
https://doi.org/10.1007/s00170-024-13436-8

ORIG INAL ART ICLE

Manipulation order optimization in industrial pick-and-place
operations: application to textile and leather industry

Francisco José Martínez-Peral1 · Héctor Migallón2 · Jorge Borrell-Méndez1 ·Miguel Martínez-Rach2 ·
Carlos Pérez-Vidal1

Received: 20 February 2023 / Accepted: 14 February 2024
© The Author(s) 2024

Abstract
This work addresses the problem of the development of a robotic system for the picking of parts cut by a CNC machine and
the optimization of the sequencing of this picking process. An automated parts collection system is optimized to reduce the
time required to perform the task of both picking and the subsequent classification by the type of part. The automated picking
system, which is located at the end of a cutting machine, uses a robot equipped with an additional axis to expand its working
space. Therefore, in this proposal, the industrial equipment necessary to automate this process is designed and the process
to be optimized is computationally modeled. In particular, three discrete optimization algorithms are analyzed, with different
evolution strategies and operators, but all of them are free of specific configuration parameters. The whole process is shown
in this research, from the design of the procedure to the design of the tool, the algorithm selection, and elements validation.
Finally, the first steps towards its industrial implementation are presented, and the hypothesis behind this project is validated.

Keywords Sequence ordering · Pick-and-place optimization · Leather industry · Textile industry · Robotic classification

1 Introduction

1.1 Problem description

In industry, pick-and-place operations are one of the most
automated tasks using robots of any topology (e.g., scara, par-
allel, cartesian). In the automotive industry, the food industry,
PCB manufacturing, and the textile sector, robots are used
to move parts, components, products, and packaging. There-
fore, a small percentage improvement in the performance
of this task can have a great impact on the productivity of
industries, or sub-industries, in which these pick-and-place
operations carry significant weight.

One of these sub-industries is the cutting of textile and
leather parts using CNC cutting machines. This operation is
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carried out as an intermediate process in the construction of
vehicle interiors, clothingmanufacturing, and footwearman-
ufacturing (to name those where it has the greatest impact at
an industrial level). Parts are cut in such a way as to optimize
the number of parts for a givenmaterial size (irregular leather
or regular textile). This operation is called nesting and results
in the disordered arrangement (in terms of position and ori-
entation) of the pieces obtained.

Once cut, these pieces are collected byhand, followingone
of the two usual criteria: either all the same pieces together
or all the pieces that make up a certain product together (the
latter operation is known as kitting). This collection task is
complex (there are many similar but not identical pieces),
tedious, not very ergonomic, and of little added value.

Graphically, the problem can be solved as a way to move
from a set of disordered pieces (see Fig. 1a) to a set of
ordered parts and a surplus of material, which is discarded
(see Fig. 1b).

The paper is organized as follows: some related works
are presented in the rest of this section, and the main contri-
butions are outlined. Section 2 describes both the industrial
equipment and the computational model, in addition to the
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Fig. 1 Description of the classification process

optimization algorithms analyzed in this work. Section 3
shows the functional validation of the different parts that
compose the proposed system, while Sect. 4 shows the
improvements obtained in the production process, in addition
to showing the feasibility of the complete proposed system.
Finally, Sect. 5 presents the conclusions of this project.

1.2 Methodology

The methodology followed in this research includes the fol-
lowing phases:

• Definition of requirements: The goals and requirements
of the project are defined. The specific task to be per-
formed by the robot is defined, including technical,
environmental, and performance constraints, as well as
success criteria.

• Conceptual design: An initial design of the system is
created, defining the type of robot, its relative position
within the system, its kinematic and dynamic character-
istics, and its extendedworkspace. Possible solutions and
strategies for the pick-and-place task are identified.

• Development planning:Based on the previous phases and
to meet the stated objectives, the following phases are
developed:

– Task planning: A detailed plan of the task to be per-
formed by the robot is developed. The task is broken
down into steps or sub-processes, and the sequences
and dependencies between them are defined.

– Path planning: The paths that the robot will follow to
efficiently complete the task are determined. Factors
such as the kinematics and dynamics of the robot and
the choice of optimal motions are taken into account.

– Process simulation: RobotStudio simulation software
is used to validate a simplified linear model that is
used recursively to minimize task execution time.

– Gripping strategy: A multi-point gripping tool is
designed and implemented tomanipulate deformable
textile and leather pieces.Optimization of object grip-
ping is also considered to maximize the number of
contact points between the tool and the object.

• Implementation and testing: The system is implemented
according to the conceptual design. Extensive testing is
then performed to verify that the robot and tool meet the
requirements and perform the task effectively.

• Results evaluation: The robot’s performance is evaluated
based on the success criteria defined in the requirements
phase. Data is recorded and compared with simulation
data to determine if the task execution time has been
minimized.

It should be noted that in each of these phases, iteration and
feedback are critical to adapting and improving the system.

1.3 Related works

The task of sorting and classifying parts can, potentially, be
optimized to try to reduce the overall production time. In
this sense, there are some methods to minimize this time:
parallelization of the task using several robots, use of faster
robots, optimization of trajectories, choice of the sequence
that requires the shortest execution time, etc.

In [1], the approach is to use an algorithm that generates
an optimal trajectory for each arm performing the task by
working in a coordinated way to avoid collisions, instead of
using each arm sequentially.

To reduce the operation time, it has been shown that
the sequencing order of the parts in the pick-and-place
task is a relevant factor. In [2], an algorithm called best
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uniform algorithm (BUA) was developed to obtain the opti-
mal sequence, while other solutions are based on genetic
algorithms (GA), such as those proposed by Goldberg [3]
and Bessonet and Lallemand [4].

The optimization of motion planning for the pick-and-
place tasks of robotic manipulators is a field that has been
studied in depth. In the state of the art, several solutions to
this problem are suggested. Bobrow et al. [5] suggested a
phase plane analysis method to obtain a minimum time tra-
jectory with confined torque. In [6–8], a similar problemwas
solved with a greedy search algorithm and convex optimiza-
tion approaches. A solution is also proposed by solving the
time-optimal problem, as presented in [9], based on the trav-
eling salesman problem (TSP) with the genetic algorithm
studied by Qu et al. [10]. In [11], a minimum trajectory is
planned to minimize task execution time with a 2-DOF par-
allel robot.

In [12], a new way to mathematically model and formu-
late the pick-and-place operation in the food industry was
presented. The Hungarian algorithm was proposed to opti-
mize the total distance traveled by the robot to perform the
task. The algorithm’s capability to increase the productivity
of the process was demonstrated with the aid of the algo-
rithms used. In [13], a decision tree algorithm was proposed
to minimize pick-and-place time in the shoe industry. In this
case, the authors demonstrated an improvementwhenmanip-
ulating only five pieces.

Some researchers studying the pick-and-place problem
developed algorithms to optimize different system character-
istics. In [14], Ayob and Kendall developed a triple objective
algorithm to optimize sequential pick-and-place tasks for sol-
dering components on PCBs. In [1], the problem was solved
with a hybrid iterated local search algorithm, and a relative
optimal result was found quickly. Regarding the execution of
algorithms in real time, the problem of performance evalua-
tion and task optimization is not well studied in the literature.
In [15], the problem was discussed by developing an algo-
rithm to perform a safe pick-and-place task in real time, with
image processing in mind. In [16], the authors combined the
metaheuristic problem in real time, by allowing each robot to
perform the assigned pick-and-place operations in real time,
to maximize the throughput rate.

