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Abstract
Accurate tool wear prediction is of great significance to improve production efficiency, ensure product quality and reduce 
machining cost. This paper proposes a hybrid physics data-driven model-based fusion framework for tool wear prediction to 
improve low prediction accuracy of physical model and poor interpretation of data-driven model. In this framework, physi-
cal information and local features of sensor measurement signals are used as inputs to build a hybrid physics data-driven 
(HPDD) model. And data mining and physics principles are effectively integrated by using unlabeled samples for data expan-
sion. Piecewise prediction is introduced to reduce difficulty in parameter estimation. Then, in order to manage prediction 
uncertainty of physical information and HPDD method, two prediction results are gradually combined based on Bayesian 
fusion mechanism to eliminate prediction error. Finally, the effectiveness of the proposed method is verified by experiment. 
Compared with existing methods, this method significantly improves prediction. The mean values of root mean square error 
(RMSE) and mean relative error (MARE) for tool wear prediction results are respectively 2.28 and 1.85.

Keywords  Tool wear prediction · Physical information · Hybrid physics data-driven model · Fusion framework ·  
Bayesian method

1  Introduction

Numerical control machining technology is widely used to 
produce complicated geometries and high precision parts. 
Tool wear will lead to reduced machining accuracy, short-
ened tool life, and ineffective production. Tool life is basi-
cally defined as the time required to reach a predetermined 
flank wear width [1]. Tool life prediction and tool wear 
state identification are the most relevant. Thus, tool wear 
prediction is a crucial field of Prognostic and Health Man-
agement (PHM), aiming at improving machining accuracy 

and production efficiency, maximizing tool utilization, and 
reducing machining cost.

Due to the high complexity and nonlinearity of the tool 
wear process, it is challenging to develop a universal tool 
wear prediction model applied to industrial production. 
Many studies on tool wear have been conducted recently, 
and a variety of models have been put forth, which can be 
broadly categorized into physical model and data-driven 
model [2].

The physical model establishes relationship between physi-
cal quantity of machining conditions and tool wear based on 
prior knowledge of tool cutting. The existing research includes 
force model coefficient analysis [3], adhesive wear model [4], 
diffusion wear model [5], and so on. Under specific presump-
tions, these models are built with a clear physical meaning, 
reliability, and interpretability. And can produce positive 
results in a continuous single processing environment. The link 
between tool wear status and cutting parameters is described 
by Taylor’s tool life formula and its many extension functions 
[6–11]. These semi-empirical functions are well known in 
field of tool health monitoring. Empirical expressions that can 
directly describe tool wear and cutting time based on wear time 
curve have also been proposed in many literatures [12–16]. As 
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a result of the complexity and nonlinearity of tool degradation, 
these models are typically created using the proper assump-
tions and simplifications. Many random factors are inevitably 
involved in cutting process. Cutting process randomness is not 
taken into account in the empirical formula. Hence, the physi-
cal method application is restricted. The data-driven model 
is a method to learn mapping relationship between tool state 
and monitoring signals from tool machining sensors [17]. 
Data-driven models have become increasingly common in the 
context of industrial big data, with ongoing advancements in 
machine learning and deep learning algorithms. Model con-
struction frequently employs support vector regression (SVR) 
[18–20], artificial neural network (ANN) [21–23], neural fuzzy 
reasoning system (NFRS) [24, 25], etc. Large amounts of his-
torical sample data are necessary for the development of data-
driven models, but there are also challenges with signal pro-
cessing and feature extraction caused by noise or interference 
from the machining environment. The majority of data-driven 
method outputs are difficult to comprehend in light of inputs or 
connected to any physical meaning (cutting parameters, tool 
geometry parameters, machined materials, etc.).

Based on above analysis, tool wear modeling needs to be 
further improved. In this paper, a hybrid physics data-driven 
model-based fusion framework for tool wear prediction is 
proposed, which makes use of the advantages of two differ-
ent models to improve prediction accuracy. The major high-
lights of this paper are summarized as follows: (1) Physical 
information is introduced as the input of data-driven model 
to build a hybrid physics data-driven (HPDD) model. By 
using unlabeled samples for data expansion, data mining and 
physics principles are effectively integrated. (2) The Bayes-
ian fusion mechanism combines physical information with 
HPDD models to manage the uncertainty of different predic-
tion results. (3) Tool wear process is divided into different 
stages to reduce parameter estimation difficulty and improve 
prediction interpretability. The proposed framework can 
improve poor prediction accuracy and generalization abil-
ity of physical model and lack interpretability and physical 
consistency of data-driven model.

The rest of this paper is constructed as follows. The 
research status of tool wear prediction methods is described 
in Sect. 2. Construction method of hybrid physics data-
driven model-based fusion framework is introduced in 
Sect. 3. This method practicability is verified by experiment 
in Sect. 4. The conclusions are drawn in Sect. 5.

