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Abstract
Throughout industrial revolutions, equipment downtime mitigations have been one of the ultimate goals of most factories.
Several tools, such as human machine interface (HMI) alarming systems or predictive maintenance schedules, assist in
reducing system downtime but still depend on the operators’ ability to swiftly retrieve, understand, and efficiently act upon
reported failures. We propose the design of a hybrid experimental artificial intelligence (AI) and generative AI chatbot HMI
that effectively extracts factory equipment conditions that are useful for troubleshooting and predictive maintenance analysis.
We achieve these functions by feeding experimental factory-monitored data to the customized chatbot application tool running
in its back-end, a Langchain agent linked to the OpenAI GPT−3.5 language model (LM) via OpenAI APIs. We design our
chatbot front-end with Streamlit, an open-source web app. In the context of I5.0, our chatbot HMI uses personalized natural
language, English, to interact with the operator, making the information extraction more understandable. We also integrate
the generative AI capability of the GPT 3.5 LM that augments the factory data based on the loaded format to create a larger
dataset for additional tasks like machine learning modelling. The experimental results show the accuracy of our customized
chatbot HMI when retrieving data based on specific prompts and the advantages of a reduced troubleshooting time compared
to operations in traditional factories, which are highly dependent on supervisors’ interventions. Our study provides a valuable
example of upgrading standard factory HMIs to I5.0-capable ones by implementing customized AI and generative AI chatbots
within operational industrial environments.

Keywords Equipment downtime · Factory chatbot · Generative AI · Human machine interface (HMI) · Industry 5.0 ·
Troubleshooting

1 Introduction

For over a decade, the industrial sector has experienced a
tremendous revolution with the advent of the Industry 4.0
(I4.0) paradigm [1–3]. This concept, also known as smart
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factory, focuses on implementing advanced and intelligent
technological concepts such as artificial intelligence (AI) and
machine learning (ML) [4] to improve production processes’
efficiency and automation. Since 2021, a new industrial rev-
olution, Industry 5.0 [5], has slowly been pathing its way
into the industry. It builds on top of the existing I4.0 techno-
logical principles while shifting the attention toward smart
manufacturing [6] systems that are more operator-centric
(human-centred), sustainable, and resilient [7].

AI is the driving force behind the deployment of Industry
4.0. It plays a critical role in its implementation, bring-
ing forth benefits such as the creation of automated tasks
to improve system productivity and reduce human error,
increased efficiency in decision-making, and prevention of
system failure with data insights analysis (predictive mainte-
nance); and the design of more resilient production systems
reducing overall production costs, growing competitiveness,
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and increasing customer satisfaction [8]. Being built on sim-
ilar technological principles, in Industry 5.0, AI carries the
same promises and potential, focusing on strategically re-
inserting the human factor within production processes to
createmore sustainable outcomes for factories and the planet.
With its emphasis on human well-being, I5.0 also responds
to the long pending concern of job losses in industries due to
the introduction of AI-automated technologies and solutions
in production processes. In addition to the advantages men-
tioned above, I5.0 aims to offer human-centered AI solutions
that upskill operators to efficiently interactwithmachines and
reduce waste and energy consumption, which is beneficial to
the environment [9].

While looking at the great benefits of AI and Industry
5.0 in the manufacturing sector, monitoring the challenges
emanating from their implementation is crucial to mitigate
the risks of substantial failures and losses within factories
during the execution phase. Some of these challenges are
a call for skilled workers to understand the high level of
new technological concepts, a high initial capital required
with often unclear return on investment in the initial phase,
a need for more data collection and security, and an ethical
and legal responsibility in the implementation of these new
technologies to avoid more job losses and outcome bias [10].

With the advent of I4.0 [11], manufacturing plants deal
with more devices to monitor and a high amount of data
to process [12]. In the context of I5.0, factories need to
find the right balance between effective system monitor-
ing, reducing equipment downtime and operators’ growth
and well-being. Techniques like predictive maintenance [13,
14], empowered by several ML algorithms such as convolu-
tional neural network (CNN) support vector machine (SVM)
classification [15], successfully mitigate system downtime
by detecting potential equipment threats before they become
fatalities. Beyond the predictive maintenance technological
ability to keep systems running, I5.0 calls for an additional
societal layer that personalized human-to-machine interac-
tion employing natural language.

Chatbots are automated conversational tools currently uti-
lized in various sectors [16, 17] to create low-cost, efficient,
customized, intelligent interactive systems between humans
and machines [18]. In recent years, generative AI [19], an
AI branch that generates new data based on a specific input,
has been the driving force behind chatbot creations. ChatGPT
[20] is a powerful, ready-to-use generative AI large language
model (LLM) tool enabling users to enter almost any kind
of query and receive back insights in the requested format
(texts, videos, or images). While ChatGPT and generative
AI conversational models produce remarkable results in sev-
eral academic and business areas [21], their integration still
needs to catch up in the operational manufacturing sector
[22].

