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Abstract
The transition towards renewable electricity provides opportunities for manufacturing companies to save electricity costs
through participating in demand response programs. End-to-end implementation of demand response systems focusing on
manufacturing power consumers is still challenging due tomultiple stakeholders and subsystems that generate a heterogeneous
and large amount of data. This work develops an approach utilizing artificial intelligence for a demand response system that
optimizes industrial consumers’ and prosumers’ production-related electricity costs according to time-variable electricity
tariffs. It also proposes a semantic middleware architecture that utilizes an ontology as the semantic integration model for
handling heterogeneous data models between the system’s modules. This paper reports on developing and evaluating multiple
machine learning models for power generation forecasting and load prediction, and also mixed-integer linear programming
as well as reinforcement learning for production optimization considering dynamic electricity pricing represented as Green
Electricity Index (GEI). The experiments show that the hybrid auto-regressive long-short-term-memory model performs best
for solar and convolutional neural networks for wind power generation forecasting. Random forest, k-nearest neighbors,
ridge, and gradient-boosting regression models perform best in load prediction in the considered use cases. Furthermore, this
research found that the reinforcement-learning-based approach can provide generic and scalable solutions for complex and
dynamic production environments. Additionally, this paper presents the validation of the developed system in the German
industrial environment, involving a utility company and two small to medium-sized manufacturing companies. It shows that
the developed system benefits the manufacturing company that implements fine-grained process scheduling most due to its
flexible rescheduling capacities.

Keywords Demand response system · Reinforcement learning · Artificial neural network · Energy-flexible production
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• Green Electricity Index indicating renewable electricity
proportion and price.

• Real-time data acquisition system using the open-source
solution OpenEMS.

• Reinforcement learning for production optimization un-
der dynamic electricity pricing.

1 Introduction

Energy flexibility, particularly local flexibility, plays a deci-
sive role in Europe’s transition to renewable energy. Accord-
ing to the European Union’s Energy Union Framework,
consumers should engage in the energy transition by actively
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participating in the energy market [1]. They can benefit from
technological progress in energy cost reductions, and it can
be realized, for instance, by participating in demand response
(DR) programs. DR programs focus on changing energy con-
sumption patterns on the end consumer’s side by varying the
electricity price over time or offering incentive payments [2].
Due to the increasing demand for personalized products and
volatile market demand that lead to higher product complex-
ity, industrial consumers must have more process flexibility
[3]. It includes flexibility in achieving production objectives
such as lower energy costs, higher quality, and higher profit.

In 2021, Germany’s industrial sector had a share of
roughly 44% of the country’s total electricity consumption.
Among sectors, this represents the largest share, followed by
those of the commerce, household, and transportation sectors
[4]. Additionally, industrial consumers faced steep rises in
electricity prices [5]. Regarding gross electricity consump-
tion across all sectors, the share of renewable energy was
estimated to be around 41%. German legislation seeks to
increase this share to around 80% by 2030 [4]. This pro-
cess complicates electricity distribution and requires many
stakeholders to embrace a paradigm shift: Contrary to tradi-
tional patterns, electricity consumption has to be dynamically
balanced with highly volatile renewable generation. For
instance, energy providers and distribution system opera-
tors need tools to predict generation and motivate flexible
consumption behavior accurately. Apart from that, industrial
processes cause large quantities of emissions. On a global
scale, they generated around 2.54 Gt carbon dioxide equiva-
lent of energy-related greenhouse gases in 2021, the highest
level since 2000 [6].

Several studies have demonstrated the applicability and
benefits of demand response for manufacturing consumers
regarding growing energy-related needs, costs, and emis-
sion problems [7]. However, their participation in demand
response programs has been much lower than that of the
household and commercial sectors so far [8]. The imple-
mentation of demand response systems for manufacturing
consumers is a challenging task due to the heterogeneous and
large amount of data required by the systems, for example,
for power generation forecasting [9], load prediction [10],
and manufacturing process optimization [11].

This paper considers these aspects for designing and
implementing a demand response system for the manu-
facturing industry. The proposed implementation optimizes
industrial consumers’ and prosumers’ production-related
electricity costs through electricity tariffs, which dynami-
cally depend on the proportion of renewable energy in the
procured mix. It also features a semantic middleware archi-
tecture that utilizes an ontology as the semantic integration
model for heterogeneous data and exchanges the data for
various components conducting power generation forecast-
ing, load prediction, and production optimization. For these

components, a set of different machine learning models is
developed. Accuratemodels are crucial as the electricity load
can vary substantially depending on process characteristics
and parametrizations [12].

This paper is organized as follows. Section2 presents
a literature review of the research related to the proposed
solution’s main parts. Then, the overall concept of the devel-
oped solution is described in Section 3. Section4 focuses on
semantic middleware as the data integration component of
the solution. The system and processes that collect power
consumption data based on the energy management solu-
tion OpenEMS are introduced in Section 5. The machine
learning models for power generation and load prediction
are elaborated in Section 6. The Green Electricity Index
(GEI), representing the proportion of renewable electricity
that is calculated using power generation and consumption
forecast data, is explained in Section 7. Section8 discusses
mixed-integer linear programming and reinforcement learn-
ing approaches for production optimization under dynamic
electricity pricing. Finally, Section 9 shows the implementa-
tion and validation of the developed solution, and Section 10
presents the conclusions and outlook.

2 Literature review

The literature review aims to analyze related research works
and identify research gaps in semantic information inte-
gration, artificial intelligence in DR, and energy-flexible
production. These areas are selected to represent the essen-
tial functions of using artificial intelligence to enable demand
response systems in industrial settings. The review analyzed
peer-reviewed journal and conference papers in the last 15
years. Scopus, IEEE Xplore, and Google Scholar databases
were used to find the papers. The papers were grouped into
the areas shown in the subsections below. They were ana-
lyzed in more detail to identify the research gaps in each of
these. The research gaps and the contributions of this paper
are summarized in Section 2.4.

2.1 Energy 4.0

Energy 4.0 refers to digital transformation in the energy and
utilities industry by utilizing technologies such as the Internet
of Things [13]. An example of the implementation of Energy
4.0 is the PEACEFULNESS software platform aiming at
maximizing the use of renewable energy sources through
demand-side management. PEACEFULNESS allows the
interaction of multi-energy grids and simulations of opera-
tions and supervisions of hundreds of thousands of agents
such as energy providers, distribution system operators,
aggregators, and prosumers [14]. Furthermore, Mourtzis
et al. [15] developed a business model that facilitates col-
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laborations between energy providers and manufacturing
power consumers. They focused on a production schedul-
ing approach adaptive to dynamic energy prices calculated
based on forecasts.

The implementation of Energy 4.0 has created informa-
tion islands that can contribute to developing smart grids to go
beyond the industrial sector byproviding additional data [16].
As a consequence of Energy 4.0 implementation, a consider-
able amount of data is generated andmust bemanaged in data
centers. Energy consumption of data centers is increasing
due to more energy being required to process and store large
amounts of data combined with environmental factors. Yang
et al. [17] developed an artificial-intelligence-based approach
to intelligently schedule the control and refrigerating engine
to reduce energy consumption. Similarly, researchers also
engaged themselves in green artificial intelligence, which
focuses on efficient methods to train and evaluate artificial-
intelligence-based models [18].