2 � Related works

Recent physical model research programs have been able to 
provide solutions to practical problems, and most of which 
are simple, effective and easy to apply. Bai et al. [26] estab-
lished a semi-analytical model for tool wear prediction based 

on interaction between tool and workpiece. Zhang et al. [27] 
proposed a universal tool wear model with adjustable coef-
ficient, and carried out tool life prediction and tool state 
evaluation. Slamani et al. [12] compared multiplicative 
statistical model and exponential model of tool wear, and 
analyzed advantages and disadvantages of model under dif-
ferent circumstances. Most empirical formulas for tool wear 
rely on predefined cutting parameters and tool geometry. The 
parameters in models lack representativeness and flexibility, 
which are not only sensitive to processing conditions, but 
also have low adaptability to various actual processing con-
ditions. Current physical models are incredibly oversimpli-
fied, accounting for just a few dominant factors. The reliabil-
ity and accuracy of the physical model will be significantly 
impacted when the model assumption is not confirmed. 
Numerical simulation approach has made some progress in 
the monitoring of tool wear condition in recent years. This 
method can address the issue of difficultly obtaining process 
parameters, but it requires in-depth study of tool wear mech-
anism. Tang et al. [28] analyzed influence different physical 
and structural parameters on drilling wear through numerical 
simulation model. Attanasio et al. [29] developed a finite 
element analysis method with modifiable shape of model 
geometric parameters to evaluate influence of cutting condi-
tions on tool wear. Zhu et al. [30] used finite element method 
based on Johnson–Cook model to monitor milling tools sta-
tus. While the simplified friction model cannot fully account 
for contact during the actual cutting process, it is frequently 
used in actual modeling. This causes a discrepancy between 
simulation results and actual values. Moreover, some model 
inputs cannot be monitored or calculated during the cut-
ting manufacturing process, which severely limits the use 
of physical models. Therefore, physical model is difficult to 
be widely promoted and further improve in field of practical 
application and tool health monitoring.

The data-driven method is mining tool wear internal 
operation law based on state monitoring data. Under mutual 
coupling of multiple factors such as working condition and 
machining technology, the relationship between tool wear 
and monitoring quantity is more intricate and changeable. It 
is unrealistic to deduce mathematical law between the physi-
cal quantity and tool wear. Under premise of reasonable and 
sufficient samples, with excellent nonlinear mapping ability, 
the data-driven model can dig internal relationship of each 
physical quantity at in-depth level without deeply depend-
ence on prior knowledge and processing mechanism. So, 
it is appropriate for research on tool wear monitoring that 
is still being fully understood. Duan et al. [31] proposed a 
novel multi-scale stacked sparse principal component analy-
sis network to select training indexes for tool prediction. 
He et al. [32] proposed a cross-domain adaptive network 
based on attention mechanism to accurately identify tool 
wear states under different machining parameters. Qin et al. 
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[33] established the tool wear identification model of stack 
sparse self-encoder and the tool wear prediction model of BP 
neural network to monitor the tool wear according to differ-
ent task requirements and guide the tool replacement in the 
actual cutting process. Wei et al. [34] proposed a salp swarm 
algorithm combining chaotic mapping and attenuation fac-
tor, which unified with neural network to achieve effective 
tool wear prediction. However, data-driven model also has 
significant drawbacks. The mapping relationship is com-
pletely dependent on monitoring data, and final results may 
be inconsistent with physical law and common-sense under-
standing. Training samples and test samples are required to 
be independent and processed under the same conditions. 
Obtaining life cycle historical monitoring data of various 
operating situations requires investing a significant amount 
of manpower and material resources. Insufficient sample size 
may cause the model to be sensitive to operating conditions, 
make individual differences clear, and result in substantial 
prediction error.

More and more scholars are concentrating on the physics 
data-driven fusion model in order to overcome the draw-
backs of the physical model and the data-driven model, 
respectively. The fusion model is to introduce physical 
information into the data-driven model to limit or guide 
its health status monitoring. The following are its benefits: 
(1) Through integration of physical information, data-
driven model can be constrained in a relatively low space 
and unknown samples can be filled to a certain extent. (2) 
Make full use of two methods advantages to improve model 
predictive performance and provide more reasonable theo-
retical guidance for tool health management. (3) Compared 
with original data-driven model, physics data-driven fusion 
model is more consistent with model interpretation con-
cept of modern manufacturing requirements. Although the 
research work on tool wear prediction by utilizing physics 
data-driven fusion method is quite scarce, there is still some 
pertinent literature to consult. Hanachi et al. [35] built a 
physical data-driven hybrid framework based on regularized 
particle filtering technology, and results of tool wear state 
estimation were significantly improved. Huang et al. [36] 
constructed a mathematical description of tool wear degra-
dation process and integrated it with multi-layer perceptron 
(MLP) method. The results showed that hybrid model per-
formed better than any single model. Li et al. [37] proposed 
a hybrid physics meta-learning framework, which used 
physical informed loss terms to constrain model optimiza-
tion, and verified this method effectiveness. Relevant stud-
ies have achieved certain effect, but algorithm should not 
only fit relationship between sensor signal and tool machin-
ing state, but also complete mapping between monitoring 
signal and physical mechanism. It might be challenging to 
match useful information properly without being overbur-
dened by redundant information because sensor signals’ 

data amount and distribution frequently varies from actual 
quantities. Physical information is currently only integrated 
into data-driven models as particular, straightforward prior 
knowledge. Further in-depth investigation is still required to 
determine how to perfectly blend physical and data-driven 
methods into fusion models. To more precisely assess tool 
wear status, an appropriate fusion system must be built.

