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Abstract
Acoustic emission (AE) signals are thought to contain crucial information for identifying defects and monitoring processes. 
It is crucial to have a comprehensive understanding of how AE signal parameters behave under different experimental condi-
tions. However, based on current research, there appears to be a lack of knowledge on the impact of machining parameters, 
especially in milling operations, where complex chip formation patterns, interaction effects, and directional pressures and 
forces are present. To bridge this informational void, analyzing how various cutting conditions impact the AE signal charac-
teristics derived from milling operations is crucial. This research predominantly focuses on the impact of cutting conditions, 
material attributes, insert coatings, and nose radius on AE signal attributes in the time domain. The proposed innovative 
method suggests segmenting acquired AE signals correlated with the cutting tool’s trajectory through the material into three 
distinct phases: entry, active cutting, and exit, each marked by a particular signal timeframe for effective signal processing 
and characteristic derivation. Furthermore, advanced signal processing techniques and statistical analysis are utilized to 
determine which AE parameters are sensitive to changes in cutting parameters. This research identifies cutting speed and 
feed rate as the primary variables affecting AE signal characteristics. The study’s outcomes can enhance sophisticated clas-
sifications and AI techniques for monitoring machining operations.
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Highlights
•Milling experimental tests were performed on AA 7075 – T6 

with TiCN, TiAlN and TiCN+Al2O3+TiN coating materials.
•Acoustic Emission (AE) signals were obtained from the milling 

tests.
•The Time-Frequency signal processing method was conducted on 

obtained AE signals.
•Feature extraction of  signals and statistical analysis were 

adopted to determine the most sensitive AE parameters and 
governing machining factors.

•Advanced signal processing techniques and statistical analysis 
were utilized to determine sensitive AE parameters to changes in 
cutting parameters.
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1 Introduction

Acoustic emission, or AE, is the emission of elastic waves 
generated by the abrupt liberation of energy within a strained 
material due to events like plastic deformation or crack for-
mation [1]. These waves contain significant information for 
monitoring various processes. A considerable benefit of AE 
lies in its capacity to monitor a complete system non-disrup-
tively. This sets it apart from other non-destructive signals, 
like ultrasonic waves. The aerospace sector, among others, 
has extensively utilized AE in non-destructive evaluation 
applications. The initial application of AE technology for 
monitoring cutting tool conditions emerged in the 1970s in 
Japan [2], where the AE generated during aluminum alloys 
(AAs) machining was examined. Findings indicated that AE 
signals span a continuous spectrum, unlike the discrete nature 
of audible frequencies. Subsequent research has focused on 
employing AE sensors in multiple applications [3–7].

Today, much of the research in AE technology focuses 
on its intelligent control of tools and systems [8–13]. This 
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is due to the high sensitivity of AE signals to tool wear and 
breakage, which can vary significantly in terms of signal 
strength. Some studies have shown that AE can be utilized 
with high precision in machining and micromechanical 
process monitoring when combined with other sensors and 
modeling approaches [14]. To effectively employ AE signals 
for process monitoring, one must possess extensive knowl-
edge of their responses to diverse mechanical and physical 
scenarios, as established in prior studies [6]. The AE tech-
nique is widely used to monitor different types and modes 
of machining processes. However, there remains a lack of 
understanding about how sensitive the AE parameters are 
to different machining factors. This is particularly evident 
in milling operations, which involve complex chip forma-
tions and interactions with multiple directions of pressure. 
To address this knowledge gap, it is essential to investigate 
the influence of a wide range of cutting factors on AE signal 
parameters.

In the study of AE signals within milling operations, 
examinations have been carried out across time, frequency, 
and combined time-frequency domains [15, 16]. Research 
findings suggest that when it comes to the frequency aspect, 
the two most responsive indicators to the settings of the 
cutting process are the highest amplitude and the main 
frequency. However, the settings still don't fully control 
these indicators [17]. In terms of signal processing, work 
has focused on automatic detection [18]), predicting the 
smoothness of a surface [19], and developing models for 
slot milling [20]. Further investigations have used AE sig-
nal characteristics to monitor the wear on milling tools in 
the process of cutting aluminum-ceramic materials [20] as 
well as to study the condition of surfaces after high-speed 
machining [21]. Exploring AE signals considering both time 
and frequency has been another area of interest [22].