We propose the design of an experimental hybrid cus-
tomized chatbot HMI that combines AI and generative AI
functions to:

1. Improve factory troubleshooting downtime by enabling
easy and swift equipment information retrieval while
keeping factory data secure (AI function of the chatbot)

2. Build a personalizedHMI responding to natural language
prompts to meet I5.0 human-centric requirements

3. Augment factory dataset by generating new data in the
desired format to facilitate further ML model building
and training purposes (generative AI function)

We structure the remaining sections of the paper as fol-
lows: In Section 2, we present a background and literature
overview on some key concepts utilized in the research, such
as the shift from I4.0 to I5.0, and summarized benefits and
challenges of AI and I5.0, generative AI technologies, LLMs
and ChatGPT, equipment failure downtime algorithms in
factories, and the use of chatbots in manufacturing plants.
In Section 3, we describe the theoretical design, the archi-
tectures, and the flowchart of the customized Chatbot HMI.
Section4 presents the experimental results of the hybrid chat-
bot, and we conclude the research in Section 5 with valuable
insights on design considerations, limitations, and guidelines
for future works. We present in Fig. 1 a process flow diagram
of the manuscript.

2 Research background and literature
review

2.1 From industry 4.0 to industry 5.0

In 2011, the industrial world embraced its fourth indus-
trial revolution (4IR) [23], commonly known as Industry
4.0 or Smart Factory [24, 25], to a high-tech scheme intro-
duced by theGerman government (Industrie 4.0). It promotes
the implementation of advanced technological concepts that
create intelligent and connected systems in the manufactur-
ing environment to form cyber-physical production systems
(CPPS) [26, 27]. The fourth industrial revolution came after
three of its predecessors equally impacted the industrial sec-
tor in their eras. The first was characterized by a drastic shift
from manual production lines to machine-boosted produc-
tion powered bywater or steam. The second onewas initiated
thanks to the discovery of electricity, which increased pro-
duction lines’ productivity with faster production processes.
Integrating field-level controllers such as a programmable
logic controller (PLC) that enabled automated production
processes marked the beginning of the third industrial revo-
lution.
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Fig. 1 Manuscript structure flow diagram

Under the 4IR, advanced technological concepts empower
production processes to make more intelligent judgments
and enable real-time data exchange between factory devices
and stakeholders [28]. The Smart Factory concept also
brings more flexibility in production, allowing mass produc-
tion efficiency while simultaneously achieving personalized
products [28, 29].

While I4.0 was effectively penetrating the industrial sec-
tor, a new revolution, the fifth industrial revolution, also
known as Industry 5.0 (I5.0) [30, 31], came along. Industry
5.0 is denoted by a move of focus from advanced technolog-
ical methods that aim to increase production efficiency and
output to more societal objectives [32]. These societal objec-
tives aim to put factory operators at the core of the production
process to promote their growth and well-being. They also
advocate for the respect of our planet’s ecosystem while run-
ning manufacturing processes [15, 20]. Therefore, I5.0 came
to build, on top of the existing I40 paradigm, the ability to

consider our planet’s sustainability and workers’ social inte-
gration in production processes [33]. Figure2 summarizes
the key differences between I4.0 and I5.0, as highlighted by
López, A. et al. [1].

2.1.1 Summarized benefits and challenges of Industry 5.0

AI, through some of its popular branches, such as ML, sig-
nificantly impacts Industry 5.0. Often, when referring to the
current industrial revolutions (Industry 4.0 and Industry 5.0)
that created smart factories, autonomous systems, and a con-
siderable level of digitalization, people talk about AI. It is
understandable because AI is one of the primary tools driv-
ing the conceptualization and implementation of these new
industrial revolutions within factories. Some of the benefits
of Industry 5.0 include [8, 9]:

• Increased productivity: This is achieved by creating intel-
ligent, highly automated, and decentralized systems.

• Improved decision-making: Data analytics is a key com-
ponent in implementing solutions (abnormality detec-
tion, production forecast, predictive maintenance) that
support decision-making in factories.

• Flexible and sustainable production systems: Flexible
and scalable production systems facilitate product indi-
vidualization and increase customer satisfaction and
competitiveness.

• Reduced energy consumption and wastage are one of the
essential goals of I 5.0. Unlike the previous industrial rev-
olutions, I 5.0 takes to heart environmental responsibility
and ecosystems to lessen harm to the planet and human
beings.

• Human-centered activities: Industry 5.0 advocates smart
re-insertion of the human factor in production pro-

Fig. 2 Industry 4.0 versus Industry 5.0 adapted from López, A. et al.
[1]
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cesses to avoid job losses. It requires better collaboration
between operators and machines.

Some of its challenges are [10]:

• Need for skilled workers: To understand the new techno-
logical concepts involved in I5.0, skilled and knowledge-
able workers are needed.

• High investment required: Implementing I5.0 requires a
high investment to transition between legacy systems and
new technologies, offer proper training to workers, and
hire skilled workers or experts.

• Data collection and security: A successful implementa-
tion of I 5.0 demands more data analytics, which requires
even more protection and security.

• Ethics: While I5.0 promises to put human beings at the
heart of its activities, it highly depends on human ethical
values to create solutions that promote their own well-
being while producing truthful results.

3 Brief overview on generative AI tools

Generative AI is a branch of AI that utilizes generative algo-
rithms and models to create new content, such as texts,
videos, sound, images, code, and other types of data based on
a user’s input [34]. One of the most recent considerable suc-
cesses of generative AI was the ability to train its Generative
Pretrained Transformer 3 (GPT-3) model on over 500 GB of
data with over 100 billion parameters, achieving outstanding
results for universal language description and interpretation.
As per Brown, T.B. et al. [35], GPT-3 outperforms most
pre-trained state-of-the-art language models. In November
2022, generative AI became more popular with the official
launch of the generative pretrained transformer (GPT) chat-
bot application called ChatGPT by the company OpenAI.
OpenAI utilized reinforcement learning with human feed-
back (RLHF) to fine-tune the GPT-3 model, which made the
creation of ChatGPT possible [36]. ChatGPT was attractive
to users because of its ability to answer queries in a human-
like conversation format [37]. ChatGPT’s ease of use and
openness to the public havedrastically impactedpeople’s per-
ception of the utilization of AI and ML, which were seen as
technologies reserved for high-skilled developers and engi-
neers. It was reported that in the last year, ChatGPT became
a reference for various research and interactive requests on
the internet. In fact, upon its release, ChatGPT reached over
100 million users worldwide [38].