3 � Hybrid physics data‑driven model‑based 
fusion framework for tool wear prediction

The proposed hybrid physics data-driven model-based 
fusion framework mainly consists of four modules: wear 
stage division, physical information, hybrid physics data-
driven (HPDD) model and physics data-driven fusion mech-
anism, as shown in Fig. 1. In wear stage division module, 
tool wear trend is fitted according to tool wear character-
istics, and wear process is divided into three stages: initial 
wear stage, normal wear stage and severe wear stage. Local 
features of sensor monitoring signals are extracted depend-
ing on division stage. In physical information module, physi-
cal model parameters are optimized by utilizing wear rate 
and cutting force data. Optimized parameters are used to pre-
dict tool wear, and physical information of tool wear in three 
stages are achieved. In HPDD model module, with extracted 
local features as the first input and physical information as 
the second input, HPDD model is trained to obtain tool wear 
prediction results. In physics data-driven fusion mechanism 
modules, physical information is taken as prior informa-
tion, and prediction results of HPDD model are taken as 
observation information. Final tool wear prediction results 
are obtained by two kinds of information fusion based on 
Bayesian theory. Tool wear stage division are the basis for 
the piecewise prediction of physical information module and 
HPDD module. The physical information and local features 
are the common input of HPDD model. Finally, physical 
information and the predicted results of HPDD model are 
integrated through fusion mechanism. The proposed frame-
work can ameliorate poor prediction accuracy and generali-
zation ability of physical model and lack interpretability and 
physical consistency of data-driven model.

3.1 � Tool wear stage division and fitting

The complicated phenomena of tool wear are induced by 
many factors, including abrasive wear caused by mechani-
cal action of hard particles, diffusion wear caused by atomic 
motion, adhesive wear caused by shear plane deformation 
and oxidation wear at high temperature. The combined activ-
ity of these mechanisms ultimately leads to emergence of 
wear forms such as rake face wear, flank wear, and bound-
ary wear. Tool flank wear is resulted from strong friction 
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between tool clearance surface and workpiece surface. The 
academic community is quite concerned about it since it will 
directly affect the quality of the machined surface.

Tool wear speed is very quick in initial wear stage due to 
the large number of microscopic flaws on the tool surface, 
low metal surface strength, and point contact between cutting 
tool and workpiece. In normal wear stage, due to disappear-
ance of micro convex surface in tool, contact area between 
tool and workpiece increases, all parts in tool contact sur-
face are stressed uniformly, and tool material is slowly and 
equally worn. Then, in severe wear stage, the tool’s cutting 
edge becomes dull, the temperature in the cutting area rises, 

cutting force increases, and friction in the cutting area rapidly 
increases, all of which contribute to greater tool wear, as illus-
trated in Fig. 2. Wear rate and wear acceleration are computed 
as follows to analyze the changing trend of tool wear:

where is wear sampling interval time of wear trend curve, 
Δw and Δw� are wear rate and wear acceleration correspond-
ing to wear sampling interval respectively, Δt is an interval 
sampling milling time of the wear curve. In the figure, ta is 

(1)
{

w�(t) = Δw∕Δt = [w(t + Δt) − w(t)]∕Δt

w
��

(t) = Δw�∕Δt =
[

w�(t + Δt) − w�(t)
]

∕Δt

Fig. 1   The scheme of tool wear prediction
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moment when wear acceleration is w��

= 0 . This critical time 
point divides tool wear curve into convex and concave parts.

Tool wear rate change is used to classify the wear stages. 
It is evident from the tool wear process that tool wear is not a 
simple linear relationship. It is unreasonable to describe tool 
wear rate with a straightforward difference relationship. Due 
to factors such as tool installation, measurement errors, pro-
cessing environment, and individual differences in the work-
piece, there may be deviations in experimental measurement 
data of tool wear, and the measurement time interval for the 
experimental data is large. Hence, the difference method will 
result in significant mistake and severe wear rate data disper-
sion. Tool wear fitting model can describe degradation trend 
of tool wear well.

A tool flank wear fitting model w(t) was proposed in paper 
[27]. w(t) consists of transition functions as follows:

 where wE(t) and wL(t) represent polynomial fitting curves 
of convex and concave parts. a1(�m) , a2

(

�m/min3
)

 , 
b1(min) , b2

(

�m/min2
)

 , and c1(�m/min) are basic transition 
coefficients.