This research aims to discern the key influences on 
alterations in AE parameters within the time domain and to 
ascertain the most responsive parameters during machining. 

Thus, the focus of this study is to identify the cutting fac-
tors that impact the variations in AE parameters in the time 
domain and determine which parameters are most sensitive 
to changes in machining conditions. To achieve this goal, 
an innovative methodology is proposed, which includes 
segmenting AE signals, advanced signal processing, and 
statistical analysis.

While AE signals are quite crucial for monitoring 
machinery condition and diagnosing health in machining 
tasks, there is a noticeable gap in understanding how these 
signals change with different machining factors, mainly 
when analyzed over time and frequency. This issue is more 
evident in milling, where the interactions, the various ways 
chips form, and the pressures in all directions stand out. 
Thus, it is necessary to explore how changing the cutting 
conditions can alter AE signals, focusing on time and fre-
quency to fill this knowledge gap. This study aims to check 
how sensitive the features of AE signals are, mainly under 
different cutting conditions in milling aluminum alloys.

The theoretical background of AE is discussed in section 
two, while section three describes the experimental setup. 
The research methodology is comprehensively explained in 
section four, and the results and discussion are presented in 
section five. Finally, the paper concludes in the last section.

2  Acoustic emission signal

2.1  Definition and sources of AE

AE refers to the elastic waves produced within a material 
when it is subjected to stress [23]. The primary causes of AE 
in metals are plastic deformation and the formation of cracks. 
These different forms of AE generation result in energy dissi-
pation in the form of an AE event (illustrated in Fig. 1), which 
typically lasts for less than a millisecond. Important factors 
to consider in understanding AE include the AE sensor, the 

Fig. 1  An overview of AE 
signal [24]
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AE signal, the characteristics of the AE wave, background 
noise, coupling, and the machine tool. As mentioned earlier, 
mechanical energy generates AE signals, manifesting as high-
frequency elastic waves ranging from 100 to 1000 kHz.

The origins and sources of AE in deformed and machined 
materials were reported in [14, 23, 25–27]. As noted in [23], 
the primary sources of AE in metal cutting are the following: 
(a) the plastic deformation during the cutting process, (b) the 
plastic deformation within the chip itself, (c) the friction at 
the junction between the workpiece and the tool flank that 
leads to flank wear, (d) the friction occurring at the interface 
of the tool rake face and the chip which causes crater wear, 
(e) the fracture of chips, (f) the breakage of the cutting tool, 
and (g) the collisions between the chip and the tool that 
result in chip fragmentation.

The AE signals generated during metal cutting can be 
distinguished into continuous and transient burst types, each 
with their unique attributes. Continuous signals emanate 
from the shear deformation and the tool's wear at the rake 
and flank faces, whereas sudden burst signals result from 
tool breakage and chip fracturing. It can be inferred that the 
continuous AE signals are produced by sources (a) through 
(d), while the transient AE events, as shown in Fig. 2, are a 
consequence of incidences (e) through (g).

2.2  AE parameters

Table 1 presents the time-domain parameters obtainable 
from AE signals, with corresponding computational for-
mulas detailed in Appendix 1. This table enumerates the 
parameters deduced from AE signals across time and fre-
quency domains.