Large language models (LLMs) are technologies used to
generate texts exclusively in the generative AI field. For the
past year, LLMs have also become a center of interest for
several researchers for their ability to produce very precise

human-like chats and conversations. For this reason, various
customized applications opt to integrate pretrained LLMs in
their back-end rather than trained models that are even time-
consuming to build. Despite the explosion of ChatGPT’s
experimentation, research on the practical implementation
of ChatGPT and generative AI techniques within the manu-
facturing environment remains scarce [19].

4 Factory equipment downtime estimation
algorithm

Over the years, strategies such as predictive maintenance
[39, 40] have helped factories improve equipment breakdown
time by performing early machine failure detection before
they become production-threatening. However, the method
still depends on the operator’s capacity to interpret the fault,
understand the action required, and actively implement it
without wasting more time.

There are various components and variables impacting
factories’ equipment downtime estimation.They are not fixed
and can vary depending on a plant type or size. The follow-
ing are samples of basic elements practical to approximate
a small factory equipment downtime. Let us assume the fol-
lowing variables:

• Total number of factory equipment: μ,
• Number of a factory’s maintenance operators: α,
• Average maintenance time per equipment: β,
• Buffer time to analysze and understand faults to start
maintenance: Z .

The total number of equipment that failed in the plant, �,
can be estimated by Eq.1 as follows:

� =
μ∑

x

(x ∗ y) (1)

where xεN∗ and represents the factory equipment count
increment and y is the equipment health status. We define
y by the following:

y =
{
0 if the equipment is healthy

1 if the equipment is faulty

From the above variables, the overall factory’s equipment
downtime θ can be estimated by Eq.2 as follows:

θ = � ∗ β

α
+ Z ∗ y (2)
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By substituting Eqs. 1 in 2, θ can further be expanded in Eq.3
as:

θ =

μ∑
x

(x ∗ y) ∗ β

α
+ Z ∗ y (3)

From Eq.3, we can understand that the more maintenance
operators are involved in troubleshooting, the less equip-
ment downtime is. Unfortunately, increasing the number of
maintenance operators can be costly for the factory. In real
factory operations scenarios, not all operators can be allo-
cated to troubleshooting during production, as several other
plant parts require attention.

A more cost-effective way to control θ would be to
reduce the value of Z , the troubleshooting buffer time, which
depends on the operators’ or supervisors’ ability to analyze
and detect equipment issues. Our customized chatbot HMI
aims to support operators in reducing Z by providing precise
factory equipment data analytics necessary for troubleshoot-
ing.

5 Popular chatbots use cases
in themanufacturing industry

The manufacturing industry has demonstrated its readiness
to implement various AI applications within its production
processes. However, chatbot applications have yet to become
popular within the field. Wang, S. et al. [41] highlight three
primary use cases for implementing chatbots in the manu-
facturing industry.

1. For training purposes: A well-known application of
chatbots in the education sector is in the training and ori-
entation area. Chatbots can give trainees or students the
knowledge required to achieve their goals. By exchang-
ing questions and answers, the chatbot system can
determine the trainees’ gaps and direct the information-
feeding flow according to the audience’s needs [42]. In
factories,maintenance supervisors can apply this training
capability to train new operators in assembly lines regu-
larly. Chatbots will act as supervisors’ experts to provide
all required information to new operators based on their
current system knowledge.

2. For factory problem recording and monitoring: Factory
designers can integrate chatbots with advanced visual aid
functions to provide answers regarding visually moni-
tored conditions [43]. Although this method can appear
costly, especially for small- to medium-sized enterprises,

because of the corresponding cost related to licenses
to enable visual functionalities (for example, currently
acquiring the GPT 4 monthly subscriptions as the free
GPT 3.5 does not have this capability yet) and other
optical equipment to configure (cameras and the corre-
sponding drivers) or install in the assembly lines, this task
can be convenient for new operators to confirm process
guidelines especially when dealing with complex activi-
ties that could confuse them.

3. For maintenance guidelines and assistance:With or with-
out visual aids, chatbots can help operators perform
equipment repairs and maintenance by elaborating on
steps to follow to achieve the outcome. Using the visual
aid or in a question-answer (QA) text format, the worker
should give the precise and appropriate details for the
system to identify the item to repair and the step from
which the operators require assistance.

Our customized chatbot HMI combines a monitoring and
maintenance use case (without visual aid) created from fac-
tory historical data to provide valuable insights on equipment
health statuses for troubleshooting purposes.

6 Customized AI and generative AI chatbot
HMI theoretical design

The customized AI and generative AI chatbot has two essen-
tial components: a front-end, which serves as the interface
between the operator’s requests and the factory data and a
back-end, containing the system’s brain power, the OpenAI
GPT 3.5 language model (LM) to understand the operator’s
inquiries and advise on a suitable solution.

We design the factory’s front-end with Streamlit [44],
an open-source tool to develop data science and machine
learning (ML) web applications. The factory’s customized
application has a security layer to it. It allows to safely pro-
cess data in a separate platform without exposing it to open
fields such as the web. Loading factory data straight in an
open platform like ChatGPT would have this security risk.
We use Python programming to create the front-end appli-
cation in Streamlit and connect it to the back-end unit (GPT
3.5 LM model) using OpenAI APIs with an exclusive API
key, ensuring more data security.