According to transition expression in Eq. (3), after integrat-
ing and removing low-order variables that have little influence 
on tool wear in normal wear stage, in order to improve model 
flexibility and fitting accuracy under various wear conditions, 
exponential x is introduced in model. Therefore, tool wear fit-
ting model is summarized as:

(2)w(t) = wE(t) + wL(t)

(3)
{

w
E
� = a

1
∕
(

t + b
1

)

+ c
1

w
L
�� = a

2
t + b

2

(4)w(t) = Aln(Bt + 1) + Ctx + D

 where A (μm), B (min−1), C (μm/min3), and D (μm) are 
fitting coefficients.

A number of empirical physical models of tool wear were 
developed in past investigations. A number of empirical 
physical models of tool wear have been established in past 
studies. Slamani et al. [12] proposed the multiplicative index 
tool wear model w1. In doctoral thesis, Muller presented 
an empirical model w2 that combines linear function and 
exponential function, which is considered to be tool wear 
model with the best fitting degree in initial stage [38]. Sipos 
introduced an empirical wear model w3 with exponential and 
polynomial functions in doctoral dissertation [39]. Three 
typical tool wear fitting models are as follows:

where vc (mm/min) is the cutting speed. f (mm/min) is the 
cutting feed. L (mm) is the cutting length. b0, b2, b3, b4,aB
,bB,cB and AC,BC,CC,DC are constants defined in literature.

In order to compare models fitting performance, model 
practicability is verified using Milling dataset from NASA 
data repository. Through analysis model w(t) has the best 
fitting performance of tool wear degradation process [27]. 
This model is used to preprocess experimental data to obtain 
smoother and more regular wear rate data.

3.2 � Physical information

Some existing physical models have good fitting perfor-
mance. Nevertheless, these models are often completely 
dependent on training of previous tool wear data in actual 
tool wear prediction, and prediction is completely divorced 
from test tool state monitoring, resulting in low accuracy of 
prediction results. Several studies have demonstrated that 
tool wear leads to an increase in cutting force and validated 
effectiveness of an improved Taylor tool wear life equation 
for tool wear estimation [40]. This physical model takes 
cutting force signal as an important index into tool wear 
prediction and shows better prediction performance. Taylor 
equation describing relationship between cutting force and 
tool wear rate is as follows:

where dw/dt represents tool wear rate, and C and m are con-
stants. N represents tool cutting force.

According to tool wear characteristics in Fig. 2, tool wear 
process can be divided into three stages: initial stage, normal 

(5)w
�(t) = AB(Bt + 1)−1 + xCt

x−1

(6)

⎧

⎪

⎨

⎪

⎩

w1 = b0v
b1
c
f b2Lb3

w2 = aBt + bB(1 − e−cBt)

w3 = DCtexp
�

AC + BCt + CCt
2
�

(7)
dw

dt
= CNm

Fig. 2   Trend chart of tool wear
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stage, and severe stage. Tool wear rate of three stages also 
has its corresponding change rule. Since variation law of 
tool wear rate at three stages is inconsistent, cutting relation-
ship between cutting force and tool wear rate at each stage is 
dynamic. Therefore, wear process is piecewise fitting, and 
these dynamic changes are directly reflected in parameter 
changes of different wear stages. According to tool wear rate 
change, tool wear rate and cutting force signal are divided 
into three stages:

whereΔwini,Δwnor , and Δwsev are wear rate, and Nini, Nnor, 
and Nsev are cutting forces of three stages. And their corre-
sponding values are substituted into Eq. (7) to obtain model 
optimization parameters of corresponding stages. The opti-
mized parameters are used to predict tool wear in order to 
obtain physical information for subsequent research. As 
shown in Fig. 3, prediction process of the first tool is taken 
as an example with superscript representing different tools. 
After fitting tool wear value measured by experiment, the 
tool wear rate value is obtained. The tool wear rate value and 
the force signal are processed to obtain the data of three wear 

(8)N = [Nini,Nnor,Nsev]

(9)Δw = [Δwini,Δwnor,Δwsev]

stages. In addition to the first tool, the rest of the tool data is 
used as training data. The training tool corresponding wear 
s t age  da ta  composes  the  a r ray( in i t ia l  wear 
stage:

[[

Δw2
ini
,Δw3

ini
,⋯ ,Δwn

ini

]

,
[

N2
ini
,N3

ini
,⋯ ,Nn

ini

]]

 , normal 
wear stage:

[[

Δw2
nor
,Δw3

nor
,⋯ ,Δwn

nor

]

,
[

N2
nor
,N3

nor
,⋯ ,Nn

nor

]]

 , 
s e v e r e  w e a r 
stage:

[[

Δw2
sev
,Δw3

sev
,⋯ ,Δwn

sev

]

,
[

N2
sev
,N3

sev
,⋯ ,Nn

sev

]]

 ). The 
array of different wear stages is brought into the Taylor 
physical model respectively to obtain the model optimization 
parameters of the corresponding stages (as the physical 
m o d e l  p a r a m e t e r s  o f  t h e  f i r s t 
tool

([

C1
ini
,m1

ini

]

,
[

C1
nor
,m1

nor

]

,
[

C1
sev
,m1

sev

])

 ). Finally, the physi-
cal information ( 

[

Δw
1pre

ini
,Δw

1pre
nor ,Δw

1pre
sev

]

 ) of the first tool is 
obtained.