2.2 Semantic information integration and
interoperability

Semantic integration aims at efficiently integrating heteroge-
neous data fromvarious sources using semantic technologies.
Such technologies often resolve the problems of integration
and interoperability within heterogeneous interconnected
objects and systems by using a middleware component [19–
21], which utilizes linked data to interconnect data sources.
Information interoperability among different systems is done
using ontologies [22, 23], which resemble the structure of
information sources on the semantic level [24, 25].

Adamczyk et al. [26] present a knowledge-based expert
system to support semantic interoperability in smart man-
ufacturing based on an ontological approach. Similarly,
semantic technologies are used in the RESPOND project to
propose interoperable energy automation and deal with data
heterogeneity as well as its consequent integration [27].

In his study, Mourtzis [23] explores the current industrial
landscape to identify opportunities, challenges, and gaps in
efficiently utilizing large amounts of data for process opti-
mization. He specifically focuses on integrating semantics
into this framework as part of his efforts.

There are various frameworks for ontology-based data
exchange. Regarding energy and flexibility value chain data,
several standards exist [28, 29], as well as a multi-agent-
system approach building upon such to enable market-based
flexibility [30]. Furthermore, semantic technologies are also
applied to address building energy management [31, 32],
water urban management [33], manufacturing energy man-
agement [34], and engineering processes [35]. Li et al.
[36] also propose a semantic-based approach for a real-time
demand response energy management system for a district
heating network with monitoring and handling of hetero-

geneous data sources. It is employed to integrate a thermal
network with other networks.

2.3 Artificial-intelligence-aided demand response

Machine learning (ML) methods can provide tools that func-
tion as vital entities in developing automated demand-side
management resources. The tools are applied across vari-
ous application areas such as forecasting (load, price, and
renewable energy), clustering/identifying consumer groups,
scheduling and load control, and pricing/incentive scheme
design for DR programs. This section provides a brief
overview of machine learning methods used as supporting
tools in various application areas of DR. The authors do not
discuss the relevance of each individual application area, but
interested readers can find detailed discussions in [37].

2.3.1 Supervised machine learning

Primarily supervised ML techniques are applied across all
aforementioned forecasting tasks [38]. These include kernel-
based methods (e.g., support vector machines) [39–42],
tree-based methods (e.g., random forests) [43–47], artifi-
cial neural networks (e.g., single-neuron architectures and
deep learning) [48–54], and statistical time series models
(e.g., variants of the auto-regressive integrated moving aver-
age (ARIMA) method) [55–59]. Artificial neural networks
and deep learning methods are used more frequently in
short-term forecasting tasks. If such are employedwith recur-
rent network architectures, sequence memory and attention
mechanisms can be realized.

Especially for the task of forecasting electricity loads,
supervised ML-based approaches are popularly employed.
In the past, neural networks [60, 61], support vector regres-
sion [62], and Gaussian processes for regression [63] were
shown to achieve good load estimation performance for cut-
ting, rotating, and drilling machinery. A more recent work
of Ellerich [64] extends previous approaches, using a neural
network and discretizing machine operations into temporal
blocks. The approach ofMühlbauer et al. [65] also focuses on
individual operations such as, for instance, spindle accelera-
tion anddecelerationof cuttingmachines. For suchmachines,
they define numerical time and energy models, allowing for
load prediction at the granularity of operations.

In contrast, calculating electricity load based on physi-
cally founded analytical approaches lacks accuracy. This can,
in great measure, be attributed to the stochastic nature of
machine processes [66, 67].

Other research works use supervised learning models for
tasks other than those addressed above. Such models are
employed, e.g., for learning comfort and behavior patterns
of DR participants [68, 69].
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2.3.2 Unsupervised machine learning

In DR, unsupervised learning algorithms have been predom-
inantly used for clustering DR participants based on their
consumption and appliances as well as on general load pro-
files [70–74]. Participant clusters can further be used to
identify their flexibility potentials or resources and even to
compensate consumers for participating in DR programs
(assuming the cluster members share a similar baseline con-
sumption).

2.3.3 Reinforcement learning

Due to varying complexity levels of scheduling and the
often-delayed feedback of associated descriptive metrics,
approaches based on reinforcement learning (RL) are par-
ticularly interesting for scheduling applications [75]. For
instance, Lu et al. [7] suggest a multi-agent RL-based
approach. Their goal is to minimize production processes’
energy and material costs within flow-shop environments,
which can be characterized by processes with constant step
sequences. In contrast, Naimi et al. [76] focus on finding an
optimal solution within the trade-off between minimizing
energy consumption and makespan. They apply a single-
agent RL approach. Apart from these, a large set of other
works also pursue the goals of minimizing electricity costs
or consumption via RL [77–87].

2.3.4 Other methods

Other approaches for optimizing energy-related metrics
within the production context can be based on heuristics
and mathematical methods. Heuristic approaches employ,
for instance, simulated annealing [88], particle swarm opti-
mization [89], ant colony optimization [90], backtracking
search [91], and genetic optimization [92]. In general, such
approaches are computationally efficient but cannot guar-
antee globally optimal solutions. Mathematical approaches,
however, target globally optimal solutions specifically using
exact calculation procedures. Therefore, such are often char-
acterized by high time costs when compared to heuristics.
Exemplary works apply linear programming [93] and con-
straint programming [94].

Other research works focus on optimizing peak load
or peak to average ratio [79, 83, 84, 95], life cycle costs
of energy storage systems [96], or environmental pollu-
tion using, e.g., carbon footprint measures [97]. Along with
scheduling/controlling household appliances, some research
works focus on the self-consumption of renewable energy
[87, 98, 99]. This consumption strategy is an aspect ofDRand
is a catalyst that can increase profitability in grid-connected
systems [98].

2.4 Summary of the research gaps and contributions
of this research

This work develops a semantic middleware that utilizes
ontology as the integrative information model of data
from different domains required for the suggested demand
response system implementation. The ontology is con-
structed by reusing and interconnecting well-established and
recommended ontologies. None of the works mentioned in
Section 2.2 focuses on semantic integration or ontology
development for demand response systems except [27].How-
ever, it does not consider reusing existing ontologies.

The research presented in this paper aligns with other
works with respect to applying supervised learning for power
generation forecasting and load prediction as described in
Section 2.3. Nevertheless, none of those integrate power gen-
eration and load prediction in a demand response setting
facilitated by a semantic middleware.

Several of the works on RL outlined in Section 2.3.3
aim to optimize manufacturing process scheduling. Each of
theseworks focuses on a specific environment. TheRL-based
approach presented in this paper, however, is validated in
two different shop floor environment types. The key contri-
bution of the RL approach to the existing literature is that
two new reward functions were developed regarding two
machine states (running and idle) and dynamic electricity
prices. This work also conducts experiments to qualitatively
compare the performance of the developed RL approach to
a mixed-integer linear programming model.

Furthermore, simulations have been used to support
decision-making in manufacturing, considering multiple
objectives, including energy efficiency.Digitalization implies
more data being generated across different manufacturing
processes, allowing simulation approaches to employ more
complex models that integrate digital data across the manu-
facturing life cycle [100]. However, research on data-driven
simulation in demand response contexts is still limited. This
work develops a data integration approach across multiple
organizations, such as energy providers and manufacturing
power consumers. It also integrates data-driven simulations
implemented using semantic information integration, ML,
and RL.

