters (V, Fz, EFI). b Experimental vs predicted ultimate tensile 
strength by input parameters (N, V, Fz) [143]
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5  AI – diffusion bonding

Britto et al. [144] conducted a study with the objective of 
enhancing the strength of joints by investigating key input 
parameters that are temperature, pressure, and holding time. 
They strategically designed the experimental parameters using 
specialized software to cover the influential range, followed 
by the analysis of the empirical outcomes using RSM. The 

researchers employed an ANN for stochastic modeling to 
establish the relationship between inputs and outputs. Sub-
sequently, parameter optimization was accomplished using 
a GA. Importantly, the ANN model demonstrated twice the 
accuracy in predicting compared to RSM. Through their anal-
ysis, the authors determined the optimized values for tempera-
ture to be 380 °C, pressure as 10 MPa, and holding time of 
46 min to achieve a robust bonding as illustrated in Fig. 12.

Fig. 12  ANN and RSM vs error percentage. a Shear strength. b Tensile strength [144]

Fig. 13  Results of sensitivity 
analysis [145]
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Joseph et al. [145] studied the DB process between dis-
similar alloys (Mg and Al) focusing on the primal input 
parameters bonding temperature, pressure, holding time, and 
surface roughness. The incorporation of these parameters 
using RSM allowed for the assessment of joint strength. Ulti-
mately, the optimization of diffusion bonding was achieved 
to get maximal shear and bonding strength. The bonds that 
were formed under specific conditions with bonding temper-
ature, bonding pressure, holding time, surface roughness of 
430 °C, of 13.84 MPa, of 32.50 min, and of 0.12 µm respec-
tively produced effective shear strength of 49.39 MPa and 

bonding strength of 70.04 MPa. Furthermore, a sensitivity 
analysis was conducted through mathematical calculations 
shown in Fig. 13 which suggests that for the output param-
eter of shear strength, the bonding temperature parameter 
was more significant compared to other input parameters.

In Britto et  al. [146], an extensive investigation 
was carried out on the DB joints in aluminum alloys 
(AA6061/AA7075). An ANN-GA model was employed 
to optimize the parameters much focus on shear strength 
and ram tensile strength which made a neural connection 
between input and output variables. The model generated 

Table 1  Outcomes for ANN and 
Random Forest [147]

S. no Control mode Failure load Weld quality Prediction 
perfor-
manceExp (N) Pre (N) Relative error % Exp Pre

1 400 J 0 310.3 Inf 0 0 Excellent
2 600 J 0 253 Inf 0 0 Excellent
3 800 J 745.4 1063.8 42.7 0 0 Excellent
4 1000 J 2500.2 2327.6 6.9 1 1 Excellent
5 1200 J 2964.4 3344.9 12.8 1 1 Good
6 1200 J 3524.6 3762.8 6.8 1 1 Excellent
7 1200 J 4046.3 3900.4 3.6 1 1 Excellent
8 1200 J 3645.8 3398.1 6.8 1 1 Excellent
9 1200 J 3554 3525 0.8 1 1 Excellent
10 1200 J 2986.5 3573 19.6 1 1 Fair
11 1200 J 3210.8 3402.5 6 1 1 Excellent
12 1200 J 3678.6 3818.3 3.8 1 1 Excellent
13 1200 J 3960.1 3624 8.5 1 1 Excellent
14 1200 J 3572.3 3699.5 3.6 1 1 Excellent
15 1200 J 3278 3850.7 17.5 1 1 Fair
16 1200 J 3616.8 3492.2 3.4 1 1 Excellent
17 1200 J 3286.7 3253.2 1 1 1 Excellent
18 1200 J 3223.6 3539.5 9.8 2 2 Excellent
19 1200 J 3506.2 3698.4 5.5 1 1 Excellent
20 1200 J 3545.9 3602.2 1.6 2 2 Excellent
21 1300 J 3738.6 3769.1 0.8 1 1 Excellent
22 1400 J 3309.1 3260.2 1.5 2 2 Excellent
23 0.004 in 2134.9 2497.7 17 0 0 Excellent
24 0.006 in 3860.3 3886.2 0.7 1 1 Excellent
25 0.008 in 2462.3 2560.3 4 2 1 Bad
Overall relative error 8.0% Accuracy 96.0%

Table 2  AI methods applied in UW [148]

S. no AI method Features count Aim of study Error rate Cite

Random Forest 8 Weld quality level in ultrasonic composite welding Type I — 1%
Type II — 0%

[147]

Bayesian Regularized Neural Network 25 Weld quality level in ultrasonic composite welding Type I — 0.5%
Type II — 0%

[149]

Statistical Process Control 10 Weld quality level in ultrasonic metal welding Type I — 21.5%
Type II — 0%

[150]
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Fig. 14  Weld quality results with Bidirectional Recurrent Neural Network [149]

Table 3  Summary table of AI-DB

AI – DB (summary)

S. no Materials con-
sidered

Similar/
dissimilar 
weld

Input parameters Output param-
eters

Analysis type Method Accuracy of 
result

Year Cite

1 AA5083 and 
AA7075

Dissimilar Holding time, 
temperature, 
pressure

Shear strength, 
Ram tensile 
Strength

ANN Back propaga-
tion technique

98% 2017 [150]

2 AA6061 and 
AA7075

Dissimilar Temperature, 
pressure, hold-
ing time

Lap shear 
strength, Ram 
tensile strength

ANN GA 99% 2018 [144]