We store the factory data in a CSV file. It is a convenient
format for most controllers, such as PLCs that can auto-
matically save information in this format. Unfortunately, by
default, LMs do not understand CSVfile format. They under-
stand texts. To resolve this issue, we incorporate a Langchain
agent via Langchain libraries, which understand CSV, into
our back-end unit. The Langchain agent becomes the tunnel
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linking our factory data to the LM. Therefore, we can train
GPT 3.5 LM on the factory data, which becomes the primary
source of information to answer users’ prompts.

The chatbot HMI’s goal is to improve the equipment
downtime in Eq.3 by decreasing “Z,” the buffer time required
for a plant maintenance supervisor to analyze overall data
and retrieve faulty devices’ information. Based on histori-
cal insights, the factory’s general requirements would be to
timeously:

• Find all faulty devices
• Find their locations
• Identify actions to take on the faulty devices
• Read the sensor value causing the fault
• Generate a report on faulty devices for more analytics

7 Customized AI and generative AI chatbot
HMI flow diagram and architectures

In Fig. 3, we present the customized chatbot HMI process
operation flow diagram. The flowchart has two sections: the
front-end web app and the back-end LM (GPT 3.5) brain.
Through thefirst section, the operator loads the factory data in
CSV format to train the LM in the back-end and sends queries
related to the loaded factory data. The web app receives oper-
ators’ prompts and links them to the back-end to extract the
corresponding information. It also displays the final solu-
tion obtained by the back-end at the end of the process in a
natural language format. We illustrate the second section of
the flow chart (the back-end thinking process) in Fig. 4. It is
the system’s brain that performs all the intelligent “thinking
routines” to provide themost accurate answer to the operator.

Fig. 3 Customized AI and
generative AI chatbot HMI flow
diagram
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Fig. 4 Customized AI and
generative AI chatbot HMI
simplified architecture

We display in Figs. 5 and 6, the customized chatbot HMI
web application front-end before and after loading the factory
csv data respectively. Figure5 shows the initial look of our
customized chatbot HMI web application front-end before
loading the factory data for training. It is the welcome page
of the chatbot, the first page the user sees when launching the
chatbot HMI application. It contains the following primary
information:

• A title that summarizes the web application’s function:
“HMI Maintenance ChatBot Assistant”

• An instruction on the factory training data format:
“Upload the factory monitored data in CSV format.”
The factory data to load in the application should be in a
CSV file.

• An instruction on how to load the factory data: “Drag
and drop file here” and “Browse files.” A user can
load the CSV file by dragging and dropping it straight
to this page (to the area written “Drag and drop file
here”) or by browsing through the computer’s location
containing the file (by clicking on the “Browse” button.)
It also includes the size limitation of the CSV file to load

in the application (200MB): “Limit 200MB per file •
CSV”

• Another descriptive note of the chatbot HMI back-end
content which is: “This is a customized Generative
AI HMI chatbot for an experimental factory. It is
running GPT 3.5 as its language model.” This note is
visible on all the Chabot HMI front-end pages and does
not appear in some figures in the manuscript (Figs. 8, 10,
11, 12, and 13) due to space limitations.

Note: The informationmentioned above about theweb appli-
cation front-end has the same meaning in all other figures
of the manuscript displaying our customized chatbot HMI
front-end (Figs. 6, 8, 10, 11, 12, and 13).

Figure6 presents the chatbot HMI web application front-
end page after successfully loading a CSV file for training.
In addition to the above information, it displays:

• The loaded CSV file name and size (73.7KB) as: “Fac-
tory Equipment Statuses.csv 73.7KB”

• An instructional prompt for the user to send queries
about the loaded CSV file: “Ask me questions about

Fig. 5 Customized chatbot HMI web app front-end before loading a CSV file
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Fig. 6 Customized chatbot HMI web app front-end after loading a CSV file

the plant equipment status in the document.” It is the
same prompt in Figs. 8, 10,11, 12, and 13.

• An input text box area, just below the instructional
prompt, where the user can type in the desired query.
It has the same function in Figs. 8, 10, 11, 12, and 13.

Figure4 is a simplified model of the customized chatbot
HMI displaying the main system stakeholders: the factory
data (in CSV format), the operator (loading data and sending
prompts), the front-end web app receiving loaded data and
prompts to transmit to the back-end, the Langchain agent
playing the role of an interpreter between the loaded CSV
data and the GPT 3.5 LM, and the GPT 3.5 LM itself.

Figure7 shows the query/answer process architecture. It
portrays how the Langchain agent, boosted by the GPT 3.5

LM, initiates a “thinking process” when receiving a prompt
from the user. It goes through the CSV file and other tools
made available by the LM until it finds the best answer for
the operator.

Algorithm 1 is a translation of Fig. 7 describing the essen-
tial steps integrated into the customized chatbot HMI design.
As mentioned in the previous section, we designed our
customized chatbot (front-end and back-end) with Python
programming language.