3.3 � Hybrid physics data‑driven model

Hybrid physics data-driven (HPDD) model’s construction 
method is mainly based on fusion of physical information 
and sensor monitoring signals as data-driven model input 
information. Three stages HPDD models are constructed for 
cutting tool, and each stage results are integrated to obtain 
prediction results of test tool. Compared with traditional 
data-driven model, which directly trains monitoring signals, 

Fig. 3   The flow chart of physical information
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HPDD model incorporates physical information into data-
driven model input, which improves accuracy and interpreta-
bility of model. Firstly, according to piecewise setting of tool 
characteristics, sensor monitoring signals (including cutting 
force signals, vibration signals, acoustic emission signals) 
are extracted features. Then extracted features and physical 
information are used as feature indexes of data-driven model 
together. These indexes corresponding input to piecewise 
HPDD model to get prediction results.

In order to solve problems of noise and signal source pol-
lution in original sensor monitoring signal, a large number 
of data preprocessing methods are proposed to obtain effec-
tive signal information. In this paper, local feature extraction 
method is adopted. Compared with traditional global feature 
extraction method, it can accurately capture subtle signal 
changes and eliminate some redundant information. Under 
small sample prediction condition, traditional feature extrac-
tion method will lead to a sharp decline in number of sam-
ples. The insufficient number of training samples may lead 
to model overfitting and decline in accuracy and robustness. 
It takes a lot of manpower and material resources to obtain 
tool life cycle data, and tool wear data sets are small-batch 
samples in most case, so local feature extraction method 
introduction can quickly extract a large number of effec-
tive information. Local features are used as the first input of 
HPDD model to improve model prediction accuracy.

The interpretability of data-driven model has been a focus 
by researchers. Real relationship between tool wear and vari-
ous physical quantities is difficult to determine. Therefore, 
data-driven model prediction continues to adopt piecewise 
prediction according to tool wear characteristics. Because of 
different change rules of tool wear at each stage, piecewise 
prediction is conducive to quickly and accurately establish 
relationship between input and output. Physical information 
is applied as the second input of the HPDD model. Physical 
information is based on empirical knowledge accumulated 
from long-term studies of real tool wear. As unlabeled sam-
ples, physical information not only expands training sam-
ples, but also facilitates exploration of hidden information 
except local features, which helps to improve interpretability 
and robustness of model prediction.

3.4 � Physics data‑driven fusion mechanism

Both physical information and HPDD model prediction results 
have certain theoretical basis and reliability. Thus, this section 
combines two types of information to obtain higher predic-
tion accuracy. Bayesian theory is an effective method to deal 
with random factors and data analysis. Because accumulated 
knowledge, expert experience and other important informa-
tion as prior knowledge to participate in decision, while using 
monitoring system measurement data constantly update poste-
rior information, Bayesian updating theory effectively improve 

posterior results reliability. Therefore, Bayesian updating the-
ory has a wide application prospect in uncertainty problems 
of health status monitoring.

Tool wear process can be regarded as a nonlinear system. 
Physical information is taken as state equation of system fk(⋅) , 
and predicted results of HPDD model are used as observa-
tional equation of system hk(⋅) , State space model can be 
defined as follows:

 where xk and yk respectively represent state value and 
observed value at moment k, and uk and vk are status noise 
and observed noise, respectively. In order to describe rela-
tionship between tool wear at present moment and previous 
moment, state equation of above Eq. (10) can be updated as:

where xk is current tool wear state value, yk-1 is final predic-
tion result at previous time, which is also tool wear state 
value at the previous time. CNm

k−1
 is tool wear rate at previ-

ous time. HPDD model constructs the mapping relation-
ship between tool wear and monitoring signals. Observation 
equation of tool wear is:

where HPDD is a hybrid physics data-driven tool wear pre-
diction model, zk represents local features and physical infor-
mation input features.