1.4 Main contributions

The main objective of this work is the design and valida-
tion of an automatic system for the collection of parts, from
materials such as leather or other textile materials, from dif-
ferent cutting systems with CNC machinery. This type of
system, widely used in the footwear industry, for example,
is a semi-automatic system in which the cutting process is

performed automatically, as well as the nesting process, i.e.,
the optimization of the placement of the pieces in the raw
material. On the other hand, the parts picking system is still
performedmanually, this being a very repetitive task inwhich
fatigue and loss of attention cause errors that are solved in
the automated line proposed. The proposed system is framed
within the Industry 4.0 revolution. In our proposal, we extend
the current semi-automated work area with a robotic system
capable of picking up parts with very different characteris-
tics, constituting a fully automated production line.

Once the technological feasibility of the robotic system for
the collection of cut pieces of leather or textile materials has
been demonstrated, the optimization of the collection pro-
cess is analyzed. This automatic process can be optimized
by modifying the order in which the pieces are picked up,
which is initially carried out in the same order in which they
have been cut by the CNC cutting system. The information
supplied to the robotic pick-and-place system is the one pro-
duced by the nesting procedure. Since the objective of nesting
does not coincide with the optimization of the picking pro-
cess, it is necessary to process this information to improve
and optimize the automated pick-and-place.

To optimize the automated pick-and-place process, a low-
cost computational model has been developed, from which
the cost function is derived and minimized using discrete
metaheuristic optimization algorithms. This low-cost com-
putational model has been validated, both by means of
computational tools with higher computational cost and by
being used in a real production prototype. Three ordering
algorithms are compared with non-optimized pick-and-place
criteria using 50 real-world experiments from the leather
industry. In particular, discrete JAYA [17], discrete teaching-
learning optimization (DTLBO) [18], and discrete tree-seed
algorithm (DTSA) [19]were selected to identify the improve-
ment using metaheuristic discrete optimization algorithms.

Both the analysis of the computational complexity and the
quality of the solution provided by the analyzed algorithms
demonstrate the viability of the hardware and the software
system as a whole application. In fact, this project has been
carried out in collaboration with one of the largest European
manufacturers ofCNCcuttingmachines (Comelz).However,
it is important to highlight that the system has no restrictions
and can be used with any other machinery.

2 Proposed solution

Both the hardware system (explained in Sect. 2.1) and the
softwaremodeling (explained in Sect. 2.2) comprise the solu-
tion proposed in this work, as explained below.
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Fig. 2 Description of how the
industrial process is currently
performed, manually by a full
dedication operator

2.1 Hardware system

2.1.1 Pick-and-place station

Currently, the picking of pieces and grouping them is a task
performed manually at the end of the machine, as shown
in Fig. 2. This is a tedious process that requires an opera-
tor picking parts at all times that the CNC cutting machine
is in operation. In addition, an extra operator on the other
side of the machine is required. This operator feeds the raw
material and programs the cutting machine. Manual picking
means that the pieces to be cut must be different enough to
be distinguished by the operator at a glance, which makes it
impossible to cut shoes of the same model with similar sizes
at the same time. The solution that is usually adopted is to
group only the same shoe size in each cutting process, so that
there is no confusion in the grouping of pieces. The solution
proposed in this project is a robotic sorting module, located
in the same position as the operator was before (see Fig. 3).

This module must be able to collect each of the cut pieces
and classify them according to their shape.

Given that the CNC cutting machine uses a rolling mat as
a transport element for the leather to be cut, the solution pro-
posed in this project uses the same system to allow a transfer
between the cutting machine and the sorting module devel-
oped. It is proposed to install an industrial or collaborative
robot on this conveyor belt, mounted on a seventh axis of
movement to increase its reach so that, with a vacuum-based
gripper, the robot can be used to transport the leather to the
cutting machine. Figure 4 shows the cutting machine at the
top, where thematerial to be cut enters, represented in zoneA
of the figure. Depending on the advance of the parts, which is
carried out by means of a conveyor belt or rolling mat, these
reach the cutting heads which, by means of a blade or laser,
generate the parts to be used in the manufacture of the final
product. Zone B shows the parts already cut. The material is
then transferred from the cutting machine’s conveyor belt to
the pick-and-placemachine, where the robot is locatedwith a

Fig. 3 Description of the
proposed solution where a robot
is performing the pick-and-place
tasks
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Fig. 4 Description of the industrial process showing a CNC cutting
machine and the pick-and-place machine proposed in this project

gripping tool D. The robot can sort the parts by type (zone C)
or by the elements required to manufacture a product (zone
E). Once all the parts have been removed and sorted, the
excess material is discarded or recycled. With this solution,
a single operator can feed the cutting machine and remove
the sorted parts. Traditionally, two people are needed to oper-
ate the cutting machine, one at the material inlet and one at
the outlet. The system proposed in this project increases the
labor efficiency of factory production by introducing a sys-
tem which is able to manipulate pieces, depending on their
shape.

The systemproposed in thiswork, onwhich themovement
sequence optimization algorithms have been implemented,
first consists of a CNC machine, which cuts the pieces on
the leather. Once the cut has been made, the leather arrives
via a conveyor belt to the robot’s workspace, where the pick-
and-place is to be performed. The parts are of different sizes
and shapes and can be placed in any position and orientation.

In the pick-and-place task, the parts are sorted according to
size and shape, making a pile of the same type. It is in this
step where sequence optimization algorithms are applied to
minimize the time of the task, as the leather can contain a
large number of parts and reducing a small amount of time for
each part can greatly increase the productivity of the factory.

2.1.2 Multi-point vacuum gripper

The workpieces cut by the CNC table in a real production
line have very different topologies and sizes. The vacuum
gripping tool to be used must be configured in such a way
that it can adapt to all cases. This project proposes the use
of a vacuum tool based on matrix suction cups, which are
activated independently and only grip the part to be handled.
This gripper can be seen in Fig. 5a, where the suction cups
activated by the robot are the ones matching the pieces to be
picked up.

As an example, Fig. 6 shows that once a piece to be
picked up is located, the robot applies a correction algo-
rithm that modifies the position and orientation of its end

Fig. 5 Multi-point suction cups vacuum gripper designed and imple-
mented in this project
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Fig. 6 Gripping of pieces

effector to maximize the number of suction cups in contact
with the piece. Figure 6a shows that, with the initial con-
figuration, only seven suction cups would be picking up the
piece while, by applying the corrections developed in this
project, the same piece would be picked up by 11 suction
cups (see Fig. 6b), an increase of more than 50%. This sim-
ple algorithm has made it possible to increase the success of
gripping non-rigid material or materials with a tendency to
wrinkle during handling.

It should be noted that the final topology of the suction
cups is not the square matrix shown in Fig. 6, but the irreg-
ular distribution is shown in Fig. 5b (i.e., a heterogeneous

location). This has greatly increased the ability to handle
particularly small or particularly large pieces.

2.2 Software system

As already stated, the proposed robotic system allows
automation of the pick-and-place process. In traditional pro-
duction lines in the leather industry, the nesting process
is optimized and the information is provided to the CNC
cutting system. This information will be used in our pro-
posal to determine the optimal pick-and-place procedure
after the cutting process with the CNC machine. Nowadays,
this pick-and-place process is still a manual process. In the
non-optimized automated process, the order in which the cut
parts are picked up is the same as the order in which they are
cut, usually following a raster order. The pick-and-place pro-
cess must initially be modeled and developed at the software
level, and from this modeling, the cost function of the sys-
temmust be derived. An optimal or near-optimal solution for
this cost function, and thus for the pick-and-place process, is
obtained using a discrete heuristic optimizer.

2.2.1 Simulator

A low computational cost pick-and-place process simula-
tor has been developed to model all of the movements to
be performed by the robotic system, as well as the time
costs of these processes. This information is used to cor-
rectly organize the production processes and avoid idle time
in the production line. On the other hand, it is used to extract
the cost function used in our optimization proposal of a pick-
and-place process according to both the specific process to
be performed and the specific robot used.