8 Experimental results

Note: We assume that a factory expert prepared the data used
to train our system in an understandable format (example of
data format in Table 1) after accurately learning the equip-

Fig. 7 Customized chatbot HMI
query/answer process
architecture
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Table 1 Factory data CSV parameters and format

Parameters Value Comment

Equipment name Conveyor1 to Conveyor850 This is the name of each equipment monitored in the
factory. In this experimental factory we use conveyor
numbers to identify them. In total there are 850 conveyors
to monitor

Location Furnace area, assembly area, packaging area, storage area,
capping area

We perform our experiment on five main areas where the
different conveyors are located

Sensor value 20–90 This is a numerical value of the conveyor sensor reporting
a fault. The testing range is between 20 and 90, with 20
the minimum value (healthy state) and 90 the maximum
(unhealthy state)

Status No alarm, minor alarm, ON warning, alarm ON, high
alarm ON

These are the equipment alarm level statuses from healthy
to unhealthy

Action Healthy—no action required. Check on the physical
equipment for possible abnormalities. Start maintenance
on next stop. Immediate stop

This field contains the recommended actions to take for
each alarm status

ment’s behavior and that its content is correct and accurate.
Because of the token limitation a new dataset is used for
testing the generative AI functions with five existing initial
conveyors (from prompts 9 to 11 of Table 2).

8.1 Factory data equipment analytics
for troubleshooting

We test the customized HMI chatbot’s effectiveness using
equipment data status from an experimental factory. Table 1
displays data parameters recorded for the equipment in the
CSV file loaded for training the GPT 3.5 LM:

From the designed HMI chatbot front-end in Fig. 6, we
run eight prompts to retrieve the most significant informa-
tion for the plant troubleshooting based on the loaded dataset

Algorithm 1 Customized chatbot HMI process algorithm.
1: Install and import required libraries
2: Generate a factory.py script file
3: Set config. page for Streamlit web app
4: Set required title/subtitle for the page
5: Set LM (GPT 3.5) and Agent parameters
6: Prompt operator to load the csv file
7: if csv file is loaded then
8: Prompt operator to ask a question
9: else
10: Wait for operator’s question
11: end if
12: if question is not empty then
13: Start processing response timer
14: Pass question to the CSV agent
15: Print CSV agent response
16: Print processing time
17: else
18: Wait for a valid question
19: end if
20: Call Streamlit function to run factory.py
21: End

(AI function of the customized chatbot) in Table 1 and three
prompts to generate a new dataset created by the chatbot
with similar characteristics than the initial loaded data. It is
the generative AI feature of the customized chatbot. Table 2
presents the prompts we ran, their answers, and processing
time. Figure8 displays prompt 8/answer 8 as read from the
HMI chatbot.

As mentioned in the previous section, when receiving a
prompt, our chatbot HMI goes through several steps before
ensuring it has the final correct answer (the LM agent in the
background as detailed in Fig. 7). We present in Fig. 9 the
HMI chatbot thinking process for prompt number 7.

Figure10 shows the generative AI capability of our chat-
bot that created five more factory equipment with similar
characteristics to the loaded dataset. The dataset initially has
five conveyors (from conveyor 1 to conveyor 5).

By analyzing the prompt results in Table 2, we notice that
it takes less than 10s to process and receive an answer from a
single prompt. Therefore, on average, it would take less than
2min to run the overall data analytics for the factory from our
customized HMI chatbot for all 850 conveyors and extract
the accurate troubleshooting insights to start maintenance
processes, if required. From Eq.3, our solution mitigates
the total troubleshooting time by considerably reducing the
dependency on Z, the analytics supervisor’s waiting buffer
time. The customized chatbot is easy to use and can be pro-
cessed by a standard operator without solely relying on the
supervisor’s initial analytics. From Eq.3, considering a very
negligible value of Z , the overall value of θ can be further
improved to Eq.4:

θ =

μ∑
x

(x ∗ y) ∗ β

α
(4)
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Fig. 8 Prompt and answer 8
results—AI function of HMI
chatbot

Fig. 9 Langchain Agent
thinking process prompt number
7

Fig. 10 Prompt and answer 11
results—generative AI function
of HMI chatbot
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Note: Because of the LM in the background, the prompt out-
put language formulation may differ for the same prompts.
It should not be an issue if the answer is correct.

8.1.1 Results interpretation

To better understand the significance of our results in
Table 2 and Eq.4 we numerically demonstrate, with some
experimental data, how our proposed approach helps min-
imize equipment downtime during troubleshooting while
respecting certain factory constraints. After computing these
numerical values, we compare results in systems with and
without our proposed chatbot troubleshooting HMI. Table 3
presents an experimental factory’s parameters based on the
equipment downtime estimation algorithm in Section 4.

We assume that in this experimental factory:

• The parameter symbolizing the average troubleshooting
time per equipment β is the time the maintenance opera-
tor requires, in worst-case scenarios, to get equipment up
and running after a fault. It excludes the analyzing time
to pinpoint the faults.

• The buffer time Z to analyze and understand faults
excludes the time required for the maintenance super-
visors to move from their current location to the faulty
area to start analyses.

• The constraint 1, α ≤ 5, means that in case of critical
equipment downtime, the factory can increase the num-
ber of maintenance operators to speed up the process,
but 5, in this experiment, is the maximum number of
operators the plant can afford to deploy. Adding more
maintenance operators would mean an extra cost for the
factory.

Table 3 Experimental parameters numerical values

Parameter Experimental value

1 Number of equipment that failed,� 10

2 Number of factory’s maintenance
operators,α

3

3 Average troubleshooting time per
equipment (worst case scenario), β

10min

4 Buffer time to analyse and under-
stand faults to start maintenance, Z

20min

5 Equipment downtime,θ To compute

6 Escalation time,� 60min

7 ChatbotHMI query systemprocess-
ing time to display faulty equipment
with actions to take and location like
in Fig. 9 (worst case scenario), t

20 s

8 Constraint 1 α ≤ 5

9 Constraint 2 β ≤ 10

• The constraint 2, β ≤ 10, means that troubleshooting
time per equipment should not exceed 10 min. In cases
where the troubleshooting calls for more time than β, an
escalation process starts implying more downtime, 1h in
this experiment.