According to the above equation, current tool wear state 
value and observed value can be calculated from known state 
value of the last tool wear and current input value. Since tool 
wear value is uncertain at every moment, it can be assumed 
that tool wear is a first-order Markov process. For current 
tool wear value xk, prior probability density can be derived 
as follows:

The posterior probability of xk updated by observation yk is:

Bayesian statistics problems involve multi-dimensional 
random variables and parameters. Error of numerical 

(10)xk = fk
(

xk−1, uk
)

(11)yk = hk
(

xk, vk
)

(12)xk = yk−1 + CNm
k−1

(13)yk = HPDD
(

zk
)

(14)p
(

xk
|

|

y1∶k−1
)

= ∫ p
(

xk
|

|

xk−1
)

p
(

xk−1
|

|

y1∶k−1
)

dxk−1

(15)p
(

xk
|

|

y1∶k
)

=
p
(

yk
|

|

xk
)

p
(

xk
|

|

y1∶k−1
)

p
(

yk
|

|

y1∶k−1
)

(16)p
(

yk
|

|

y1∶k−1
)

= ∫ p
(

yk
|

|

xk
)

p
(

xk
|

|

y1∶k−1
)

dxk
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methods will increase significantly with the rise of dimen-
sion. Markov Monte Carlo method is an indirect sampling 
method to obtain random variable sample values by con-
structing Markov chain. It can circumvent difficulty of 
sampling from incomplete known probability distribution 
by direct sampling method which provide an effective com-
puting method for Bayesian algorithm. Metropolis–Hast-
ings (M-H) algorithm is widely used in Bayesian algorithm. 
Fusion mechanism process for tool wear prediction based on 
Bayesian theory is shown in Fig. 4.

4 � Experiment validation

4.1 � Experimental data description

To evaluate the performance of the developed framework 
objectively, the public dataset from the “prognostic data 
challenge 2010” is selected. The experiment was carried 
out on a high-speed CNC milling machine (Roders Tech 
RFM760), using a 6 mm three-slot spherical head tungsten 
carbide tool to mill the stainless steel workpiece (HRC52). 
In order to accelerate tool wear, the experiment adopted the 
dry milling method to carry out the whole life cycle experi-
ment of three milling cutters respectively. In experiment, a 
down-milling machining method was adopted. After each 
end milling with a length of 108 mm, cutting tool returned 
to side of starting point of milling path. Experimental pro-
cessing parameters are shown in Table 1. It could be seen 
that a higher cutting speed was selected in this experiment 
to obtain wear monitoring signal data of tool life cycle faster 
under requirement of dry milling. Each cutting tool had been 
end-milling 315 times according to machining parameters. 
In each milling process, an acquisition card (NI DAQ PCI 
1200) was used to collect signals of dynamometer (Kis-
tler 9265B), vibration sensor (Kistler 8636C) and acoustic 

emission sensor (Kistler 8152) at a sampling frequency of 
50 kHz. After each milling, tool wear value was measured 
by microscope (LEICA MZ12). Dynamometer measured 
cutting force in form of charge, which was converted into 
voltage signal by charge amplifier (Kistler 5019A) and then 
transmitted to the acquisition card. The tool wear experimen-
tal platform is shown in Fig. 5

Whole life cycle dataset of tools (C1, C4, and C6) was 
obtained in the experiment, including the three-directions 
cutting force signal, three-direction vibration signal, and 
one-dimensional acoustic emission signal collected in 315 
end milling processes, as well as three blade wear values 
measured after each end milling. Maximum value of three 
flank wear values was used as the final tool wear results 
for each end milling. The basic definition of tool life is the 
time required to reach predetermined flank wear width, so 
predetermined flank wear value of tool is set as 160 μm in 
this paper. Two tools in dataset are used as training data to 
predict wear state of the other tool.

4.2 � Data preprocessing

4.2.1 � Degenerate process piecewise

Due to uncertainty of experimental measurement data, it 
is difficult to divide stages according to change of tool 
wear rate. Experimental measurement of tool wear data is 

Fig. 4   The flowchart of fusion mechanism

Table 1   Experimental machining parameter

Machining parameter Value

Spindle speed (r/mm) 10400
Feed speed (mm/min) 1555
Radial cutting width (mm) 0.125
Axial cutting depth (mm) 0.200
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fitted according to fitting model Eq. (4). Tool wear fitting 
results and wear rate are shown in Fig. 6, and their high 
fit with measured data reflects better fitting performance. 
Since tool wear change is unknown during tool prediction, 
it is necessary to have clear and uniform criteria for wear 
stage division. Cluster analysis [41] is performed on tool 
wear rate, and clustering result of three tools is integrated 
to set stage division as shown in Fig. 6.

4.2.2 � Local features extraction

In order to remove noise and redundant information from 
monitoring signals and accelerate model convergence, 
local features are extracted from monitoring data. Local 
feature extraction is to divide 7 channels of original data 
by each end milling into 20 segments, and extract time and 
frequency domain features of each segment data in each 
channel as shown in Table 2. Original signal of each chan-
nel is converted into feature matrix of (20, 11). Extrac-
tion features of three directional force signals, vibration 
signals, and acoustic emission signals are integrated into 
a matrix (20, 77). Assuming that when tool flank wear is 
160 μm, the number of end milling is n, total local fea-
ture size of each tool is (20, 77, n). Correlation analysis 
between each dimension features and tool wear is carried 
out. Finally, 15-dimensional features with high correla-
tion are selected and normalized. After data preprocessing, 
local feature matrix (20, 15, n) of each tool is obtained.