The developed simulator faithfully represents all the
movements of the robot when performing the pick-and-place
process. Initially, three different movements are distin-
guished: pick-and-place movements, rotation movements,
and translation movements.

The pick-and-place process is performed with the vacuum
multi-point gripper described in Sect. 2.1.2. During this pro-
cess, the robot must not be in motion, i.e., its velocity must
be zero, so the time cost of this task depends on the charac-
teristics of the hardware system used.

Regardless of the rotation angle in the picking process,
all parts must be placed at the same angle. The information
provided by the nesting optimization includes the rotation
angle of each part, from which the rotation to be performed
after the picking of each part is calculated. This rotation pro-
cess, of 180◦ maximum, has no effective time cost, since it
overlaps with the translation movement.
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Finally, the translational motion is a kinematic motion
characterized by a maximum velocity and acceleration.
These parameters, as well as the allowedmovements, depend
on the hardware used. In the system developed, the simula-
tor models a robot in which the acceleration is constant, the
maximum speed is configurable, and the degrees of freedom
allow minimum trajectories between any two points.

There are commercial simulators. The RobotStudio sim-
ulator, for example, offers very accurate simulations of robot
movements, but this type of simulator is intended for other
tasks and its computational cost is too high to be used in
the optimization process performed in our proposal. This
optimization process must be performed in the time interval
between the availability of the cutting information, calcu-
lated by the nesting process, and the start of operations of
the robotic system responsible for the pick-and-place. The
optimizable cost function, that includes all optimizable time
costs, is derived from the developed simulator.

2.2.2 Discrete optimization algorithms

The problem studied in this work should be considered a
special case of the TSP problem (traveling sales problem).
In our problem, relevant aspects of the robot arm motion,
such as acceleration and velocity, must also be considered,
which affect both the optimization and the simulation results.
In particular, it is necessary to consider a TSP-type problem
where each time one passes through one ormore destinations,
one has to return to the base station; in our case, one has to
return after passing through each destination, and with the
characteristic that there is more than one base station and the
return station depends on the visited destination. This type of
problem has been considered NP-hard in a large number of
works for several decades, for example, in [28] dating back
to 1976 and in [29] dating back to 1978. In [30], a variant of
TSPcloser to thework discussed in this paper,which includes
the condition of eventually returning to the starting point, is
also treated as NP-hard. Note that, NP-hard is a category of
problems that includes problems that are at least as hard as
those in NP but not necessarily in NP.

On the other hand, considering only the industrial objec-
tives, it has been considered that an exact solution can be
obtained by brute force only in the case of a process with
a very limited number of parts; moreover, the industrial
processes are exactly the same in each repetition. These con-
ditions are not met in the presented work, where the number
and type of parts depend on the characteristics of the raw
material, mainly in terms of size and imperfections to be
treated in each industrial process. Working with heuristic
discrete optimization algorithms is therefore a feasible solu-
tion.

Optimization algorithms canbe initially divided according
to the type of problems for which they were designed. There-
fore, we find algorithms that solve continuous optimization
problems and algorithms that solve discrete optimization
problems. The latter is the type of problem to be solved in
the challenge addressed in our work. While the variables of
the possible solutions of continuous optimization problems
are real-valued, in discrete optimization, they can only be
elements of a finite set.

Many discrete optimization problems are used in real-
world applications, e.g., the traveling salesman problem
(TSP) [20, 21], the graph coloring problem [22], the man-
ufacturing cell formation problem [23], and the water pump
switching problem [24]. Discrete problems of the TSP type
are NP-hard complexity problems and, therefore, cannot be
solved by any knownmethod in polynomial time.When solv-
ing or obtaining an acceptable solution to categorized NP-
hard optimization problems, metaheuristic algorithms obtain
near-optimal solutions with a reasonable computational cost;
moreover, these algorithms are not problem-dependent and
are easily adaptable with simple structures.

Three of the most efficient algorithms for solving dis-
crete optimization problems, which offer different structures
and/or search strategies, have been used and adapted in
order to analyze the behavior of these algorithms in solv-
ing the cost function of the system. These algorithms are
the discrete tree-seed algorithm (DTSA) [19] (inspired by
the tree-seed algorithm (TSA) [25]), the discrete JAYA
algorithm (DJAYA) [17] (an algorithm inspired by the
JAYA [26]), the continuous optimization algorithm, and
the discrete teaching-learning-based optimization algorithm
(DTLBO) [18] (inspired by the teaching-learning-based opti-
mization algorithm (TLBO) [27]). These algorithms have
been adapted for the pick-and-place problem under study;
they, and the modifications made, are described as follows.
All of them are population-based metaheuristic optimization
algorithms which are free from configuration parameters;
therefore, the only parameters to be set are the population
size and the stopping criterion. The stopping criterion can
be either the number of cost function evaluations (FE) per-
formed or the time requirement involved in the production
system.

There are common phases and procedures in all of the
algorithms used. First, the initial population (see Algorithm 1)

Algorithm 1 Initial population generation.
1: for m = 0 to popSize do
2: for k = 1 to N do
3: Popkm = l Bk + (uBk − l Bk) ∗ randk

4: end for
5: end for
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Algorithm 2 Swap transformation operation.
1: INPUT: oldCandidate[N]
2: newCandidate = oldCandidate
3: Obtain integer random number r1 in [1,N]
4: Obtain integer random number r2 in [1,N]
5: while r1 == r2 do
6: Obtain integer random number r2 in [1,N]
7: end while
8: newCandidate[r1] = oldCandidate[r2]
9: newCandidate[r2] = oldCandidate[r1]
10: OUTPUT: newCandidate[N]

is created, and it should be noted that, depending on the
algorithm, it is given different names, such as random per-
mutations except for two individuals: one of them is obtained
as the nearest neighbor tour, and the other one is the raster
order solution, i.e., the solution used in a manual process.

The purpose of Algorithm 1 is to create a population of
candidate solutions for our optimization problem. The algo-
rithm starts by using two main parameters: the population
size (popSize) and the number of design variables of the
problem to be optimized (N ). This algorithm generates an
initial population of candidate solutions by randomly initial-
izing the design variables within specified lower (l B) and
upper (uB) bounds. The random numbers obtained in all
cases, including this population initialization, were obtained
according to a normal distribution.

Both DJAYA and DTSA use the same transformation
operators (swap, shift, and symmetry) which always obtain
feasible candidates, while DTLBO uses different transfor-
mation processes that may obtain non-feasible candidates.

In order to apply the swap transformation operator, ini-
tially, two different random numbers between 1 and the
number of variables of the problem to be solved (N ) are
obtained. These two numbers indicate the two positions
that are exchanged to obtain a new candidate, as shown in

Algorithm 3 Shift transformation operation.
1: INPUT: oldCandidate[N]
2: newCandidate = oldCandidate
3: Obtain integer random number r1 in [1,N]
4: Obtain integer random number r2 in [1,N]
5: while r1 == r2 do
6: Obtain integer random number r2 in [1,N]
7: end while
8: if r1 > r2 then
9: Obtain integer random number r2 in [1,N]
10: temp = r1
11: r1 = r2
12: r2 = r1
13: end if
14: for i = r1 to r2 − 1 do
15: newCandidate[i] = oldCandidate[i + 1]
16: end for
17: newCandidate[r2] = oldCandidate[r1]
18: OUTPUT: newCandidate[N]

Algorithm 4 Symmetry transformation operation.
1: INPUT: oldCandidate[N]
2: newCandidate = oldCandidate
3: Obtain integer random number r1 and r2 as shwon in lines 3–13 of

Algorithm 3
4: Obtain integer random size ts in [1,N/2]
5: while r1 + rs > r2 or r2 + rs > N do
6: Obtain integer random number r1 and r2 as shwon in lines 3–13

of Algorithm 3
7: Obtain integer random size ts in [1,N/2]
8: end while
9: for i = 0 to rs do
10: newCandidate[r1 + i] = oldCandidate[r2 + rs − i]
11: newCandidate[r2 + rs − i] = oldCandidate[r1 + i]
12: end for
13: OUTPUT: newCandidate[N]

Algorithm 2. It should be noted that the number of variables
(N ) of the cost function in a pick-and-place process is the
number of parts to be picked and placed afterwards.