3 Overall concept

Considering the research gaps in the field of DR and related
concepts and solutions as summarized in Section 2.4, this
research proposes an overall system architecture of the DR
system depicted in Fig. 1. The architecture comprises com-
ponents that represent the advancements beyond theworks in
the fields of Energy 4.0, semantic integration, and machine
learning mentioned in Sects. 2.1, 2.2, and 2.3.
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Fig. 1 System architecture of the developed demand response system

The architecture consists of a data layer, an application
layer, and the semantic middleware as the connector between
both layers. The data layer is responsible for storing and
providing the required data sources, such as power gener-
ation and consumption data, production process data, and
supporting data, such as weather data. The weather data is
used as input for the power generation forecast and acquired
from an open weather API [101]. The data acquisition sys-
tem collects the actual generation and consumption data (cf.
Section 5). Production process data are obtained using data
acquisition systems in the electricity-consuming manufac-
turing companies’ IT landscape that log the activities of
electricity-consuming machines. The data types involved in
the data layer are described in Table 1.

The application layer contains four core components:
power generation forecast (cf. Section 6.1), electricity load
prediction (cf. Section 6.2), Green Electricity Index (GEI)
(cf. Section 7), and energy-flexible production optimiza-
tion (cf. Section 8). These four main components retrieve
the required data from the semantic middleware through a
RESTful API. Table 2 shows the details of each component,
including its inputs and outputs.

Initially, the semantics of the collected data are extracted
through a semantic uplift process and then integrated into
the semantic middleware (cf. Section4). To simplify user
interaction, the semantic middleware provides a natural-

language query interface allowing data retrieval directly
using queries formulated inEnglish. It also allows knowledge
graph queries using Neo4j’s Cypher query language syntax.
The output data generated by components in the application
layer, such as forecast data, GEI, and energy-optimized pro-
duction schedules, are made available through the semantic
middleware. It is represented by a set of bidirectional arrows
in Fig. 1. As a result, data-consuming applications or users
can retrieve data through interfaces provided by the semantic
middleware.

Data flows associated with the abovementioned core com-
ponents of the system are shown in Fig. 2. These components
exchange data in a standardized fashion via the semanticmid-
dleware. On the one hand, the system requires consumers
to provide primarily time and quantity information on their
manufacturing processes and associated process parameters.
The latter is also used as input for predicting individual load
profiles for manufacturing each part or set of simultane-
ously manufactured parts. This enables the energy-flexible
production optimization component to shift these manufac-
turing processes temporally based on their respective load
profiles to optimize electricity costs. On the other hand,
consumers are required to input user preferences that rep-
resent their scheduling needs. Based on this, the trade-off
between makespan and electricity cost minimization can be
parametrized for production optimization.

Apart from aforementioned inputs, the production opti-
mization component requires electricity price profiles that
are communicated by energy providers. In this context, a
dynamic index variable, introduced in Section 7, represents
energy pricing information and information on the share of
energy from renewable sources among all sources within the
purchased mix. Among other information, its computation is
based on the predicted amount of renewable energy generated
for the electricity grid environment the consumer belongs
to. The production optimization component then determines
and outputs schedules that are optimized with respect to
the provided user preference, as described above, regard-
ing electricity costs and makespan characteristics. Schedules
are reported back to the consumers and, in an aggregated
measure, supply energy providers with information on their
customers’ electricity demand, which in turn supports supply
planning.

Table 1 Description of data types on the data layer

Data type Data source Data communication interface

Weather Open weather API [101] REST API

Power generation Energy management system of the utility company REST API, CSV data import

Power consumption Data acquisition system (cf. Section 5) at industrial
consumer’s site

REST API

Production process Computer-aided manufacturing programs REST API, CSV data import
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Table 2 Description of components in the application layer

Component Description Inputs Outputs

Power generation forecast A set of machine learning models
to forecast electrical power gener-
ated from renewable sources, such
as wind and solar, for a given time
horizon

Weather data, past electrical power
generation data, power plant types

Hourly power generation forecast
with a given time horizon

Load prediction A set of machine learning mod-
els to predict electrical power con-
sumed by manufacturing machines
for given process parameters

Process parameters and machine
information

Predicted load of each machine
based on its process parameters

Green electricity index An indicator system that measures
the amount of renewable energy in
the electricity grid in comparison to
the demand for electricity in Ger-
many

Power generation forecast data, pre-
dicted load profiles

Hourly GEI

Energy-flexible production opti-
mization

Production scheduling optimization
system considering dynamic elec-
tricity pricing

Process parameters, predicted load
profiles, GEI, and user preferences

Energy-flexible production sched-
ules

This work evaluates the proposed system within the pro-
ductive context of two manufacturing companies. Alongside
other aspects, these companies can be characterized by dif-
ferent degrees of automation as well as production process
schemes. More details of these companies’ profiles as well
as an assessment of the system’s practical potential can be
found in Section 9.2.

4 Semantic middleware

This section presents the semantic middleware that is devel-
oped to interface applications with multiple data sources
in the proposed DR system. Generally, semantic middle-
ware facilitates data integration across domains, includ-
ing smart grids, renewable-energies-related fields, physical
energy characteristics, sensors, and manufacturing. It is a
software module using ontologies as the information inte-

gration model [102]. This work proposes an ontology to
provide interoperability and facilitate data integration across
various domains, ranging from power generation to the
energy-efficient and intelligent use of production resources,
by utilizing three different approaches, which are described
as follows:

1. Ontology mapping and alignment: This approach inter-
links related ontologies to facilitate continuous model
integration across domains, avoiding data duplication.
Initially, classes that are correlated across ontologies need
to be analyzed regarding potential links. Then, specifi-
cally developed methods for ontology alignment can be
applied for interlinking ontologies.

2. Developing a new ontology: Two methods can be
employed to create a desired ontology. The first involves
the reuse of existing ontologies, which can be extended
by defining new concepts, properties, or relations. The

Fig. 2 Interaction of service
components (represented by
rounded rectangles with bold
text) of the proposed system.
The system’s semantic
middleware routes data flows
(represented by partial
rectangles with italicized text)
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second method is to construct an entirely new ontology
for a particular task while incorporating the data require-
ments of the defined use cases [103].

3. Mapping data to ontologies: An ontology utilizes formal
semantics to explicitly define data,which provides a com-
mon understanding between stakeholders with different
background knowledge [34]. It is achieved by mapping
database schemes to semantically equivalent ontologies,
which involves gathering data from multiple sources and
linking it to the appropriate concepts defined in the ontol-
ogy in a rule-based manner.

Overall, these three approaches can be used together or
separately to develop an ontology that meets the data require-
ments of a particular task or domain. The ontology developed
for the proposed DR system can help stakeholders to bet-
ter understand data and manage complex data relationships
across multiple domains.

The DR system is initially deployed in a cloud-edge archi-
tecture that employs semantic uplift processes to extract the
semantics of data sources and connect them to the semantic
middleware. With this, new knowledge can be derived from
the semantically described data retrieved from the semantic
middleware. The semantically describeddata canbe retrieved
using Neo4j’s Cypher query language, a REST-API, and
a specifically developed natural-language interface. Cypher
is a graph query language that allows retrieving data from
graph-based structures and is generally applied as an expres-
sive and efficient data querying instrument in property graphs
[104]. Figure3 illustrates the semantic middleware architec-
ture.