4.3 � Performance evaluation

4.3.1 � Results discussion

Taylor model parameters are optimized through training 
data, the optimized parameters are combined with cutting 
force monitoring signals of test tool, and the predicted tool 
wear rate is obtained by leave-one cross-validation method 
in Fig. 7. Wear rate data obtained by differential measure-
ment of tool wear experiment have high dispersion. Fitting 
parameters related to tool wear rate change in different 
stages and reduces difficulty of parameter estimation. Tool 
wear data derived from predicted tool wear rate is used as 
physical guidance information for hybrid physics data-driven 
model. As the second input of data-driven model, physi-
cal information break limitation of traditional method only 
considering labeled samples, and make full use of unlabeled 
samples to enhance accuracy and physical consistency of 
prediction results.

Several classical deep learning and machine learn-
ing methods in field of PHM are selected for comparison, 
including convolutional neural network (CNN), LSTM, SVR 
and bidirectional gated recurrent neural network (Bi-GRU). 
Four models take extracted local features as model inputs. 
Settings of loss function, learning rate, optimizer and num-
ber of iterations are consistent, and predicted results of these 
four methods are compared. Figure 8 shows that prediction 
accuracy of Bi-GRU is optimal compared with other meth-
ods, and its good prediction performance is embodied in root 

Fig. 5   Tool wear experimental platform
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mean square error (RMSE) and mean relative error (MARE) 
of prediction results. Therefore, Bi-GRU is selected as data-
driven model in HPDD method. Bi-directional GRU: includ-
ing a bi-directional GRU layer (number of units: 10) and a 
fully connected layer (number of units: 10), learning rate: 

0.001, optimizer: Adam, iterations: 100. Extracted local fea-
tures are the first input of model, and prediction result of 
Taylor model is physical information input. Bi-GRU is used 
to construct HPDD model. Prediction results and error of 
HPDD model are shown in Fig. 9. Compared with predic-
tion results of Bi-GRU model without considering physical 
information, it can be seen that HPDD model has higher 
prediction accuracy. HPDD model is a method to improve 
accuracy and interpretability by using input of physical 
information, and to a certain extent solves problem that 
model is difficult to build. Physical information input not 
only expands sample of unlabeled data, but also helps data-
driven model to quickly explore tool wear information from 
local features, and provides theoretical premise for accurate 
tool wear prediction.

Physical information and prediction results of HPDD 
model are combined by Bayesian framework, and the final 
prediction results are obtained by solving the Bayesian pos-
terior samples through Markov Monte Carlo (MCMC). In 
this paper, M-H algorithm is used to calculate posterior 
samples of tool wear. A total of 10,000 cycles of sampling 
are carried out. The first 5,000 cycles are taken as train-
ing processes to make cycles converge, and the last 5000 
updated samples are posterior distribution samples of cur-
rent tool wear state. Prediction results are shown in Fig. 9 
and Fig. 10. Bayesian theory solves uncertainty problem in 
prediction from perspective of probability distribution. Con-
fidence interval of prediction results is given according to 

Fig. 6   Physical model fitted 
results and wear stage divi-
sion. The first three figures are 
physical model fit results of the 
tools (C1, C4, and C6). Experi-
ment value: tool wear values 
measured by experiment; fitted 
value: tool wear results fitted by 
physical model; wear rate: tool 
wear rate results fitted by physi-
cal model. The last figure is the 
division of three wear stages

Table 2   List of extracted features
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posterior sample distribution of tool wear, and mean value 
of each predicted posterior distribution is taken as final pre-
diction result of tool wear. Compared with tool wear values 
measured by experiment, it can be intuitively found that 
prediction results have high-accuracy. And prediction prob-
ability distribution presented by confidence interval shows 
that prediction method has strong prediction stability. Bayes-
ian framework fuses two kinds of information and gradually 
reduces error of both results to improve prediction accuracy 
of fusion prediction.

The hybrid physics data-driven model-based fusion 
framework proposed in this paper, HPDD model, Bi-GRU, 
Taylor extended formula and fitting model conduct a com-
parative experiment. Figure  9 shows prediction results 
of tool (C1) and absolute difference of various models 
between experimental measurements and predicted values. 

Comparison results of five methods for cutting tools (C4, 
C6) are shown in Fig. 10. These reveal that performance 
of proposed method is superior to other methods, predic-
tion error is the smallest, and convergence effect is optimal 
from prediction start to end. RMSE and MARE of prediction 
results can more intuitively show prediction accuracy and 
stability of proposed method.