3  Experimental procedures

3.1  Experimental plan

The design of the experiment method used in this study was 
a full factorial design of the experiment. The table included 

in the document presents the factors and levels that were 
investigated. The experimental works were repeated once, 
and the average values of readings were presented in an 
overall 162 tests. The machining tests were conducted on 
a 3-axis CNC machine with a power of 50kW, a maximum 
spindle speed of 28000 rpm, and a torque of 50Nm. The 
three teeth-coated iscar inserts with code E90-A-D.75-
W.75-M were used. The specific details of the insert used 
are presented in Table 2. The following section outlines the 
research methodology, including the approaches used for 
signal processing and result analysis. To ensure accuracy, 
measures were taken to control the stability of the cutting 
process and minimize tool and machine vibrations. Rigid 
tool and workpiece fixtures were used, resulting in negligible 
deflection. A fresh insert was utilized for each cutting trial to 
eliminate discrepancies in AE signals caused by tool wear. 
Detailed specifications of the workpiece materials and cut-
ting parameters used in the study are presented in Tables 3 
and 4.

3.2  AE signal monitoring system

The data acquisition system utilized in this work comprised 
two AE TEDS microphones. In Fig. 3b, the first imple-
mented microphone, ref2564023, which was positioned 
adjacent to the machining area, can be observed. The sec-
ond microphone, ref2564024, was located two meters from 
the cutting area and was accompanied by a data preproc-
essing unit, as shown in Fig. 3c. This second sensor was 
used to monitor background noise. The sampling frequency 
of 65KHZ was used to analyze the AE signals in the time 
domain. The arrangement of work parts during the machin-
ing tests can be seen in Fig. 3d. Before beginning the experi-
ments depicted in Fig. 3, the microphones were calibrated 
using a 10000 - 100 Hz signal to ensure their accuracy and 
reliability. The considerable disparity in the signal-to-noise Fig. 2  Typical AE signal [27]

Table 1  The time series AE parameters studied

List AE parameters

1 Amplitude:  AEMAX

2 Minimum:  AEMIN

3 Mean:  AEμ

4 Root mean square:  AERMS

5 Variance:  AEVAR

6 Standard deviation:  AEσ

7 Crest factor:  AECF

8 Form factor:  AEFF

9 Coefficient of dispersion:  AECD

10 Coefficient of asymmetry:  AECA

11 (Skewness):  AESk

12 Kurtosis):  AEkur
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ratio of the initial sensor, placed in proximity to the chip 
creation zone, and the second sensor attested to the neg-
ligible influence of extraneous noise on the fidelity of the 
recorded signals (Fig. 4).

4  Research methodology

To attain more significant findings regarding different 
machining methods, the captured AE signals were separated 
into three sections, as shown in Fig. 5, corresponding to the 
progress and movement of the cutting tool in the workpiece. 
The initial phase denotes the entry signal corresponding to 
the cutting tool's insertion into the workpiece (Fig. 5a). The 
second section concentrates on the cutting process (Fig. 5b), 
while the third refers to the moment the cutting tool exits the 

workpiece (Fig. 5c). This approach obtained more precise 
data and insights regarding the various machining stages.

The proposed research approach for the study includes 
using AE sensors (at a frequency of 100 KHz) placed near 
the chip formation zone for data acquisition. The AE sig-
nals about the progress and exit of the cutting tool from the 
machined parts were extracted for each cutting trial. The 
signals will then be processed, and 12 AE parameters will 
be extracted from each cutting stage using a sampling fre-
quency of 100 kHz. Statistical analysis will be performed on 
these parameters to determine the most significant machin-
ing and AE signal parameters. These parameters will be 
identified through their P-value, R2, and R2adj values. This 
approach will assist in determining the governing machin-
ing parameters and identifying insignificant and significant 
variables and models (as outlined in Section 4.1) (Fig. 6).

Associated with specific challenges, such as burr forma-
tion, built-up edge (BUE), and work part adhesion to the 
cutting tool, machining AAs has been reported as complex 
[8, 9, 30, 31]. Certain assumptions were made to mitigate the 
potential negative impact of these difficulties on the experi-
mental setup and resulting outcomes.

To avoid expected difficulties in machining AAs, and 
prevent any adverse effects on the experimental setup and 
recorded results, the following proposals were put forth:

1. Initial experimental trials were conducted to evaluate the 
stability and steadiness of the machining operation.

2. The machining tests confirmed the absence of deflection 
in the cutting tool and fixture, and chatter vibration was 
not observed.