To compare the impact of our solution in an experimental
factory, we can expand Eq.4 as follows:

θ = � ∗ β

α
+ Z ∗ g + t ∗ b + � ∗ d (5)

With g ∈ 0, 1, g = 0 if our proposed chatbot HMI is imple-
mented and g = 1 if it is not implemented.
With b ∈ 0, 1, b = 0 if our proposed chatbot HMI is not
implemented and b = 1 if it is implemented.
With d ∈ 0, 1, d = 0 if there is no escalation and d = 1 if
there is escalation.

We test the experimental parameters in the following
cases:

• Case 1: System downtimewith no escalation and no chat-
bot HMI

θ = 10 ∗ 10

3
+ 20 ∗ 1 + 20 ∗ 0 + 60 ∗ 0 (6)

• Case 2: System downtime with no escalation, no chatbot
HMI and more maintenance operators

θ = 10 ∗ 10

5
+ 20 ∗ 1 + 20 ∗ 0 + 60 ∗ 0 (7)

• Case 3: System downtime with escalation and no chatbot
HMI

θ = 10 ∗ 10

3
+ 20 ∗ 1 + 20 ∗ 0 + 60 ∗ 1 (8)

• Case 4: System downtimewith chatbot HMI and no esca-
lation

θ = 10 ∗ 10

3
+ 20 ∗ 0 + 20 ∗ 1 + 60 ∗ 0 (9)

• Case 5: System downtime with chatbot HMI and escala-
tion

θ = 10 ∗ 10

3
+ 20 ∗ 0 + 20 ∗ 1 + 60 ∗ 1 (10)

Table 4 presents a summary of computed system down-
time for each case.

From the above numerical values, we notice that by imple-
menting our customized chatbot HMI as a troubleshooting
aid, the factory saves up to 20min in retrieving all necessary
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Table 4 Experimental system
downtime values

System setup Downtime

Case 1 No escalation and no chatbot HMI 53 min

Case 2 No escalation, no chatbot HMI, and more maintenance operators 40 min

Case 3 Escalation and no chatbot HMI 113min

Case 4 Chatbot HMI and no escalation 33 min 20 s

Case 5 Chatbot HMI and escalation 93 min 20 s

information that detects faulty equipment to locate and repair
them. Although it may seem negligible, 20min of down-
time for a factory can be extremely costly when quantifying
production losses. Moreover, our customized chatbot HMI
considerably reduces the need for additional maintenance
operators (which are expensive to the factory) to improve the
downtime. As shown in Case 2, even by increasing the num-
ber of maintenance operators to the maximum allowed (5)
without our chatbot, the factory downtime is still higher (40
min) thanwhen implementing our chatbot with theminimum
number of maintenance operators (33 min 20 s).

8.2 Predictive maintenance data analytics

We also implement the customized HMI chatbot to swiftly
classify a conveyor motor fault based on several historical
parameters. By reading parameter values, the chatbot estab-
lishes whether the current motor state is healthy or not and
categorizes them into three groups: healthy, minor fault, and
critical fault. Therefore, it provides flags to detect abnormal-
ities before they become production-threatening.

We upload in the chatbot a data frame of 15,000 records
of seven parameters presented in Table 5:

The predictivemaintenance prompt sent to our customized
chatbot contains the first six parameter values in Table 5
and outputs the last parameter (Fault Detected) for the pre-
dictive maintenance classification schedule. Table 6 presents
prompt samples, answers, and processing time for the predic-
tive maintenance analytics. Figure11 displays the predictive
maintenance prompt 1/answer 1 received from theHMI chat-
bot. Apart from the web application information detailed in

Table 5 Predictive maintenance parameters

Parameters Units / Value

1 Vibration speed mm/s

2 Motor speed m/s

3 Current A (Amps)

4 Belt tension N/m

5 Motor tension N/m

6 Temperature *C

7 Fault detected Healthy, minor fault, or critical fault

Figs. 5 and 6, Fig. 11 displays the predictive maintenance
file name and size (parameters original – version 3.csv
0.6MB), the first prompt of the predictive maintenance task
in Table 6 (vibration speed 322,motor speed 120, current 7.3,
belt tension 0.99, motor tension 1.6, temperature 13.78, what
is the fault detected?) and the prompt result obtained after
processing the query (CRITICAL FAULT) displayed under-
neath the input text box. The first prompt contains numerical
values of the experimental factory predictive maintenance
parameters in Table 5 (from 1 to 6) and inquires about the
last parameter (7), the type of fault detected (CRITICAL
FAULT in this case) based on the numerical values entered
in the query. The background chatbot thinking steps and pro-
cessing time for the predictive maintenance prompts would
be like the one displayed in Fig. 9.
Note: Prompts 3 and 4 in Table 6 are the generative AI func-
tions for the predictive maintenance dataset.

Figures 12 and 13 are the two prompts (3 and 4) and
answers for the generative AI function in predictive main-
tenance.

An exciting feature of our chatbot is that the order inwhich
the parameters are entered in the system does not matter. It
does not have to reflect the original data frame order. We
can compare prompt 1 and prompt 2. Although parameters
are in different order, they compute the same final answer:
CRITICAL FAULT.