Some existing physical models do not take factors such as 
processing environment and cutting parameters into account 
in model, and rely on empirical models that summarize a 
large amount of tool wear data and wear trend observation, 
showing good fitting performance. However, trend prediction 
process is completely divorced from actual machining of test 
tool, only relying on training of historical data, it is difficult 
to obtain high-precision prediction results. Fitting model in 
figure has a large difference in prediction performance of 

Fig. 7   Physical model wear rate prediction. Experiment value: tool 
wear rate values calculated by difference according to experimental 
measurement tool wear values; fitted value: tool wear rate values fit-

ted by the physical fitting model; physical predicted value: tool wear 
rate values predicted by the physical prediction model

Fig. 8   Data-driven model comparison
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different tools. Compared with other methods, overall pre-
diction performance of fitting model is the worst. Therefore, 
this model is suitable for preprocessing of tool wear data, 
eliminate the errors caused by measured tool wear data to 
a certain extent and maintain physical consistency between 
experimental data and wear process. Taylor model adopted 
in this paper incorporates cutting force signals monitored 
by sensors into physical model construction. Considering 

tool wear characteristics, piecewise prediction is carried 
out according to change rule of wear rate at different stages, 
which improved prediction ability compared with fitting 
model. HPDD model takes local features of sensor monitor-
ing signal and physical information as model inputs at the 
same time, which helps deep learning network to learn tool 
wear information from more dimensions. Combined with 
comparison results of Fig. 9, HPDD model shows better 

Fig. 9   Comparison of proposed method predicted results with vari-
ous independent methods (C1). Comparison of accuracy of predic-
tion results by 5 methods (proposed model, HPDD model, Bi-GRU 
model, Talyor model and Fitting model); experiment value: tool wear 

values measured by experiment; dotted line: the prediction results 
of various methods; error: the absolute error between the predicted 
result and the experimental measurement; confidence interval: the 
distribution of predicted results of the proposed method
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prediction performance than independent BI-GRU model and 
Taylor model in tool results of physics data-driven fusion 
method. Physical wear prediction. Proposed method com-
bines physical information based on Taylor model and HPDD 
model through Bayesian theory to obtain final prediction 
information as priori information to improve interpretability 
of model, and prediction results of HPDD model as obser-
vation information to constantly update prediction results to 
improve accuracy and robustness of model prediction.

4.3.2 � Comparison with other methods

In recent years, many researches have been carried out on 
tool wear, and this dataset has been widely used in field of 
tool health monitoring to demonstrate the methods’ perfor-
mance. In this paper, many related works are summarized 
to prove effectiveness of proposed method objectively. Both 
commonly machine learning and deep learning algorithms 
such as MLP [42], SVR [43], CNN [44], and recurrent 

Fig. 10   Tool wear prediction results (C4, C6). The legend is the same as Fig. 9. The bar chart is a comparison of 5 methods (1, proposed model; 
2, HPDD model; 3, Bi-GRU model; 4, Talyor model; and 5, fitting model)

Fig. 11   Comparison with existing methods
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neural network (RNN) [17] have certain predictive effect. 
However, because these algorithms are widely used in vari-
ous fields, they are not specific to tool wear, so prediction 
accuracy is generally low. Improved models for tool wear 
have been proposed in many literatures, including CNN 
combined with LSTM model (CNN + LSTM) [45], Time-
distributed ConvLSTM model (TDConvLSTM) [46], Par-
allel convolutional Neural networks for multi-scale feature 
fusion and channel attention mechanism (FFCA + PCNN) 
[47], Physics guided neural network neural network (PGNN) 
[48] and Deep heterogeneous GRUs model (DHGRU) [49], 
which have significantly improved prediction performance 
compared with those general networks. RMSE and MARE 
of proposed method predicted results for three tools are 
respectively 2.29, 1.77, 2.29 and 2.14, 2.27, 1.65. In order 
to quantitatively analyze the prediction performance of.

different methods, prediction results of each method are 
shown in Fig. 11 and Table 3. Comparison and analysis indi-
cate that the hybrid physics data-driven model-based fusion 
framework for machining tool wear prediction in this paper 
is the most reliable and accurate.

5 � Conclusions

Tool wear has a significant impact on machining accuracy 
and part quality. A reliable method is required to monitor 
and predict tool wear conditions. In this paper, a hybrid 
physics data-driven model-based fusion framework for tool 
wear prediction is proposed. Some conclusions can be drawn 
as follows:

a) In order to solve problems of low prediction accuracy 
and poor generalization ability of physical model and lack 
of interpretability and physical consistency of data-driven 
model, the proposed method utilizes the advantages of 
different models to improve the prediction accuracy.

b) Physical information is used as data-driven model 
input to build HPDD model. By using unlabeled samples 
for data expansion, limitation of labeled samples lack 
is broken. It integrates data mining and physics theory 
effectively, and fully discusses hidden relation between 
input and output.
c) Factors such as sensor noise and measurement tech-
niques will cause uncertainty in physical information 
and HPDD model prediction results. A Bayesian fusion 
mechanism is introduced to integrate two types of infor-
mation. The results demonstrate that high precision tool 
wear prediction is realized, and prediction error is signifi-
cantly reduced when compared to independent models 
and existing methods.
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