The required data are primarily retrieved through REST
API interfaces. Applications from different domains such as
energy management, production planning, and control gen-
erate these data. They must be linked to relevant ontologies
via data-to-ontologymappings. For this reason, after defining
the data requirements, applicable ontology domains are spec-

Table 3 Considered ontologies and their corresponding domain scopes
for different data

Data Ontology Domain Reuse

Wind power OntoWind Renewable energy
√

Solar power Semanco Energy
√

Power consumption Saref4ener Energy
√

GEI GEI Renewable energy ×

ified based on the data requirements [105]. Then, pre-existing
ontologies corresponding to each relevant domain are iden-
tified and reused to fulfill the necessary data requirements.
The domain scope of ontologies selected based on differ-
ent data requirements is presented in Table 3. Once mapped,
relations between the instances of ontology classes are estab-
lished. A relation is a triple (subject, property,
object) where property is a property class. The ele-
ments subject and object are sub-classed instances of
the domain and range defined for the property class [106].

The results are imported into a Neo4j graph database,
which is serialized using the Resource Description Frame-
work (RDF). The representation of the mapping results
for wind power data and the OntoWind ontology [107]
in Neo4j, as listed in Table 3, can be seen in Fig. 4. A
comprehensive search and review of various wind power-
related ontologies was conducted to identify ontologies
that meet the data requirements for the renewable energy
domain. Based on the identified data requirements, the
OntoWind ontology is found to be the best match and
employed to map wind power data. The mapping result-
ing from the previous steps is imported and stored in the
Neo4j graph database. The nodes in Fig. 4 represent the
classes of the OntoWind ontology, while the edges rep-
resent the relations between instances/individuals of these
classes. Nodes corresponding to the ns0__WindPower class
are highlighted in red, and WindPower values are populated
as instances/individuals within these classes. In the node

Fig. 3 The architecture of the
proposed semantic middleware
component
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Fig. 4 Neo4j user interface for
displaying an imported ontology

properties, the instances/individuals are displayed in the “uri”
field. For instance, the value of the wind-power-related entry
shown here is 29.

Once mapped, these ontologies are linked in the middle-
ware using an ontology alignment method, which enables
a common understanding of data from multiple domains
and allows for fully integrated retrieval of that data. Since
manually matching ontologies is time-consuming, develop-
ing automatic or semiautomatic techniques is an important
research area in related fields. Bulygin et al. [108], for
instance, propose an approach for ontology matching that
employsMLmethods by combining different similaritymea-
sures, including string-based, language-based, and structure-
based ontology elements.

Ontologies are applied to support interoperability and
inferencing. Among other activities, querying and reason-
ing are needed for deriving new knowledge, and inference
allows inferring new knowledge from the existing. Using
Cypher query, the data was exposed as RDF [109]. In this

regard, a natural-language interface has been developed to
translate natural-language queries into Cypher queries, mak-
ing it possible to retrieve previously inaccessible information.
The process for creating this interface is outlined in Fig. 5.

In the first step, the user enters the text query into the
interface. The second step involves text preprocessing in a
natural-language processor, which includes the following:

1. Splitting the string into tokenswith natural-language tags
(nouns, proper nouns, etc.)

2. Improving human readability by removing, e.g., camel
case, hyphens, or punctuation

3. Creating sentence objects from the processed string for
interpretation

In the third step, the authors use a natural-language inter-
preter and perform the following actions: (1) Comparing
ontology components and (2) recursively splitting spans if no

Fig. 5 Architecture of the
proposed system’s
natural-language interface
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match is found. In the fourth step, the Cypher query creator is
used to rank span matches by confidence (or manual adjust-
ment), create constraints from the most confident match of
each span, identify the target constraint [110], and output
a formatted Cypher query in the user interface in the fifth
step. Finally, the Cypher query is executed via Neo4j, and
the results are sent to the interface.

Figure6 depicts the natural-language interface. Users can
input a text query and receive the corresponding Cypher
query upon confirmation. The application provides an option
for users to select the most suitable query from the options
displayed in the second field. Finally, the query results can
be viewed in the Cypher result section.

5 Data acquisition

The deployed infrastructure for energy data acquisition relies
on established and tested concepts. It enables easy control and
acquisition of on-premise devices and meters, providing an
established framework via the open-source energy manage-
ment solution OpenEMS.1 Figure7 depicts the deployment
architecture of OpenEMS. Data are retrieved from local sys-
tems, such as production machines and different metering
systems, including energy meters. The data are then stored
in a measurement database located in the back-end. Backend
services such as predictive algorithms and visualizationmod-
ules access the database throughHTTP-REST or JSON-RPC
interfaces.

In the case of the employed Janitza UMG 103 and UMG
604 energy meters, communication happens via Modbus.
Modbus is a commonly and widely used communication
protocol in industrial automation and building automation
systems to monitor and control devices remotely. Therefore,
it is easily integrated with the existing infrastructure with-
out high opportunity costs. Using a Modbus energy meter
also allows for seamless data exchange of the meter with
a similar model from a different vendor. The OpenEMS
edge instance deployed on a local Internet of Things device
cyclically queries all attached devices via the respective com-
munication protocol and transfers the data into a harmonized
datamodel. The software is easily extendable byOSGi (Open
Services Gateway initiative) modules. OSGi is a Java-based
framework for modular software development that allows
for the creation of highly dynamic and configurable appli-
cations. The main advantage of using OSGi in software
development is that it allows creating modular, reusable, and
loosely coupled components. Additionally, OSGi supports
the creation of small, highly modular, self-contained mod-
ules (called “bundles”) that can be easily added, removed,
or updated without affecting the rest of the application. It

1 https://openems.io/

facilitates developing, testing, and deploying new devices,
features, and bug fixes.

Different configurations of the described acquisition setup
are rolled out in the environment of the industrial companies
used to validate the proposed system. Figure8 shows a typ-
ical example: Two types of electrical meters are used. The
UMG 604 is network capable and acts as a Modbus gate-
way that provides a transparent connection for UMG 103,
which are integrated as Modbus slaves. Per device, power
measurement data is locally stored in a time series database
and simultaneously communicated to the back-end database
in almost real-time via a mobile or wire-bound connection.

6 Power generation forecast and load
prediction

This section discusses the authors’ approaches to forecasting
power generation and predicting electricity loads associated
with individual manufacturing processes.

6.1 Power generation forecast

The flexibility of grid operation and dynamic electricity pric-
ing schemes can be improved by utilizing short-term and
long-term power generation forecasts, as highlighted in the
literature [111]. In this work, a dynamic index variable indi-
cating the amount of renewable energy in the electricity grid
(cf. Section 7) is developed utilizing short-term (24h) fore-
casting models for both solar and wind power generation.
The models rely on numerical weather data as well as histor-
ical wind and solar power generation data collected for the
wider area around Trier, Germany, between January 2020
and October 2022.

Prior to forecast model training, the original power gen-
eration time series data undergoes simple preprocessing.
Abnormal or anomalous values are identified and removed,
while missing values are imputed through linear interpola-
tion. This data is then decomposed into its trend, seasonality,
and residual components. The resulting trend and residual
components, along with numerical weather data, are again
recombined to formmultivariate time series data at an hourly
resolution. Next, a windowing function is applied to create
consecutive pairs. Each pair comprises a window of 48 his-
torical data points as a forecasting basis and a subsequent
windowof 24 data points as forecasting target values. Finally,
this set of data window pairs is split into 80% training and
20% test subsets.