The shift transformation consists of shifting a block of
randomly sized variables by a single position to obtain a new
candidate, as shown in Algorithm 3. Algorithm 3 shows that
the displacement of the block made by the shift transforma-
tion is closed with the first element and so it always generates
feasible elements.

Algorithm 5 DTSA algorithm.
1: INPUT: max_FEs, N and ST
2: Generate the initial population Pop
3: Compute the objective function values (Fobj ())
4: Set mum_FEs = N
5: while mum_FEs < max_FEs do
6: Determine the best tree Best
7: for i = 1 to N do
8: Obtain random number r in [0,1]
9: if r > ST then
10: Create seed using swap and Best
11: Create seed using shift and Best
12: Create seed using symmetry and Best
13: Create seed using swap and Popi
14: Create seed using shift and Popi
15: Create seed using symmetry and Popi
16: else
17: Select random tree Popr
18: Create seed using swap and Popr
19: Create seed using shift and Popr
20: Create seed using symmetry and Popr
21: Create seed using swap and Popi
22: Create seed using shift and Popi
23: Create seed using symmetry and Popi
24: end if
25: Determine the best seed Bseed
26: if Fobj (Bseed ) < Fobj (Popi ) then
27: Popi = Bseed
28: end if
29: end for
30: mum_FEs = mum_FEs + 6 ∗ N
31: end while
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Algorithm 6 DJAYA algorithm.
1: INPUT: max_FEs, N, ST1 and ST2
2: Generate the initial population Pop
3: Compute the objective function values (Fobj ())
4: Set mum_FEs = N
5: while mum_FEs < max_FEs do
6: Determine the best and worst candidate (Best and Worst)
7: for i = 1 to N do
8: Obtain random number r in [0,1]
9: if r <= ST 1 then
10: oldCandidate = Popi
11: else
12: if r <= ST 1 then
13: oldCandidate = Best
14: else
15: oldCandidate = Worst
16: end if
17: end if
18: Select transformation operator by Roulette Wheel
19: Create newCandidate
20: if Fobj (newCandidate) < Fobj (Popi ) then
21: Popi = newCandidate
22: end if
23: end for
24: mum_FEs = mum_FEs + N
25: end while

Finally, in the symmetry transformation, a symmetry pro-
cess is performed on two blocks of equal size, avoiding any
overlapping. As shown in Algorithm 4, those blocks whose
size cannot be larger than half the size of the candidates are
first selected, and then the symmetry process is applied, thus
ensuring that feasible candidates are obtained.

It should be noted that the swap, shift, and symmetry trans-
formation operations are used by both the DJAYA algorithm
and the DTSA algorithm, which implies that the generation
of new candidates does not require a feasibility check, as it
is guaranteed by the procedure of these transformation pro-
cesses.

The DTSA algorithm is a population-based metaheuristic
optimization in which the individuals of the population or
candidates are called trees. Each of these trees generates a
total of six new candidates in each new generation, called
“seeds.” For the generation of these six new seeds (or can-
didates), the current tree and the best tree or a random tree
are used, depending on the search tendency (ST) parameter,

Algorithm 7 Crossover transformation operation.
1: INPUT: individual1[N],individual2[N]
2: newCandidate = individual1
3: Obtain integer random number r1 and r2 as shwon in lines 3–13 of

Algorithm 3
4: for i = r1 to r2 do
5: newCandidate[i] = individual2[i]
6: end for
7: OUTPUT: newCandidate[N]

Algorithm 8 DTLBO algorithm.
1: INPUT: max_FEs, N
2: Generate the initial population Pop
3: Divide the whole population in 4 subpopulation Pop j , j in [1,4]
4: Compute the objective function values (Fobj ())
5: Set mum_FEs = N
6: while mum_FEs < max_FEs do
7: Determine the teacher of each subpopulation (Best j ) and the

global best (T eacher )
8: LEARNER STAGE
9: for i = 1 to N do
10: Set j to id of the subpopulation of i
11: Obtain random number r in [0,1]
12: if r < 0.25 then
13: newCandidate = oldCandidate � Teacher
14: else if r < 0.5 then
15: newCandidate = oldCandidate � Best j
16: else if r < 0.75 then
17: newCandidate = oldCandidate � Mean j
18: else
19: newCandidate = Best j � Mean j
20: end if
21: Ensure the feasibility of newCandidate
22: if Fobj (newCandidate) < Fobj (Popi ) then
23: Popi = newCandidate
24: end if
25: end for
26: LEARNER STAGE
27: for i = 1 to N do
28: Obtain integer random number r in [1,N]
29: while r == i do
30: Obtain integer random number r in [1,N]
31: end while
32: newCandidate = oldCandidate � Popr
33: if Fobj (newCandidate) < Fobj (Popi ) then
34: Popi = newCandidate
35: end if
36: end for
37: mum_FEs = mum_FEs + 2 ∗ N
38: end while

which can take values between 0 and 1. Once the six new can-
didates (or seeds) are obtained, the best of them is obtained
and used as the tree (or candidate) in the new generation if
it improves the current tree (or candidate). The DTSA algo-
rithm is shown inAlgorithm 5, inwhich it can be seen that the
transformation operators are used to generate the six seeds.

The JAYA continuous algorithm introduces a modifica-
tion, with respect to the vast majority of heuristic algorithms
in the search procedure for the optimum. This modification
consists of using both the best and the worst current elements
of the population. DJAYA maintains this feature. In addi-
tion, like DTSA, it uses the concept of the search tendency
parameter (ST), but, to balance the exploration and exploita-
tion phases, it uses two search trend parameters (ST1 and
ST2). Algorithm 6 shows the DJAYA algorithm, in which
the transformation operators used are still the three operators
described previously, and the algorithm to be used for each
candidate is determined by a roulette wheel procedure (see
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line 18 of Algorithm 6) that is applied after performing 10%
of the function evaluations (FE).

The DTLBO algorithm, like TLBO, is based on teach-
ing and learning processes. The DTLBO algorithm presents
important changes in the skeleton of the algorithm, with
respect to the two algorithms already described. DTLBO is
also a population-based algorithm, and the candidates that
make up this population are called learners, while the best
individual of a generation is referred to as a teacher. The ini-
tial population is obtained following the same procedure as in
the previous algorithms but is divided into n subpopulations.
This mechanism is used to increase diversity by having n
individuals acting as a teacher; the number of subpopulations
was set to 4, as in [18]. Moreover, the DTLBO algorithm is a
two-phase algorithm, like TLBO, with a first phase called the
teaching phase and a second phase called the learning phase.
The procedure conducted, which can be seen in Algorithm 8,
produces candidates that may be infeasible, which makes it
necessary to perform processes that make these infeasible
candidates feasible. Therefore, the transformation operator
used (the crossover (�) shown in Algorithm 7) may gener-
ate infeasible individuals. To obtain a new candidate, two
individuals are used from among the old candidates, the best
overall individual (T eacher ), the best individual of the sub-
population (Best j ), or the individual called mean (Mean j ),
which is calculated as the mean of the individuals of each
subpopulation.

It should benoted that, especially in the exploitationphase,
duplicate candidates are likely to be generated.Before replac-
ing an old candidate with a new one, in any of the algorithms
tested, a check is made to ensure that the latter no longer
exists as a candidate, in which case the replacement would
not be executed.