3. In each cutting experiment, using sharp, undamaged 
inserts was essential to reduce discrepancies in results 
and improve the machining process’s accuracy.

4.1  Method of analysis

A range of experimental methodologies and conditions 
was used to evaluate the effects of cutting factors on the 

Table 2  Machining parameters 
used

D*: Tool diameter; Z** Tool teeth number

Cutting Parameters Level

1 2 3

A: Cutting speed (m/min) 300 750 1200
B:Feed per tooth (mm/z) 0.01 0.055 0.1
C: Depth of cut (mm) 1 2
D: Material AA 2024-T351 AA 6061-T6 AL7075-T6
E: Tool (D* = 19.05mm, Z**=3)
Insert nose radius Rε

Rε= 0.5 mm
Coated with TiCN

Rε= 0.83 mm
Coated with TiAlN

Rε= 0.5 mm
Coated with 

TiCN+Al2O3+TiN
Cutting fluid None (Dry Machining)

Table 3  Physical properties of materials used [28]

Physical parameters Materials

AA 
2024 – 
T351

AA 6061 – T6 AA 7075 – T6

Brinell Hardness (HB) 120 95 150
Elongation (%) 19 17 11
Elastic limit (MPa) 324 276 503
Mechanical resistance 

(MPa)
469 310 572

Table 4  Characteristics of the cutting tools used [29]

Operational conditions Cutting tool (Iscar Ref: E90A-D.75-
W.75-M)

Coating TiCN TiAlN TiCN+Al2O3+TiN
Insert nose radius Rε 

[mm]
Rε = 0.5 Rε = 0.83 Rε = 0.5

Reference insert IC 328 IC 908 IC 4050
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calculated AE parameters. The statistical expressions 
applied within this research are encapsulated in the [32]. 
ANOVA, denoting the analysis of variance. This technique 
assesses the impact and interactions of adjustable experi-
mental variables with a 95% confidence interval (CI). At 
the same time, the coefficient of determination (R2) quanti-
fies the response variance relative to these parameters and 
their synergies. An R2 value of 0.75 indicates sensitivity 

to parameter variations, while a value greater than 0.75 
suggests a lack of responsiveness.

In comparing models with different independent param-
eters, researchers used the adjusted R2 value (R2

adj), which 
is typically smaller or equal to R2. The P-value was also 
used to determine the significance of individual experi-
mental variables and the presented model. A P-value 
greater than 0.10 indicates insignificance, a value between 

Fig. 3  AE Acquisition system

Fig. 4  Applied AE measure-
ment system in milling opera-
tion
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0.05 and 0.10 suggests mild importance and a value less 
than 0.05 denotes significance. The Pareto chart, a graphi-
cal representation of statistical analysis, was used to iden-
tify experimental parameters' main and interaction effects 
on responses. The significant and insignificant variables 

were determined by considering P-value, R2, and R2
adj. An 

input variable with a P-value under 0.05, including cutting 
parameters and their interaction effects, was deemed sta-
tistically significant. The investigators employed a second-
order linear model or two-factor interaction to assess the 
model's importance.

In conclusion, the researchers utilized various statistical 
methods to evaluate the effects of machining factors on AE 
parameters. By considering parameters such as R2, R2

adj, 
and P-value, they could identify significant and insignifi-
cant variables and determine the overall sensitivity of the 
model to parameter variations. The results were visually rep-
resented through a Pareto chart, highlighting experimental 
parameters’ main and interaction effects on responses. The 
second-order degree models are included in this study, as 
shown in Figs. 7 and 8. Any AE responses with a corre-
sponding R2 value of less than 0.75 were also deemed insig-
nificant regarding changes in cutting parameters. All statisti-
cal analysis was conducted using the commercial software 
Statgraphics.