3 Ni–Ti MMCs Similar Temperature, 
time

Shear Strength ANN GA 85% 2008 [151]

4 Al/SiCp MMC Similar Temperatures, 
time

Microhardness ANN Human vision 
system

Maximum 5% 
error

2006 [152]

5 AA1100 and 
AA7075

Dissimilar Temperature, 
pressure, and 
holding time

Lap shear 
strength, ram 
tensile strength

ANN and RSM GA and 
ANOVA

ANN prediction 
is twice as 
accurate

2020 [146]

6 AA6061 and 
AA7075

Dissimilar Bonding tem-
perature, bond-
ing pressure, 
holding time

Shear strength, 
ram tensile 
strength

RSM Maximum-
the-better, 
minimum-
the-better, and 
nominal-the-
better

90% 2020 [153]

7 NA NA Vacuum value, 
welding 
temperature, 
pressure, hold-
ing time

Power setting 
value, expo-
sure time

ANN, FL, and 
neuro-fuzzy 
controller

Back-propa-
gation error 
algorithm

95.5% 2019 [154]

8 AZ31B and 
AA6061

Dissimilar Bonding 
temperature, 
bonding pres-
sure, holding 
time, surface 
roughness

Shear strength, 
bonding 
strength

RSM ANOVA 95% confidence 
level

2011 [145]
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had an outstanding prediction of 57 MPa and 75 MPa for 
shear strength and tensile strength, respectively.

6  AI – ultrasonic welding

In Yang Li et al. [147], a comprehensive investigation was 
carried out with the objective of simultaneously forecast-
ing the failure load and welding quality which had three 
varied conditions of under weld, normal weld, and over 
weld in UW of carbon reinforced fibers. The model was 
generated using ANN and Random Forest which after 
being trained this model showed strong output perfor-
mance. Notably, the ANN model exhibited an impressive 
overall correlation coefficient of 0.9687, with specific 
R-values of 0.9698, 0.9314, and 0.9803 for the training, 
validation, and test datasets, respectively. The error value 
between the predicted and experimental was 7.1% added 
the model displayed an exceptional overall accuracy of 
99% and about 96.7% in training which are displayed in 
Table 1.

Wang et al. [148] summarized a few AI methods with its 
error rates listed in Table 2.

Lei Sun et al. [149] investigated the UW of Carbon 
Fiber Reinforced Polymer, a hybrid feature selection 
approach was introduced to improve the output. The 
method combines the clustering type overlap method to 
Fisher ratio which was verified by the ANOVA test of 
the Bidirectional Recurrent Neural Network classifica-
tion model. The results, as depicted in Fig. 14, indicate 
that compared to traditional approaches such as Support 
Vector Machine and K-Nearest Neighbors, both the ANN 
techniques and Bidirectional Recurrent Neural Network 
demonstrate higher accuracy.

7  Conclusion

This literature survey has provided a comprehensive over-
view of the impact of various artificial intelligence (AI) 
techniques on solid-state welding (SSW), focusing specifi-
cally on diffusion bonding, FSW, and UW.

8  Diffusion bonding

In diffusion bonding, the utilization of Artificial Neural Net-
works (ANN) and Generic Algorithms has demonstrated 
remarkable accuracy rates ranging from 85 to 96% in predict-
ing outcomes such as shear strength, lap shear strength, and 
microhardness. Additionally, the integration of optimization 
strategies like response surface methodology (RSM) and Ta
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maximum-the-better, minimum-the-better approaches has 
shown efficacy in enhancing bonding strength and optimizing 
process parameters with confidence levels reaching up to 95% 
(Table 3).

9  Friction stir welding

ANN has been the prevalent approach, achieving an 
average accuracy rate of around 95%. Refining the ANN 
using metaheuristic algorithms resulted in an incremental 
accuracy boost of approximately 2%, further enhancing 
the precision of prediction studies. Despite this, obser-
vations indicate an average discrepancy in predictions 
of approximately 5% when forecasting FSW parameters 
like tensile strength, hardness of the heat-affected zone 
(HAZ), microstructure, and grain size. Fuzzy logic meth-
ods achieved an average precision level of approximately 
91%, with additional enhancements observed when inte-
grating Genetic Algorithm (GA) techniques to define 
membership functions (Table 4).

10  Ultrasonic welding

The utilization of AI techniques including ANN, Hybrid 
ANN, and Machine Learning models like Random Forest 
and Long Short-Term Memory (LSTM) recurrent neural 
networks has showcased effectiveness in predicting output 
parameters with accuracy levels ranging from 85 to 96% 
(Table  5). Integrating AI techniques with optimization 
algorithms such as Genetic Algorithm and Particle Swarm 
Optimization has led to significant accuracy improvements, 
enhancing the prediction of parameters, and optimizing UW 
processes.

The literature survey showcases the potential of AI tech-
niques, such as ANN, FL, and ML models in predicting SSW 
outcomes with impressive accuracy rates ranging from 85 
to 96%. Integration of optimization strategies like RSM and 
metaheuristic algorithms enhances precision, contributing 
to improved weld quality, and process efficiency.

11  Future outcomes

Hybrid algorithms combining AI methods and advanced 
optimization strategies are expected to significantly 
improve solid-state welding processes. This approach holds 
promise for higher accuracy, efficiency, and cost reduction, 
leading to AI-driven solutions in the welding industry. In 
addition to paving the way for wider adoption, ongoing 
research in hybrid algorithms can lead to more sophisti-
cated models that can solve complex welding challenges.
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