3 System analysis and validation

3.1 Simulator proposed vs physics-based simulator

As explained in Sect. 2.2.1, a simulator has been developed
that fully models the motion to be performed by the robotic
system in the pick-and-place process. This model, based on
the intrinsic characteristics of the robotic system, which are
maximum speed, acceleration, degrees of freedom, and grip-
ping system, provides the time cost of the pick-and-place
process, as well as the cost function, related to the transla-
tional movements of the robotic system to be used in the
optimization process. These results should be validated. In
our case, these results were compared with those provided
by ABB’s RobotStudio software.

The possibility of using RobotStudio for research pur-
poses has already been analyzed due to the advantages it
incorporates, in terms of kinematic analysis of the devices.

In [7], an inertial sensor coupled to a robot was used to com-
pare the data obtained with the theoretical values provided
by the simulation software. Simulations of the robot oper-
ation were performed and compared with the results of a
set of experiments in a physical setup. The referenced arti-
cle presents simulations with an analysis of the TCP speed
of the tool and analyzes the influence of different parame-
ters on the accuracy of the execution of the movement speed.
The research results presented show a considerable similarity
of the simulation with the real behavior of the robots. Mea-
surements with the inertial sensor show that the acceleration
signals are characterized by high interference. Despite this,
the filtered mean value gives very similar results for the sim-
ulation and real experiments. In addition, preliminary testing
showed a high accuracy of the gyroscopic sensor, with only a
small deviation from the mean value, which the authors pro-
pose should be analyzed in future work. For these reasons, it
is considered that the conclusions reached usingRobotStudio
will closely reflect the behavior of the real system. In all the
experiments performed, the error obtained in the simulation

Table 1 Comparison of real results with respect to the results obtained
using a simplified model: velocity 0.5 m/s

Place Pick Real
(s.)

Simplified
model (s.)

Pick Real
(s.)

Simplified
model (s.)

Place01 Pick01 2866 2825 Pick06 2912 2871

Place02 Pick01 2877 2839 Pick06 2930 2889

Place03 Pick01 2888 2845 Pick06 2937 2896

Place04 Pick01 2835 2796 Pick06 2860 2820

Place05 Pick01 2932 2891 Pick06 2980 2940

Place01 Pick02 2895 2854 Pick07 2879 2838

Place02 Pick02 2909 2869 Pick07 2916 2875

Place03 Pick02 2936 2896 Pick07 2909 2867

Place04 Pick02 2874 2834 Pick07 2874 2834

Place05 Pick02 2971 2932 Pick07 2940 2898

Place01 Pick03 2907 2869 Pick08 2838 2798

Place02 Pick03 2942 2903 Pick08 2872 2832

Place03 Pick03 2954 2911 Pick08 2872 2830

Place04 Pick03 2892 2850 Pick08 2827 2785

Place05 Pick03 2989 2950 Pick08 2894 2851

Place01 Pick04 2928 2886 Pick09 2888 2846

Place02 Pick04 2939 2899 Pick09 2919 2878

Place03 Pick04 2947 2906 Pick09 2924 2881

Place04 Pick04 2885 2845 Pick09 2876 2835

Place05 Pick04 2951 2913 Pick09 2952 2910

Place01 Pick05 2846 2805 Pick10 2868 2826

Place02 Pick05 2865 2823 Pick10 2895 2857

Place03 Pick05 2879 2839 Pick10 2897 2855

Place04 Pick05 2806 2763 Pick10 2862 2826

Place05 Pick05 2885 2844 Pick10 2933 2893
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Table 2 Comparison of real results with respect to the results obtained
using a simplified model: velocity 1m/s

Place Pick Real
(s.)

Simplified
model (s.)

Pick Real
(s.)

Simplified
model (s.)

Place01 Pick01 1508 1412 Pick06 1531 1435

Place02 Pick01 1513 1419 Pick06 1540 1445

Place03 Pick01 1519 1422 Pick06 1543 1448

Place04 Pick01 1492 1398 Pick06 1505 1410

Place05 Pick01 1541 1446 Pick06 1565 1470

Place01 Pick02 1522 1427 Pick07 1514 1419

Place02 Pick02 1529 1434 Pick07 1533 1437

Place03 Pick02 1543 1448 Pick07 1530 1433

Place04 Pick02 1512 1417 Pick07 1512 1417

Place05 Pick02 1561 1466 Pick07 1545 1449

Place01 Pick03 1529 1435 Pick08 1494 1399

Place02 Pick03 1546 1451 Pick08 1511 1416

Place03 Pick03 1552 1456 Pick08 1511 1415

Place04 Pick03 1521 1425 Pick08 1488 1393

Place05 Pick03 1569 1475 Pick08 1522 1426

Place01 Pick04 1539 1443 Pick09 1519 1423

Place02 Pick04 1545 1449 Pick09 1535 1439

Place03 Pick04 1549 1453 Pick09 1537 1441

Place04 Pick04 1517 1422 Pick09 1513 1418

Place05 Pick04 1550 1456 Pick09 1551 1455

Place01 Pick05 1498 1402 Pick10 1509 1413

Place02 Pick05 1507 1412 Pick10 1523 1429

Place03 Pick05 1514 1420 Pick10 1523 1427

Place04 Pick05 1478 1381 Pick10 1506 1413

Place05 Pick05 1518 1422 Pick10 1542 1447

obtained with RobotStudio was less than 1%. However, the
computational cost of both software tools is not compara-
ble. It should be noted that RobotStudio is a validated and
reliable software tool for these analyses, as its simulations
perfectly match real movements but a fast model that accu-
rately approximates to it is worthwhile.

As already explained, the cost function to be optimized
was designed based on the modeling of the kinematic sys-
tem. A commonly used simplification is based on optimizing
the traveled distance, i.e., like a traditional TSP problem,
instead of optimizing the most complex model of the robotic
system. Tables 1, 2, and 3 show the discrepancy between the
real results, which coincidewith those obtainedwith our sim-
ulation system, and the simplification that only considers the
traveled distance. In these tables, it can be seen that, for slow
speeds, the discrepancy is not too important but, when the
speed increases, the discrepancies are relevant. The errors due
to the use of a simplified optimization model (TSP problem)
can affect both the quality of the solution and the organization
of the production lines, especially when higher-performance

Table 3 Comparison of real results with respect to results using a sim-
plified model: velocity 1.5m/s

Place Pick Real
(s.)

Simplified
model (s.)

Pick Real
(s.)

Simplified
model (s.)

Place01 Pick01 1089 942 Pick06 1104 957

Place02 Pick01 1092 946 Pick06 1110 963

Place03 Pick01 1096 948 Pick06 1112 965

Place04 Pick01 1078 932 Pick06 1087 940

Place05 Pick01 1111 964 Pick06 1127 980

Place01 Pick02 1098 951 Pick07 1093 946

Place02 Pick02 1103 956 Pick07 1106 958

Place03 Pick02 1112 965 Pick07 1103 956

Place04 Pick02 1092 945 Pick07 1092 945

Place05 Pick02 1124 977 Pick07 1113 966

Place01 Pick03 1103 957 Pick08 1079 933

Place02 Pick03 1114 968 Pick08 1091 944

Place03 Pick03 1118 970 Pick08 1091 943

Place04 Pick03 1097 950 Pick08 1076 928

Place05 Pick03 1129 983 Pick08 1098 950

Place01 Pick04 1109 962 Pick09 1096 949

Place02 Pick04 1113 966 Pick09 1106 959

Place03 Pick04 1116 969 Pick09 1108 960

Place04 Pick04 1095 948 Pick09 1092 945

Place05 Pick04 1117 971 Pick09 1118 970

Place01 Pick05 1082 935 Pick10 1089 942

Place02 Pick05 1088 941 Pick10 1098 952

Place03 Pick05 1093 946 Pick10 1099 952

Place04 Pick05 1068 921 Pick10 1087 942

Place05 Pick05 1095 948 Pick10 1111 964

robotic systems are used. As demonstrated in Sect. 3.1, the
results of the real physical system match the results obtained
with our simulator.