In the following, the prediction capability of various neu-
ral network architectures, including dense neural network
(DNN), long-short-term memory network (LSTM), convo-
lutional neural network (CNN), and hybrid auto-regressive
LSTM (AR-LSTM) models, is evaluated. Two metrics,
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Fig. 6 Natural-language
interface for querying ontologies

Fig. 7 OpenEMS deployed on
industrial IoT gateways
connecting to a spectrum of
local hardware such as meters,
production machines, and
energy meters relaying the
gathered information to a central
back-end database

Fig. 8 Typical setup for data
acquisition in the environment
of the industrial companies used
for validation of the proposed
demand response system
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namely themean squared error (MSE) and themean absolute
percentage error (MAPE), are used to evaluate these models.
Their associated formulae are shown in Eqs. 1 and 2, respec-
tively.

MSE = 1

N

N∑

n=1

(Actual − Predicted)2 (1)

MAPE = 1

N

N∑

n=1

(Actual − Predicted)

Actual
∗ 100 (2)

Despite both MSE and MAPE being used to evaluate the
prediction capability, it is important to mention that MSE
values are used to quantify loss within the context of model
weight optimization. Since over-predicted forecasts signifi-
cantly impact MAPE values, optimizing model parameters
based onMAPEwould result inmodels that consistently tend
to under-predict. Details on the considered model architec-
tures and their prediction capability are presented in Tables 4
and 5, respectively.

The results in Table 5 indicate that the hybrid AR-
LSTMmodel outperforms all other models and significantly
improves prediction regarding bothMSEandMAPE for solar
power generation. Theoretically, this model can decompose
themulti-step prediction into individual time steps. Each time
step’s output is fed back into the model, and predictions
are conditioned on the previous time step. The AR-LSTM
model’s ability to predict solar energy is visualized in Fig. 9,
which displays two example predictions in graphical form.
The graphs indicate that the model can accurately capture the
overall trend of solar power generation but struggles to cap-
ture the smaller fluctuations caused by intermittent weather
conditions. Interestingly, the CNN model generalizes better
than theAR-LSTMinpredictingwindpower generation.One
possible explanation for this is that CNN layers are particu-
larly effective at learning spatial correlations between input
features, which may be further enhanced by the inclusion of
weather variables. Figure10 provides two examples of the
CNN model’s predictions for wind energy. It is also evident
that errors in predicting wind power generation are generally
higher than that of its solar-related counterparts. This obser-

Table 4 Overview of deep learning architectures evaluated for short-
term power generation forecasting

Model Input Hidden Output

DNN 48 dense-512,264 dense-24

LSTM 48 lstm-32,dense-264 dense-24

CNN-1D 48 conv1D-256, dense-264 dense-24

AR-LSTM 48 lstm_rnn - 32 dense-24

Table 5 Model evaluations for forecasting experiments

MSE MAPE
Wind Solar Wind Solar

DNN 0.294 0.177 37.6% 26.0%

LSTM 0.293 0.063 39.2% 16.1%

CNN 0.245 0.074 34.3% 17.6%

AR-LSTM 0.286 0.053 38.8% 14.3%

The best results for short-term forecasting are highlighted in boldface

vation could be attributed to the higher intermittent nature of
wind. Figure10 also highlights the impact of wind’s intermit-
tent behavior, as the time series displays frequent fluctuations
in contrast to the solar power generation seen in Fig. 9.

Although the above-outlined forecasting works focus pri-
marily on evaluating various deep learning architectures, the
results are promising. It is important for readers to understand
that this evaluation is not intended to conclusively identify
the optimal architecture.Asmore data is utilized in the future,
the findings may change and help enhance the accuracy of
the forecasts.

6.2 Load prediction

To enable an energy-flexible production optimization (cf.
Section 8) and schedule manufacturing processes of indi-
vidual or simultaneously manufactured parts based on their
respective electricity load profiles, appropriate load predic-
tionmodels are required. The authors develop load prediction
models for four different industrial use cases. While the first
two use cases require trained regression models due to the
associated high variation in active power and processing time
of the manufactured parts, the third and fourth use cases
only require one representative load profile each to model
their load characteristics. The training data for the regression
models have been continuously collected on-site at the man-
ufacturing companies used for validation (cf. Section 9.2),
which is still ongoing at the time of writing this article.
Consequently, one should see the following results as pre-
liminary, with a chance of further improvements with more
training data. The following descriptions are partly based on a
work [112] also conductedwithin the context of this research.
The results for the load prediction models developed for the
first and second use cases are summarized in Table 6.

The first use case concerns a 5-axis machining center on
which different parts are manufactured in small-batch or
single-part production. This use case is relevant for com-
pany A, which is described in detail in Section 9.2. The goal
is to predict the average active power and processing time
required to manufacture individual parts. Consequently, sep-
arate models are trained for predicting average active power
and processing time, which in combination constitute the
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Fig. 9 Samples of one step of solar power forecasting using hybrid auto-regressive long-short-term memory neural networks

load prediction model. A schematic depiction of the load
prediction for this use case is given in Fig. 11.

The prediction is always based on the computer-aided
manufacturing (CAM) program used to manufacture a part.
Aggregated data for the average active power and processing
time, as well as twelve features extracted from each of the
available 33 different CAM programs, are used for the train-
ing processes of the prediction models. Approximately 80%
of these data points are utilized for the model training, while
the other 20% serve as test data for the performance evalua-
tion. The mean absolute error (MAE) and the mean absolute
percentage error (MAPE) between the test data (actual data)
and corresponding output data (predicted data) of the mod-
els are determined to evaluate the models. While the MAPE

is calculated according to Eq.2, which is introduced in
Section 6.1, the MAE is calculated according to Eq.3.

MAE = 1

N

N∑

n=1

|Actual − Predicted| (3)

Different models are tested for the prediction of the aver-
age active power and the processing time. The random forest
regression model performs best in predicting the average
active power among the tested models. This model uses four
of the twelve extracted features and achieves a MAPE of
19.68% and an MAE of 434.97 W on the test data. These
results are compared to a basic model that always outputs

Fig. 10 Samples of one step of wind power forecasting using convolution neural networks
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Table 6 Load prediction model
evaluation for a 5-axis
machining center and a rubber
injection molding machine

MAE MAPE
Best model Basic model Best model Basic model

5-AMC P 434.97 W 627.02 W 19.68% 28.12%

5-AMC t 250.33 s 735.61 s 44.37% 223.62%

RIMM P 471.83 W 884.00 W 4.56% 8.36%

RIMM t 37.64 s 50.93 s 16.73% 23.33%

(Abbreviations: 5 − AMCP , 5-axis machining center average active power; 5 − AMCt , 5-axis machining
center processing time; RI MMP , rubber injection molding machine average active power; RI MMt , rubber
injection molding machine cycle time)

the average active power for all training data, regardless of
the inputs. The basic model achieves aMAPE of 28.12% and
anMAE of 627.02W on the test data and is thus significantly
outperformed by the trained regression model. A k-nearest
neighbors regression model performs best in predicting the
processing time. Thismodel also uses four of the 12 extracted
features and achieves a MAPE of 44.37% and an MAE of
250.33 s on the test data. Another basic model, which always
outputs the average processing time of the training data, leads
to a MAPE of 223.62% and an MAE of 735.61 s and is sub-
stantially outperformed by the k-nearest neighbors model.

The authors expect the prediction accuracy to improve
with more training data and plan to repeat the training pro-
cesses once more data is available. The additional use of
information on the material and the volume of the finished
part is expected to improve the prediction accuracy as well.
One way to improve the prediction accuracy for the pro-
cessing time is to calculate a preliminary processing time
based on the location and speed information contained in the
CAM programs and use this as an additional feature. Fur-
thermore, the authors determined a subsecond recording of
the energy measurement data as a prerequisite to training
separate regression models for each type of processing. The
aggregation of the predictions of these models to a resulting
electricity load profile could further improve the prediction
accuracy and granularity. However, the utilized energy data

is gathered with a temporal resolution of one second, which
the authors determined as insufficient for this method.