The proposed chatbot HMI, thanks to the OpenAI API,
processes all queries timelessly, with an average processing
time of 5 s in the worst case. It is a remarkable achievement
comparing our chatbot solution execution time to a simi-
lar predictive maintenance system running a convolutional
neural network (CNN) to create a classification model that
predicts fault categories based on a 15,000-dataset records
input [15].

Table 7 summarizes the CNN predictive maintenance sys-
tem (hardware and software) key settings and the processing
time reached on the dataset. Figure14 shows the process-
ing time for training the CNN predictive maintenance model
based on three epochs, as presented by Kiangala, K.S. and
Wang, Z. [15]. The total training time for the CNN model is
3180s, approximately 1h (53min).

As we can observe in Table 6, the generative AI functions
take longer (12.84 s at the worst case) than the troubleshoot-

123

2727The International Journal of Advanced Manufacturing Technology (2024) 132:2715–2733



Table 6 Customized chatbot HMI predictive maintenance prompts, answers, and processing time results

Prompt number Prompt Answers System processing time Results (correct or false)

1 Vibration speed 322, motor speed
120, current 7.3, belt tension 0.99,
motor tension 1.6, temperature
13.78, what is the fault detected?

CRITICAL FAULT 4.08s Correct

2 Temperature 13.78, motor speed
120, belt tension 0.99, vibration
speed 322, motor tension 1.6, cur-
rent 7.3, what is the fault detected?

The fault detected is
CRITICAL FAULT

2.48s Correct

3 Generate 5 more observations with
similar characteristics

See Fig. 12 12.34 s Correct

4 Generate 5 more observations with
different fault detected

See Fig. 13 5.99 s Correct

ing tasks dealing with data augmentation. It does not impact
the factory’s daily production process or troubleshooting
actions as this function is implemented off-production.

The predictive maintenance analytics function of our cus-
tomized chatbot HMI classifies the type of fault detected in
a factory based on the received system parameters (parame-
ters in Table 5). In a plant, a monitoring network could read
device parameters through sensors and connect to our HMI
system togiveparameter data access.Our chatbotHMIwould
then, in real-time, establish whether the parameters imply a
critical fault, a minor fault, or no fault at all. This chatbot
function produces outcomes like a classifier ML model with
the following benefits:

• A shorter training and testing phase processing time,
unlike a state-of-the-artML classifier (comparing Table 7
CNN overall processing time and Table 6 predictive
maintenance processing time results).

• An easy web application front-end for data training with
nohigh-level technical skill required.Unlike state-of-the-
art ML models (CNN) that demand expert skill to train
models, data training in our chatbot HMI is simple and
consists of loading a CSV file (containing well-prepared
data) in the web application.

• A natural language interface to interact with the sys-
tem and perform predictive maintenance tasks with little
training needed.

8.3 Summarized benefits of using our customized
chatbot HMI over traditional HMIs

HMIs [27] are essential tools in the manufacturing sector.
They allow operators to control, monitor, and interact with
factory equipment to produce the desired outcome. In other
words, HMIs help translate from factory machine languages
to ones understandable by human operators [45]. In tradi-
tional manufacturing environments, a typical HMI consists
of a few screens graphically displaying generic informa-
tion, static or dynamic, such as machine and sensor statuses
(healthy or faulty), system alarm conditions, or variable his-
torical trends. It also contains controlmechanisms in the form
of software buttons or mechanical knobs linked to factory
controllers. Traditional HMIs highly depend on operators’
and supervisors’ capacity to master manufacturing device
operations.

With new industrial revolutions and increasing techno-
logical advancements, HMIs are becoming more complex
due to the large number of factory devices to control and

Fig. 11 Prompt and answer 1
result—predictive maintenance
AI function of HMI chatbot
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Fig. 12 Prompt and answer 3
predictive maintenance
generative AI function

monitor [46]. Although software engineers are still trying to
design supervisory control and data acquisition (SCADA) to
show the best possible details to users, the system complex-
ity requires special training and more efforts from operators
to understand displayed information, icons, signs, interpret
messages and act upon them.

In the context of Industry 5.0, the role of an HMI is
completely changing [47] from simple SCADA control and
monitoring tools to more interactive platforms that operators
can utilize efficiently to interpret helpful data for the plant.
We develop a customized chatbot acting as an I5.0 HMI with
several benefits over traditional HMIs, such as the ability to:

• Learn historical information from the factory and con-
cisely present it upon request. We achieve this advantage
by training the GPT 3.5 LM with a factory CSV file
database via a Langchain agent and incorporating the
result into the customized chatbot HMI web application.

• Generate new datasets similar to the loaded historical
data for AI purposes like ML modelling. This function-

ality is another benefit of the GPT 3.5 LM running in the
customized chatbot back-end.

• Interact dynamically with operators in a natural lan-
guage, English, for this project, making information
retrieval smoother and reducing the need for extensive
training.

• Act as a maintenance assistant, providing primary insights
to troubleshoot faulty equipment therefore reducing the
troubleshooting.

• Perform advanced tasks such as predictive maintenance
analysis to detect equipment threats before they become
fatalities.