3.2 Analysis of the discrete optimization algorithms

Toevaluate the algorithms,weused real examples of the pick-
and-place problem, including ten pick jobs (named Pick01-
Pick10 with 500 parts) and five different locations (named
Place01-Place05, for 32 different part classes). The constant
acceleration of the robotwas 10m/s2 in all of the experiments
performed, while the maximum velocity took values of 0.5
m/s, 1 m/s, or 1.5 m/s.

As mentioned above, the chosen algorithms were free of
configuration parameters, except for the stopping criterion
and population size. The stopping criterion used in this anal-
ysis was the maximum number of evaluations of the cost
function, called maxFEs in the previous algorithms. These
heuristic algorithms require the execution of several inde-
pendent runs to avoid a solution trapped in a local minimum;
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Table 7 ANOVA results

Velocity Sum of squares Degrees of freedom p-value

0.5 m/s 2338.8 2 0.4918

1.0 m/s 583.6 2 0.4931

1.5 m/s 247.4 2 0.5089

therefore, in order to characterize them, 30 independent runs
were executed in each experiment, and the value of the best
solution, the mean of these 30 solutions, and the standard
deviation were obtained.

The quality of the solution first obtained by each algorithm
was analyzed in terms of the best solution and the standard
deviation of the 30 solutions obtained in each experiment.
These results are shown in Tables 4, 5, and 6, for 0.5 m/s,
1m/s, or 1.5 m/s, respectively. The three algorithms provide
satisfactory solutions, the DTSA being the one that obtained
the best results and the least good results being provided by
the DTLBO algorithm. This conclusion holds when varying
both the population size and the stopping criterion, i.e., the
maximum number of function evaluations (maxFEs).

In order to perform a comparative analysis of the proposed
algorithms, an inferential statistical analysis is proposed to
statistically determine whether there are significant differ-
ences in the behavior of the algorithms analyzed. For this
purpose, a parametric method will be used, in particular the
ANOVA method, in which case normality and homoscedas-
ticity in the data are assumed, as well as a non-parametric
method, in particular the Kruskal-Wallis method, which is
suitable when normality or homoscedasticity, or both, are
not assumed.

In both cases, the goal is to analyze whether the results
allow us to reject the null hypothesis, that is, to refute the
conclusion that there are no significant differences between
the algorithms. The results obtained with both the ANOVA

Table 8 Tukey-Kramer analysis based on ANOVA results

Velocity Comparison Mean differences p-value

0.5 m/s DTSA - DJAYA −25.9 0.6706

DTSA - DTLBO −28.3 0.4829

DJAYA - DTLBO −21.4 0.9520

1.0 m/s DTSA - DJAYA −12.9 0.6819

DTSA - DTLBO −14.2 0.4805

DJAYA - DTLBO −10.8 0.9449

1.5 m/s DTSA - DJAYA −8.5 0.6893

DTSA - DTLBO −9.4 0.4981

DJAYA - DTLBO −7.1 0.9504

Table 9 Kruskal-Wallis results

Velocity Sum of squares Degrees of freedom p-value

0.5 m/s 3209.3 2 0.4273

1.0 m/s 3212.0 2 0.4269

1.5 m/s 3026.5 2 0.4482

and Kruskal-Wallis methods can be subjected to a post hoc
test, that is, a multiple comparison test to determine the dif-
ference between the different groups; for this analysis, the
Tukey-Kramer test, also known as the honestly significant
Tukey (HSD) method, was used. In both cases, the results
obtained are statistically significant if the null hypothesis
can be rejected.

The results of applying the ANOVAmethod to the results
of the “Best” column of Tables 4, 5, and 6 are shown in
Table 7,while the corresponding results of theTukey-Kramer
comparison analysis are shown in Table 8. The results pre-
sented in Table 8 show that the DTSA algorithm is superior
to DJAYA and DTLBO and that the DJAYA algorithm is
superior to DTLBO, but these results cannot be consid-
ered statistically significant because they do not reject the
null hypothesis, since the p-value is greater than 0.05 in all
cases. The results obtained using the Kruskal-Wallis method
are shown in Table 9, and the corresponding results of the
Tukey-Kramer comparison analysis are shown in Table 10.
The conclusions of the results shown in these two tables are
analogous to the previous case, although theDTSAalgorithm
is dominant, the null hypothesis cannot be rejected. The fact
that the null hypothesis cannot be rejected means that the
analyses performed do not indicate that the three algorithms
behave significantly differently. Note that, as already men-
tioned, they all give good results and the differences between
the proposed solutions are not very significant; in fact, the
maximum difference between DTLBO and DTSA is 0.45%.

Table 10 Tukey-Kramer analysis based on Kruskal-Wallis results

Velocity Comparison Mean differences p-value

0.5 m/s DTSA - DJAYA −28.2 0.6424

DTSA - DTLBO −31.4 0.4131

DJAYA - DTLBO −23.6 0.9267

1.0 m/s DTSA - DJAYA −28.0 0.6555

DTSA - DTLBO −31.4 0.4091

DJAYA - DTLBO −23.8 0.9158

1.5 m/s DTSA - DJAYA −27.8 0.6677

DTSA - DTLBO −31.1 0.4315

DJAYA - DTLBO −23.7 0.9235
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Table 11 Analysis of the best solution obtained by the DTSA, DJAYA,
and DTLBO algorithms using the Friedman rank test at velocities 0.5
m/s, 1.0 m/s, and 1.5 m/s

Velocity Mean rank p-value
DTSA DJAYA DTLBO

0.5 m/s 1.00 2.01 2.99 2.47E-22

1.0 m/s 1.00 2.01 2.99 2.47E-22

1.5 m/s 1.00 2.10 2.90 1.58E-21

Since the previous tests show which of the three algo-
rithms analyzed is the prevalent one, but the statistical
significance is not guaranteed because the null hypothesis
could not be refuted, it was decided to use the Friedman rank
test method, which does not analyze the results obtained,
i.e., the results of Tables 4, 5, and 6 are not analyzed directly;
these data are preprocessed in order to assign ranks accord-
ing to the quality of the solution obtained, in our case rank 1
(the best), rank 2, and rank 3 (the worst), and if several algo-
rithms obtain the same solution, they are assigned the average
of the ranks they would occupy without the ties. Therefore,
this non-parametric inferential statistical test, the Friedman
rank test, is applied to these ranks calculated according to
the solution, but not to the solution itself, with the objective
still being to reject the null hypothesis, i.e., to determine that
there is a difference between the groups analyzed.

Table 11 shows the results of the Friedman rank test
applied to the best solution for all the velocities analyzed
(0.5 m/s, 1.0 m/s, and 1.5 m/s). In this table, we can see that
the DTSA algorithm always obtains the best solution, since
the average rank is equal to 1, while DJAYA is almost always
the second-best algorithm. In addition, the null hypothesis
can be rejected since the p-value is much lower than 0.05.

Therefore, this analysis also confirms, but with statisti-
cally reliable results, that the conclusions drawn are correct
and that the DTSA algorithm is the dominant one according
to the quality of the solution provided.