The second use case concerns a rubber injection molding
machine on which different rubber molded parts are pro-
duced in series. This use case is relevant for company B,
which is described in detail in Section 9.2. The objective of
this use case is to predict the average active power and cycle
times required for individual manufacturing cycles. During
one manufacturing cycle, one or multiple parts are manu-
factured simultaneously using the same negative permanent
mold. Similar to the first use case, separatemodels are trained
to predict average active power and cycle time. A schematic
depiction of the load prediction for this use case is shown in
Fig. 12.

The prediction is based on aggregated process parame-
ters, which are assumed to correspond to the programming
parameters of the machine. Aggregated data for the average
active power and cycle time, as well as 19 process parameters
from each of the available 15 different negative permanent
molds, are used to train the prediction models. As done for
the model training for the 5-axis machining center, the avail-
able data points are split into 80% training data and 20% test
data.

The ridge regression model produces the best results in
predicting the average active power among the testedmodels.
This model uses all 19 aggregated process parameters and

Use case 1: Load prediction for a 5-axis machining center

Average Active
Power Model

Processing
Time Model

Load Prediction Model

Output data:
Expected average active

power and processing time
needed to manufacture the

part

Expected electricity
consumption

Time

Power

Load profile
Input data:

Extracted features from
CAM-program that will be

run on the machine to
manufacture a part

Energy-flexible
Production

Optimization

Fig. 11 Schematic depiction of the process for predicting the electricity load resulting from the use of a 5-axis machining center (use case 1, CAM
= computer-aided manufacturing)
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Use case 2: Load prediction for a rubber injection molding machine

Average Active
Power Model

Processing
Time Model

Load Prediction Model
Energy-flexible

Production
Optimization

Output data:
Expected average active

power and cycle time
needed to manufacture the

part(s)

Expected electricity
consumption

Time

Power

Load profile
Input data:

Parameters that are used to
program the machine to
manufacure one or more

parts

Fig. 12 Schematic depiction of the process for predicting the electricity load resulting from the use of a rubber injection molding machine (use
case 2)

achieves a MAPE of 4.56% and an MAE of 471.83W on the
test data. A basic model, which functions analogously to the
one for the 5-axis machining center, achieves a substantially
higherMAPEof 8.36%and anMAEof 884.00Won the same
test data. The gradient-boosting regression model provided
the best results for the cycle time prediction. This model uses
two of the 19 aggregated process parameters and achieves
a MAPE of 16.73% with an MAE of 37.64 s, which, again,
represents a considerable improvement over the basic model,
which achieves a MAPE of 23.33% and an MAE of 50.93 s.

Analogously to the first use case, the authors expect
additional training data to improve the prediction accuracy
further. Consequently, the training will be repeated with a
more considerable amount of data once it is available.

The third and fourth use cases concern another rubber
injection molding machine and an annealing furnace. These
use cases are also relevant for company B (cf. Section 9.2).
They do not require regression models since the consid-
ered machines are almost exclusively operated with the
same parameterization. Consequently, one representative
load profile can be determined for each machine using a

clustering-based approach and reused for all manufactured
parts. A schematic depiction of the load prediction for use
cases 3 and 4 is given in Fig. 13.

7 Green Electricity Index (GEI)

TheGreen Electricity Index (GEI) is ameasure indicating the
amount of renewable energy in the electricity grid in compar-
ison to the demand for electricity in Germany. The value of
the GEI indicates the percentage of German electricity that
comes from renewable energy sources (solar, wind, water,
and biomass) at a given time. It is calculated and updated
daily based on data provided by transmission network oper-
ators. Additionally, short-term forecasts of renewable energy
sources, as discussed in Section 6.1, are utilized to compute
GEI values for the next hours up until a day. Values for the
upcoming 72h are determined using onlyweather data, while
such lyingmore than 72h in the future are increasingly based
on climate data. For GEI values more than ten days in the

Use cases 3 and 4: Load prediction for a rubber injection molding machine or an
annealing furnace

Representative Load Profile

Load Prediction Model

Output data:
Representative load profile
expected to occur when the

machine is used
Expected electricity

consumption

Time

Power

Load profile

Input data:
Request to output

representative load profile
for one use of the machine

Energy-flexible
Production

Optimization

Fig. 13 Schematic depiction of the process for predicting the electricity load resulting from the use of a rubber injection molding machine or an
annealing furnace (use cases 3 and 4)
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future only climate models are used. Furthermore, the index
calculation involves ameasure of future uncertainty, which is
learned automatically by including forecasting errors in the
immediate past.

The GEI is calculated based on a complex graph with
billions of nodes. Each node can represent, for example,
a weather forecast for a specific location or the switching
state of the power grid. As changes to one node impact every
other node in the graph, the state of each node is crucial for
determining the GEI and its impact on the power supply at
a location. An important basis for the value of the GEI is
the structure of the power grid and its nodes. Using pass-
through elements as placeholders reduces the complexity of
the power grid and is referred to as the Map-Reduce algo-
rithm [113]. The structural data of the power grid is used as a
database for the GEI. The GEI is issued as a forecast for the
coming days and is based on a timetable of the power grid
that is constantly updated by grid operators. Future switch-
ing states of the power grid can be learned from the past, and
under specific conditions, certain switching states are more
likely than others. The historical data the GEI is based on is
crucial, and this data can come from various sources, such
as weather forecasts, power consumption, and power genera-
tion. To improve the GEI, new data sources are continuously
sought and evaluated. Equation4 defines the computation of
a GEI value.

GE Ii,t = 100 · [ Ri,t

Di,t
· Xi,t + 1 − Xi,t ]

with ∀i, t Ri,t

Di,t
≥ 1 − Xi,t , Xi,t ∈ {0, 1}

(4)

If the ratio of generated renewable energy R and electricity
consumption D is 100% or higher, the GEI equates to 100,
indicating that the electricity supply is entirely sourced from
renewable sources. In this case, X is set to 0. Otherwise, X is
set to 1, and GEI values indicate the percentage of electricity
sourced from renewable sources, computed as the ratio of
renewable energy R generation and electricity consumption
D. Indices i and t represent graph node number and time,
respectively.

GEI values are used to support short-termproduction plan-
ning decisions and identify potential areas for improvement.
For example, suppose the GEI indicates much renewable
energy available between 8 AM and 5 PM, with a peak at
1 PM. In that case, the production can be adjusted so that the
most energy-consuming production runs during the peak at
1 PM and other less consuming productions run before and
after. It would result in both increasing the use of renewable
energy and lowering the cost of production. Thus, the GEI
can also be considered a proxy dynamic pricing signal to
motivate load reduction and shifting. In a broader context,
the GEI is also an essential tool for monitoring the progress

of the energy transition in Germany. As noted at the begin-
ning of this work, the German government has set a target
to increase the share of renewable energy in the electricity
supply to 80% by 2030. It would be supported by indicators
like the GEI, which allows tracking each renewable energy
source’s contribution to electricity production and monitor-
ing its development over time.

Although the algorithm of the GEI has been highly
improved over time, it is essential to note that the GEI is
based on publicly available data such as weather and climate
data. Therefore, it should be used as a reference, not as a
definitive measure of the percentage of renewable energy in
the grid.