8.4 Limitations

Our customized chatbot HMI solution is experimental as we
integrate several new concepts and libraries currently being
scrutinized and improved by developers and researchers
to obtain acceptable results. It is also worth emphasizing
that we built our customized solution based on the current

Fig. 13 Prompt and answer 4
predictive maintenance
generative AI function
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Table 7 Predictive maintenance CNN settings

Parameters Values Comment

Computer properties CPU RAM: 8GB Processor: 64 bits

Split ratio 0.8 Based on the 15,000 datasets, it means
12,000 data for training and 3000 data for
validation

Libraries Keras and tensorFLOW BACKEND

Activation functions ReLU

Total processing time for 3 epochs 3180s See Fig. 13

6 Temperature *C

7 Fault detected Healthy, minor fault, or critical fault

GPT 3.5 LLMs functions. Hence, all its present drawbacks
implicitly affect our system. The main limitations are as
follows:

• Accessing the OpenAI APIs requires a billing fee based
on the number of queries and tokens used. For this
project, we spent approximately 20$ for all the testing
and setup. The OpenAI pricing website (https://openai.
com/pricing) provides detailed information. Some other

options (Free, open-source APIs from different vendors)
could be explored to eliminate this fee.

• Unlike the online version ofChatGPT,which is trained on
millions of various data to provide broader answer ranges
on several topics, we solely train our customized chatbot
HMI on a limited range of factory data. The accuracy of
answers depends on how well the factory data is initially
structured and polished. When using a CSV file, in this
case, columns and contents should be well-denominated

Fig. 14 CNN predictive
maintenance output processing
time [15]
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for the LM to understand their meanings and respond to
queries accordingly.

• As displayed in Table 2, we encountered a glitch in the
system on prompt 2 where the LM could not find the
correct answer to a question because there was a ques-
tion mark at the end. The LM answers correctly on the
same query in prompt 1. It is a limitation of some of
the Langchain libraries currently still in experimental
phases.

• We intend to create a solution that would be less complex
to implement and cost-effective for small- to medium-
sized manufacturing enterprises; hence, some of the paid
advantages of the GPT models (GPT4) are not included
in the system. A limited number of tokens (4096 pro-
vided by the GPT3.5 LM by default) are shared between
our input queries and the execution time. It limits the
amount of data we can process and the length of prompts
we can input. For example, the number of new observa-
tions or equipment we can prompt the system to generate
depends on the size of the current data file fromwhich we
are cloning the characteristics. For testing purposes, we
reduced the amount of data when creating new observa-
tions ormonitoring equipment.A solution to this problem
would be paying for more tokens or subscribing to GPT
4.

• The dataset size to load from which the chatbot will still
answer queries correctly is also conditioned by the token
limit size, although our chatbot application can receive
up to 200 MB of data.

• We have not automatically linked the factory data CSV
file loading process to the chatbot app. The process is
still done manually, and we will consider upgrading this
task to automatic loading in future versions of the chatbot
app.

8.5 Manuscript highlights

• System downtime is costly to factories.
• We design a generative AI chatbot HMI as a tool to alle-
viate system downtime.

• Wecustomize and integrate the currentGPT3.5LMfunc-
tions in our system back-end.

• We obtain a responsive chatbot HMI extracting queried
information from trained data.

• The GPT 3.5 LM drawbacks (number of tokens for
queries) are a limitation of our tool.

• In I5.0, adding feedback loops between users and gener-
ative AI chatbot HMIs could improve decision-making
accuracy.

9 Conclusion

In this research, we proposed a hybrid customized AI and
generative AI chatbot HMI design for an experimental fac-
tory. Using the GPT 3.5 LM trained on factory data in its
back-end, the customized chatbot provides operators, upon
request, with the factory’s equipment details helpful in trou-
bleshooting in case of failure. Our chatbot can also generate
newdatawith characteristics similar to the loaded data thanks
to the generativeAI feature of theGPT3.5LM in the system’s
brain. We design the chatbot front end with Streamlit, a web
application that ensures security by separating the loaded
factory data from the unsafe open web. We use additional
LM frameworks like Langchain to integrate into the GPT 3.5
LM the ability to read CSVfiles. The experimental results we
achieved by running our chatbot to extract equipment statuses
and predictive maintenance data analysis show the system’s
accuracy in extracting information using natural language.
We obtained an accuracy of 90.9% by computing 13 queries
on the data retrieval for system troubleshooting and 100%
for predictive maintenance analysis. The system processing
time for troubleshooting prompts and answers is insignifi-
cant (less than 10s on average), which eliminates the need
for a waiting period for a maintenance supervisor to perform
data analysis before troubleshooting, therefore improving the
factory breakdown time. Our customized chatbot introduces
the implementation of I5.0 HMIs to an I4.0 environment. It
promotes interactive, personalized human-to-machine com-
munication with natural language (with the operator at the
system’s center) over graphical and static interactions on tra-
ditional HMIs. Our research also contributes to boosting
manufacturing SMEs’ confidence in complying with cur-
rent state-of-the-art technologies and industrial revolutions
to remain competitive in the fast-growing industrial market.

In future chatbot app versions, we plan to improve the
integration of generative AI chatbot HMIs in Industry 5.0
by creating feedback loops between users/operators and the
system. This feature can empower the decision-making expe-
rience in factories by generating more accurate information
based on user prompts. We would achieve this function by
notifying the system of wrong or less accurate answers and
rewarding better ones. We intend to make the system more
autonomous by automating the data training process, sav-
ing the factory information in a server, and connecting it
directly to the chatbot app. Having the factory data in a secure
server would allow us to manipulate the generated outcome
(emailing them automatically to supervisors or saving them
in separate folders). We also plan on integrating visual aids
like graphs and charts to improve the data analytics experi-
ence when troubleshooting factory equipment.
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