We performed an analysis similar to the previous one,
based on the Friedman rank test, on the value of the standard
deviation of the 30 results obtained in each experiment; the
results shown in Table 12 indicate that for all velocities, the
best algorithm in terms of standard deviation is DTLBO,

Table 12 Analysis of the standard deviation obtained by the DTSA,
DJAYA, and DTLBO algorithms using the Friedman rank test at veloc-
ities 0.5 m/s, 1.0 m/s, and 1.5 m/s

Velocity Mean rank p-value
DTSA DJAYA DTLBO

0.5 m/s 1.88 2.93 1.19 1.45E-17

1.0 m/s 1.96 2.87 1.17 6.30E-17

1.5 m/s 2.00 2.85 1.15 3.06E-17

followed by the DTSA algorithm. This result could call into
question the choice of the predominant algorithm in real-
time situations that prevent the 30 scheduled runs from being
performed. To clarify this issue, in Table 13, we compare
the best result obtained by the DTLBO algorithm of the 30
runs of each experiment with the worst result obtained by
the DTSA algorithm of the 30 runs of each experiment. This
table shows that the worst DTSA solution always improves
the best DTLBO solution, confirming the superiority of the
DTSA algorithm.

The algorithms were also analyzed in terms of compu-
tational cost; the results of the computational cost and the
mean value of the 30 independent solutions of the results
of Table 4 are shown in Table 14, and the computing plat-
form used is described in Sect. 4. These results also show the
predominance of the DTSA algorithm, regarding the quality
of the solutions, when comparing the “Mean of solutions”
value among the algorithms, row by row. On the other hand,
the fastest algorithm is the JAYA algorithm, while the TLBO
is the most computationally expensive, mainly due to the
processes of converting the non-feasible candidates into fea-
sible ones. This processingwas not necessary in the other two
algorithms. Although any of the three analyzed algorithms
can be used effectively in the proposed system, the DTSA
algorithm was the one used in the rest of the experiments
because it offered both the most balanced performance and
the best solutions.

4 Experimental results

This section describes the analysis of the improvements
that our proposal introduces into current industrial pro-
cesses. Computational experiments were performed using
one computing resource, out of the twenty available in the
Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz processor;
the computing system had 256GB of RAM installed. Both
the development of the simulator and the experimental sys-
tem were developed in C language, and the GCC compiler
version 8.5.0 was used.

4.1 Software system performance analysis

Tables 15, 16, and 17 show the pick-and-place time cost of
the solution obtained by our proposal using the DTSA algo-
rithm, the time cost of the procedure using the same order as
the cutting process, i.e., non-optimized order, both using the
same robotized system. These tables also show the percent-
age improvement of the solution obtained by the proposed
system over the non-optimized solution, i.e., the same pick-
ing sequence as in the cutting procedure.

These results demonstrate the efficiency of the proposed
system and that the automation of the pick-and-place process
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Table 15 Improvement of our proposal with respect to the non-optimized order with 30 independent runs, a population size equal to 60, maxFEs =
500, 000 and velocity 0.5 m/s

Place Pick Proposal (s.) Non-opt. (s.) Improv.(%) Pick Proposal (s.) Non-opt. (s.) Improv.(%)

Place01 Pick01 2866 3593 20.2% Pick06 2912 3589 18.9%

Place02 Pick01 2877 3582 19.7% Pick06 2930 3599 18.6%

Place03 Pick01 2888 3645 20.8% Pick06 2937 3635 19.2%

Place04 Pick01 2835 3545 20.0% Pick06 2860 3532 19.0%

Place05 Pick01 2932 3658 19.8% Pick06 2980 3658 18.5%

Place01 Pick02 2895 3575 19.0% Pick07 2879 3576 19.5%

Place02 Pick02 2909 3587 18.9% Pick07 2916 3603 19.1%

Place03 Pick02 2936 3643 19.4% Pick07 2909 3633 19.9%

Place04 Pick02 2874 3557 19.2% Pick07 2874 3561 19.3%

Place05 Pick02 2971 3653 18.7% Pick07 2940 3651 19.5%

Place01 Pick03 2907 3600 19.2% Pick08 2838 3544 19.9%

Place02 Pick03 2942 3629 18.9% Pick08 2872 3563 19.4%

Place03 Pick03 2954 3672 19.6% Pick08 2872 3595 20.1%

Place04 Pick03 2892 3577 19.2% Pick08 2827 3528 19.9%

Place05 Pick03 2989 3677 18.7% Pick08 2894 3591 19.4%

Place01 Pick04 2928 3590 18.5% Pick09 2888 3555 18.8%

Place02 Pick04 2939 3592 18.2% Pick09 2919 3587 18.6%

Place03 Pick04 2947 3639 19.0% Pick09 2924 3629 19.4%

Place04 Pick04 2885 3534 18.4% Pick09 2876 3554 19.1%

Place05 Pick04 2951 3626 18.6% Pick09 2952 3634 18.8%

Place01 Pick05 2846 3540 19.6% Pick10 2868 3555 19.3%

Place02 Pick05 2865 3528 18.8% Pick10 2895 3579 19.1%

Place03 Pick05 2879 3578 19.5% Pick10 2897 3605 19.7%

Place04 Pick05 2806 3492 19.7% Pick10 2862 3550 19.4%

Place05 Pick05 2885 3574 19.3% Pick10 2933 3614 18.8%

Table 16 Improvement of our proposal with respect to the non-optimized order with 30 independent runs, a population size equal to 60, maxFEs =
500, 000 and velocity 1 m/s

Place Pick Proposal (s.) Non-opt. (s.) Improv.(%) Pick Proposal (s.) Non-opt. (s.) Improv.(%)

Place01 Pick01 1508 1871 19.4% Pick06 1531 1870 18.1%

Place02 Pick01 1513 1866 18.9% Pick06 1540 1875 17.9%

Place03 Pick01 1519 1897 20.0% Pick06 1543 1892 18.4%

Place04 Pick01 1492 1848 19.2% Pick06 1505 1841 18.3%

Place05 Pick01 1541 1904 19.1% Pick06 1565 1904 17.8%

Place01 Pick02 1522 1862 18.3% Pick07 1514 1863 18.7%

Place02 Pick02 1529 1869 18.2% Pick07 1533 1876 18.3%

Place03 Pick02 1543 1896 18.6% Pick07 1530 1891 19.1%

Place04 Pick02 1512 1854 18.4% Pick07 1512 1856 18.5%

Place05 Pick02 1561 1902 17.9% Pick07 1545 1900 18.7%

Place01 Pick03 1529 1875 18.4% Pick08 1494 1847 19.1%

Place02 Pick03 1546 1889 18.2% Pick08 1511 1857 18.6%
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Table 16 continued

Place Pick Proposal (s.) Non-opt. (s.) Improv.(%) Pick Proposal (s.) Non-opt. (s.) Improv.(%)

Place03 Pick03 1552 1911 18.8% Pick08 1511 1872 19.3%

Place04 Pick03 1521 1864 18.4% Pick08 1488 1839 19.1%

Place05 Pick03 1569 1913 18.0% Pick08 1522 1871 18.6%

Place01 Pick04 1539 1870 17.7% Pick09 1519 1852 18.0%

Place02 Pick04 1545 1871 17.4% Pick09 1535 1869 17.9%

Place03 Pick04 1549 1894 18.3% Pick09 1537 1890 18.7%

Place04 Pick04 1517 1842 17.6% Pick09 1513 1852 18.3%

Place05 Pick04 1550 1888 17.9% Pick09 1551 1892 18.0%

Place01 Pick05 1498 1845 18.8% Pick10 1509 1853 18.6%

Place02 Pick05 1507 1839 18.1% Pick10 1523 1864 18.3%

Place03 Pick05 1514 1864 18.8% Pick10 1523 1878 18.9%

Place04 Pick05 1478 1821 18.9% Pick10 1506 1850 18.6%

Place05 Pick05 1518 1862 18.5% Pick10 1542 1882 18.1%

Table 17 Improvement of our proposal with respect to the non-optimized order with 30 independent runs, a population size equal to 60, maxFEs =
500, 000 and velocity 1.5 m/s