8 Production optimization under dynamic
electricity pricing

The following sectiondescribes and compares the approaches
for energy-flexible production optimization. It should be
noted that the usable flexibility results exclusively from the
possibility of shifting the starting times of individual man-
ufacturing processes. A simplified schematic depiction of
optimizing the production plan of three processes handled by
a single machine is shown in Fig. 14. One can see the desired
result: Processes are preferentially carried out at times when
electricity prices are low, and the processes with the highest
electricity load are shifted to timeswhen electricity prices are
lowest. The considered processes do not provide other types
of flexibility, such as different operationmodes, whichwould
lead to different load profiles. The first developed approach
uses mixed-integer linear programming (MILP) [114], while
the second approach is based on reinforcement learning (RL)
[115].

8.1 Mixed-integer linear programming approach

In this approach, the objective is to minimize the electric-
ity costs for the considered planning horizon by temporally
shifting flexible manufacturing processes to periods with
lower electricity prices in the presence of dynamic electricity
prices. The input data for the optimization are the electric-
ity price profile, the predicted electricity load profiles for
all manufacturing processes to be carried out, the planning
horizon, and the machine type to be used for each process.
Optionally, forecasted power generation for local generation
capacities, such as photovoltaic systems, can also be con-
sidered. The decision variables are the starting times of the
manufacturing processes and the respective machines to be
used. The starting times can optionally be fixed to a specific
value for each process individually to enable user interaction.
Defined constraints ensure that individual manufacturing
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P2 P3

Optimized

Unoptimized

Time

Time
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Electricity
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Fig. 14 Simplified schematic depiction of the production optimization under dynamic electricity pricing for a single machine and three processes
P1, P2, and P3. The top and bottom sub-figures show the production plan before and after optimization, respectively

processes are not split up and that multiple processes are
not simultaneously executed on the same machine.

8.2 Reinforcement learning approach

The second method for production optimization is based on
RL. According to Mitchell [115], in RL, an agent learns
to optimize its actions to reach objectives by maximizing
the cumulated reward obtained from its environment. RL is
applied to a multi-objective production scheduling problem
to minimize electricity costs and makespan. The methodol-
ogy is based on the work by Tassel et al. [116], who focus
on minimizing the makespan. This research enhances their
approach with DR and flexibility aspects. A previous work
[117], also conducted within the context of this research,
provides more details on the method and implementation
than the following paragraphs. The selected RL algorithm
is the proximal policy optimization (PPO), which is a deep-
reinforcement-learning algorithm based on the actor-critic
method, enabling a reliable learning performance for the
agent [118].

The following paragraphs explain the three main com-
ponents of the designed RL environments: action space,
observation space, and reward functions. The action space

includes the set of jobs that can be assigned to the machines
and the option to keep machines idle. The observation space
includes time-related attributes, a Boolean attribute for the
eligibility of an action employed by Tassel et al. [116],
and electricity-related attributes, which are integrated into
the environment. Time-related attributes are the percentage
of finished operations and jobs, remaining time for oper-
ations and jobs, required time until a machine is free for
the next job’s operation to be scheduled, idle time since
the last performed operation, and total idle time for a job.
The Boolean attribute enables the elimination of ineligible
actions, such as selecting already assigned jobs or occupied
machines. The electricity-related attributes are the average
electricity load and dynamic electricity prices. The electricity
load data of each operation are generated uniformly over the
interval between 1 and 20 kW, and German day-ahead elec-
tricity prices are obtained from [119] for the days between
11.10.2022 and 13.10.2022.

Two reward functions help to choose between operating
and keeping a machine idle based on dynamic electricity
prices. Equations5 and 6 present the reward functions for
selecting a job and keeping amachine idle, respectively. Both
functions include objectives of minimizing electricity costs
andmakespan, which are weighted using a parameter α rang-
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ing between 0 and 1. This parameter α enables customization
in production planning regarding the manufacturer’s prefer-
ences towards electricity costs and makespan minimization.
Within this context, the electricity cost for operation i of a
job j is calculated by multiplying the operation’s electric-
ity consumption, i.e., the product of the average electricity
load and the processing time of operations, by the electricity
prices that apply during its processing time. Since the pro-
cessing time can coincide with multiple pricing periods, for
each pricing period t , the electricity load is multiplied by the
share of the processing time, which falls into the period t .
Then, all the associated costs for the operation in these peri-
ods are summed up. Equation5 associates electricity cost
with a negative reward, indicating more penalty for selecting
a job with high electricity consumption. At the same time,
progressing the production schedule is rewarded by adding
the processing time positively to the equation and punished
by subtracting the resulting idle time for machine m. Equa-
tion6 gives electricity prices as a positive reward to the agent
for keeping the machine idle in periods with high electricity
prices. The reward functions are defined as

Reward1 = α(1−
∑

t∈tp
(ei jπ

t pti j ))+(1−α)(pi j−idlem) (5)

Reward2 = −α(1 −
∑

t∈tidle
π t ) + (1 − α)(−idlem) (6)

where ei j represents the average electricity load, π t the elec-
tricity price, pi j the processing time, pti j the part of pi j falling
into the pricing period t , idlem is the idle time formachinem,
tp are the pricing periods during pti j , and tidle is the pricing
periods during idlem . The RL agent is trained by employ-
ing the same training time (10min) and hyperparameters as
Tassel et al. [116].

Figure15 demonstrates the achieved results during the
training with data of a scheduling case from Taillard [120].
During the beginning of the training, electricity costs are low
since the agent still has tasks to complete. After their com-
pletion, the agent begins to reduce costs. When the optimal

results are achieved, the results remain stable until the end of
the training. The trade-off situation between the objectives is
noticeable concerning different weights. As designed, lower
α values lead to higher electricity costs and shorter makespan
values.

8.3 Approach comparison

While the MILP-based approach is implementable with rel-
atively low effort and can potentially find exactly optimal
production schedules, its scalability is limited. This approach
could be a reasonable solution for smaller production envi-
ronments and single optimization objectives. However, for
larger factories with high numbers of machines and parts to
manufacture, long planning horizons, andmultiple optimiza-
tion objectives, the exact solving of the optimization problem
may not be efficient or feasible at all [121]. Furthermore, the
optimization problem, parameters, decision variables, and
constraints may vary for different manufacturers’ production
environments and optimization objectives. Consequently, an
individual program for each production environment may
have to be implemented, which relativizes the ease of imple-
mentation argument compared to different, one-size-fits-all
approaches.

In contrast, the RL method provides generic and scalable
solutions for complex and dynamic production environ-
ments. The agent adapts the solution step-by-step to the
environment by learning from the interaction with the sur-
roundings, so the model does not have to be changed as the
environment changes [8]. However, the initial modeling of
the RL environment and training requires significant time
and effort. Due to the outlined advantages, the RL approach
is currently being applied as the energy-flexible production
optimization component of the proposed system onto actual
use case data, as further explained in Section 9.

Table 7 presents an additional overview summarizing the
qualitative differences between theMILP andRL approaches
regarding their features presented in this section. Time com-
plexity refers to variations in the required time for finding a

α=0 
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α=1 
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Fig. 15 Electricity costs and makespan for different weighting values during the training of the RL agent
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solution in relation to the production environment complex-
ity.

9 Implementation and validation

This section shows implementation-related information of
various studies presented in earlier parts of this work. Addi-
tionally, results and observations of the holistic validation of
all different aspects of the proposed DR system within the
context of two manufacturing companies are provided.

9.1 Implementation

The neural network models described in Section 6.1 are
developed and trained using TensorFlow, an open-source
library focusing on training and inference of deep learning
models [122]. Furthermore, the decomposition of time series
data into its additive components of trend, seasonality, and
residuals is obtained using the seasonal decompose method
of the Python library statsmodels [123]. All other data pre-
processing described in Section 6.1 is done using the Pandas
library [124].

For the implementation of the load prediction models
described in Section 6.2, the authors use the open-source
Python library scikit-learn [125]. This library provides an
extensive collection of various machine learning models and
data processing tools.

The MILP-based production optimization, outlined in
Section 8.1, is also Python-based and uses the open-source
Pyomo software package [126]. It provides a high-level opti-
mization modeling language and a wide range of tools to
solve different types of optimization problems.

The RL approach described in Section 8.2 is implemented
using Python, with the libraries Numpy [127] and Pandas
[124] for structuring the data,OpenAIGym[128] for creating
theRL environment, andRLLib [129] for implementing PPO
with Tensorflow [122] as the learning platform. The training
is conducted on a computerwith twoNvidiaTitanRTXGPUs
and an AMD Ryzen 9 3950X CPU.

9.2 Scenario description

The proposed system is validated within the production envi-
ronments of two manufacturing companies, anonymously
referred to as A and B in this work. Company A primar-
ily produces metal components through forging, cutting, and
lathing processes, characterized by a high degree of manual
work. Orders traverse their computerized-numerical-control
machine fleet in a mostly job-shop manner. The company
operates in a single-shift mode. The load prediction for a
5-axis machining center, which represents the first use case
described in Section 6.2, is applied for company A. Com-

pany B produces rubber parts using injection molding and
annealing machinery. Generally, their orders traverse those
machines in a flow-shop and partially automated manner.
The company operates in three shifts. The load prediction
models, presented in Section 6.2 for the second, third, and
fourth use cases, are relevant for company B. These are
applied for two rubber injection molding machines and one
annealing furnace. Due to the high electricity consumption
of some of their processes, both companies seek to econo-
mize energy-related costs and increase the use of renewable
energy. Furthermore, they identified their need for intuitively
comprehensible visual indicators to monitor the information
mentioned above.

The GEI is proposed as a comprehensible indicator for
these companies to monitor electricity prices and renew-
able energy share. As mentioned in Section 7, computing
the index values requires short-term renewable energy fore-
casts, weather data, and climate data. Once the index values
are computed, communication of the GEI values to the com-
panies is facilitated by the semantic middleware described in
Section4.The semanticmiddleware also facilitates the acqui-
sition of weather and historically generated data required for
developing and training the forecasting models as described
in Section 6.1.

Currently, the proposed system is being applied in a pro-
totypic stage in company A’s production environment. At
this point, the system’s benefit for company A is expected
to be higher than for B. It is based on the fact that com-
pany A conducts fine-grained process scheduling daily and
has inherently high planning flexibility due to its great prod-
uct diversity and mostly project-based order planning and
processing approach. For this reason, the proposed system
is manually populated with data collected as described in
Section 3. It suggests scheduling solutions that are optimized
concerning provided user preferences towards the trade-
off between makespan and electricity cost minimization.
This way, it supports planning personnel in daily produc-
tion scheduling activities. Planning personnel can deviate
from proposed schedules using an interactive system inter-
face and is informed on the impact of deviations on energy
and emission-related measures.

In large part, company B lacks the flexibility A has at its
disposal. One might attribute this to the fact that B plans its
processes significantly further in advance and that reschedul-
ing activities introduce considerable effort. However, it is
assumed that company B will benefit significantly within
the context of annealing resources, which can be scheduled
moreflexibly than their remainingmachines. Thesemachines
exhibit a distinctively high load during the heat-up phase and
a relatively low load in later phases of constant heat treatment
of parts. This can be exploited by temporally shifting the ini-
tial heat-up-related loads into preferred periods. Therefore,
the proposed system will be applied for company B analo-
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gously as it is for A while likely being limited to the context
of annealing resources.

Regarding both companies’ machinery and processes, it
is assumed that higher digitization degrees, realized by stan-
dardized control and data interfaces and a manufacturing
execution system, greatly benefit the system’s application.
Primarily, this would simplify the automatic collection of
data required by the system. Secondly, this would support
the autonomous introduction of system-proposed schedules
in automated manufacturing environments. Thinking ahead,
one can only begin to anticipate the impact of further system-
external circumstances to be successively discovered during
post-prototypical system application. For instance, occupa-
tional safety regulations might require personnel to start
machines, which must operate under constant supervision
manually. Consequently, this and potentially other factors
might limit the extent of autonomous system application
strategies.

10 Conclusions and outlook

This paper presents a novel implementation of a demand
response system for manufacturing electricity consumers
involving heterogeneous data sources frommultiple domains
and applications. It proposes a semantic middleware that
enables seamless data exchange and facilitates a shared
understanding of the data among the applications. The shared
understanding of the semantic middleware works by reusing
and linking ontologies from multiple established domains.
The resulting ontology linking is used as the semantic
description of data from multiple sources across domains
through the semantic uplift process. This paper also describes
the data flows through the semantic middleware that illus-
trates the data exchange among four main components, i.e.,
power generation forecast, load prediction, Green Electricity
Index (GEI), and energy-flexible production optimization.
To collect power generation and consumption data for the
training of forecasting and predictive models, the seman-
tic middleware is supported by a real-time data acquisition
system developed by the authors based on the open-source
solution OpenEMS.

Overall, the authors have developed multiple neural net-
work models with different architectures for power genera-
tion forecasts, as well as multiple machine learning models
for load prediction. The evaluations of these models have
shown that convolutional neural networks are best suited
for wind power generation forecasting, and hybrid auto-
regressive long short-term memory networks are optimal
for solar power generation forecasting. Additionally, the
evaluations of the load prediction models indicate that dif-
ferent machine learning models perform best for different
machines. Looking ahead, the authors see great potential for

further improving these models by incorporating additional
data sources and refining the model architectures to better
capture the complexities of power generation and consump-
tion.

The production optimization uses the GEI as input along-
side predicted loads, user preferences, and production pro-
cess parameters. TheGEI represents the proportion of renew-
able electricity in the mix procured for production processes
and indicates the electricity price level at the given time. It
is calculated using forecasted power generation data. Fur-
thermore, this research develops two models for production
optimization based on mixed-integer linear programming
and reinforcement learning. After conducting experiments
to compare both alternatives, the authors decided to integrate
the reinforcement learning-based approach into the system
due to its capability to provide generic and scalable solu-
tions for complex and dynamic production environments.
This paper elaborates on implementing and validating the
proposed system involving a utility company and two small
to medium-sized manufacturing enterprises.

To summarize, the main outcomes of this work are the
following:

• A concept and implementation of a system based on a
semantic middleware and containing components ded-
icated to the prediction and optimization workloads to
support production planning processes.

• An index measure making the share of renewable energy
in a procured mix and the associated cost processable for
humans and optimization processes.

• Insights into the practical applicability of the proposed
system in an exemplary high-planning-flexibility envi-
ronment.

The system can be improved by integrating more renew-
able energy sources, such as biomass and hydropower, into
the power forecast module. Moreover, on the consumption
side, industrial adoption can be increased by expanding the
validation scenarios into more industrial types such as mass
customization and process industry.
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