Place Pick Proposal (s.) Non-opt. (s.) Improv.(%) Pick Proposal (s.) Non-opt. (s.) Improv.(%)

Place01 Pick01 1089 1331 18.2% Pick06 1104 1330 17.0%

Place02 Pick01 1092 1327 17.7% Pick06 1110 1333 16.7%

Place03 Pick01 1096 1348 18.7% Pick06 1112 1345 17.3%

Place04 Pick01 1078 1315 18.0% Pick06 1087 1311 17.1%

Place05 Pick01 1111 1353 17.9% Pick06 1127 1353 16.7%

Place01 Pick02 1098 1325 17.1% Pick07 1093 1325 17.5%

Place02 Pick02 1103 1329 17.0% Pick07 1106 1334 17.1%

Place03 Pick02 1112 1348 17.5% Pick07 1103 1344 17.9%

Place04 Pick02 1092 1319 17.3% Pick07 1092 1320 17.3%

Place05 Pick02 1124 1351 16.8% Pick07 1113 1350 17.5%

Place01 Pick03 1103 1333 17.3% Pick08 1079 1315 17.9%

Place02 Pick03 1114 1343 17.0% Pick08 1091 1321 17.4%

Place03 Pick03 1118 1357 17.6% Pick08 1091 1332 18.1%

Place04 Pick03 1097 1326 17.2% Pick08 1076 1309 17.9%

Place05 Pick03 1129 1359 16.9% Pick08 1098 1330 17.5%

Place01 Pick04 1109 1330 16.6% Pick09 1096 1318 16.9%

Place02 Pick04 1113 1331 16.4% Pick09 1106 1329 16.8%

Place03 Pick04 1116 1346 17.1% Pick09 1108 1343 17.5%

Place04 Pick04 1095 1311 16.5% Pick09 1092 1318 17.1%

Place05 Pick04 1117 1342 16.8% Pick09 1118 1345 16.9%

Place01 Pick05 1082 1313 17.6% Pick10 1089 1318 17.4%

Place02 Pick05 1088 1309 16.9% Pick10 1098 1326 17.2%

Place03 Pick05 1093 1326 17.6% Pick10 1099 1335 17.7%

Place04 Pick05 1068 1297 17.7% Pick10 1087 1317 17.4%

Place05 Pick05 1095 1325 17.3% Pick10 1111 1338 16.9%
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Fig. 7 Frames extracted from
the video sequence of the
implementation

with a robotic system requires the simulation and optimiza-
tion of this system, in order to efficiently exploit the economic
investment made in the automation of the production lines.

As explained in Sect. 2.2.2, the optimization algorithms
were designed by introducing two solutions in the initial pop-
ulation that, although not optimal, allowed improvement of
the heuristic search process. Moreover, in the actual imple-
mentation of the system, the stopping criterion used was the
available computation time instead of the number of func-
tion evaluations. This time depends on the production line
and is the time at which the nesting information provided
to the CNC cutting machine can be accessed, in particular,
as well as the processing and transport times of the material
through the production line. It is guaranteed that the system
will always improve results with respect to using the same
picking sequence as in the cutting procedure and that the

automation introduced will not generate undesirable down-
time on the production line.

4.2 Analysis of the entire system operation

To validate the data obtained in the simulation and as an ini-
tial part of the real implementation of the system, a simplified
setup was assembled to enable testing. The robot used in this
case was a Universal Robot UR5. This robot was selected for
safety reasons because, in the development tests, it allowed
the elimination of safety barriers, as it is a collaborative robot.
Figure 7 shows a sequence of frames from the video avail-
able at this site https://youtu.be/GJxV3TP_N2E (accessed on
08 February 2023). The size of the leather and the number
of pieces used in this case were reduced, since the seventh
axis has not been implemented and the robot’s workspace is
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smaller. In any case, it can be seen that the operation of the
different hardware and software modules developed works
satisfactorily.

The systemdeveloped is part of amultidisciplinary project
whose objective is to design an optimal industrial process,
both in terms of automated manipulation of the textile pieces
considered, and in terms of accelerating this manipulation to
the maximum by means of computational techniques. From
an academic point of view, this work has shown the necessity
of a detailed analysis of the computational problem, avoid-
ing simplifications that lead to non-optimal solutions and that
show divergences in the results obtained from simulations.
From the practitioner’s point of view, it is shown that invest-
ments in R&D&I lead to cost savings in many aspects, such
as savings in raw materials, energy, and/or industrial infras-
tructure. The work presented is an example of this saving,
which amortizes the investment made and can be used as a
reference in the field of industrial engineering, both in the
field of machinery and tools and in the optimization of pro-
cesses through simulation and computational optimization.
In addition, these industrial savings are necessary to increase
the productivity of manufacturing processes, with the aim
of bringing factories closer to consumers. Deglobalization
offers clear benefits in terms of reducing transportation costs
and time to market, but it also presents a challenge in terms
of increasing the productivity of manufacturing systems.

5 Conclusions

Two main conclusions were reached in this project. On the
one hand, the system can be automated, which allows the
elimination of a workstation, thus increasing the competi-
tiveness of the production line. Tasks can be performed by
one operator and one robot instead of two operators. Cur-
rently, the CNC machine is fed to process shoe parts of the
same shoe size for each leather piece since; for some parts,
the difference in size among parts of different shoe sizes is
so small that operators end up making mistakes in the clas-
sification, usually caused by fatigue. Introducing pieces of
different shoe sizes in the same leather piece forces the oper-
ator to pay more attention and, therefore, slows down the
process. Therefore, automation in the pick-and-place stage
brings several benefits. Firstly, a reduction in waste materi-
als can be achieved because of the possibility of including
parts of different sizes in the same hide to be cut, which can
optimize the nesting process. Secondly, the time reduction at
the pick-and-place stage allows us to consider a new design
of the cutting plant so that the same pick-and-place station
can be fed by different cutting machines.

On the other hand, as we demonstrate in this work,
the use of a discrete optimization algorithm allows us to
get the appropriate sequence to perform the pick-and-place

operation in a way that reduces operation time and allows
us to benefit from the advantages mentioned above. Specifi-
cally, although the use of the other algorithms analyzed also
introduces a substantial improvement, the DTSA algorithm
was selected because it provides pick-and-place sequences
with an improvement of between 15 and 20%, with respect
to performing the same operation following a raster order
sequence.

In this work we have considered industrial processes
with not extremely demanding time requirements; these
requirements are determined by the previous processes in the
production line. However, in very powerful industrial plants,
these time requirements may not be met, which is an impor-
tant limitation to be solved in the future. Therefore, if the
available time slot does not allow to obtain an acceptable
near-optimal solution, the computational process should be
accelerated by means of parallelization techniques, initially
using the same existing computational resources, i.e., the
available multicore systems.

If a higher speed of part processing per unit time is
required, one solution is to increase the number of robot arms
performing the pick-and-place operation. It should be noted,
however, that in this case, a shared workspace for several
robots has not been considered, since no collision avoid-
ance techniques between robot arms have been integrated.
This is one of the main limitations of the research presented,
since if a higher processing speed of parts per unit of time is
required, it would be necessary to increase the space required
for processing; one of the future research lines is to adapt the
algorithms to avoid such an increase in the space required in
the production line.

As a future work, using techniques based on the acqui-
sition and analysis of hyperspectral images, we intend to
extend this work to the field of pick-and-place, after real-time
sorting, of industrial solid waste. In this case, the industrial
pick-and-place process will still exist, but we will be dealing
with a continuous production model rather than discrete raw
materials, which will have to be computationally discretized
to maximize the speed of the industrial process.
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