5  Results and discussion

The influence of cutting parameter alterations on AE signal 
characteristics was analyzed through diverse signal process-
ing methods and feature selection techniques, as depicted in 
Fig. 6. Statistical methods evaluated the impact of cutting 
parameters on AE signal characteristics, with the outcomes 
represented in quadratic models. The explanatory power of 
each cutting parameter on the response variables is indicated 
by Table 5, which presents the coefficient of determination 
(R2) for AE parameters derived from various cutting phases. 
This data shows that only a few AE parameters  (AERMS, 
 AEVAR,  AEMAX, and  AEMIN) were sensitive to changes in 

Fig. 5  Schematic breakdown of recorded AE signals

Fig. 6  Scheme of the proposed methodology
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cutting parameters, with R2 values exceeding 0.75. In other 
words, except for these few parameters, the variability of 
other recorded parameters in response to changes in cutting 
parameters was less than 75% and, therefore, not statistically 
significant.

Among the sensitive AE parameters,  AERMS and  AEMAX 
had the highest  R2 values and will be further examined 
in Figs. 7 and 8. These figures illustrate that  AERMS and 
 AEMAX were significantly influenced by the cutting speed 

(A), feed per tooth (B), and depth of cut (C), regardless 
of the cutting stage. Higher levels of cutting speed, feed per 
tooth, and depth of cut resulted in higher levels of  AERMS 
and  AEMAX, with cutting speed having the greatest impact 
[33]. This observation is consistent with previous research 
that suggests AE signals in cutting operations are primar-
ily related to energy consumption and material removal 
rate (MRR) (as stated in [33]). Interestingly, material was 
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the least statistically significant parameter, except in the 
entry stage. This may be due to the initial energy demand 
for cutting, as higher levels of material removed may 
require more energy and result in stronger AE signals.

As shown in Figs. 7 and 8, regardless of the AE features 
studied  (AERMS and  AEMAX), the material was the most 
minor statistically significant factor in the initial cutting 
stage, while the cutting tool was non-statistically signifi-
cant. This could be due to the high energy demand for ini-
tial plastic deformation at the start of the cutting process 
compared to the other stages of cutting. Table 3 shows 
higher values of  AERMS in the harder material, specifically 
AA 7075 T6, compared to the softer material, AA 6061 
T6. This could be attributed to the higher energy required 
for plastic deformation in harder materials. Although 
material and cutting tools may have the least impact on 
AE signal parameters, it is notable that these signals show 
more variation when changing cutting parameters rather 
than material properties. Therefore, it can be concluded 
that AE signals are susceptible to changes in cutting 
parameters such as material removal rate (MRR) and con-
sumed energy level. A strong correlation between cutting 
parameters, such as cutting speed and feed per tooth, and 
AE signal information is also expected.

Furthermore, it has been confirmed that selecting 
appropriate AE signal parameters can significantly ben-
efit the machining process monitoring. Regardless of the 
cutting stage being studied, other vital factors influencing 
AE signals are the interaction effects between cutting tools 
and materials. These effects, represented by DE, and the 
main interactions between cutting speed (EE) and mate-
rials (DD), are also attributed to the impact of coating 
and insert noise radius on generated AE signals. In sum-
mary, it can be concluded that careful consideration of AE 

signal parameters is crucial for successfully monitoring 
the machining process.

This study’s results, particularly as illustrated in Tables 5, 
6, 7, and 8, substantiate the efficacy of the introduced 
method and show a robust correlation between acoustic 
emission signals and machining variables. According to 
the statistical analysis, the AERMS proves to be the most 
sensitive attribute of the AE signal in response to changes 
in the cutting parameters. In materials with low modulus of 
elasticity, such as aluminum alloys, a lower AERMS value 
is to be expected, as the low modulus of elasticity is the 
main cause of vibration in machining processes [14]. This 
vibration has a negative impact on various aspects of the 
process, such as surface quality, formation and size of burrs, 
and overall morphology [34]. It is crucial to have a deep 

Table 5  Summary of sensitivity of each AE feature to cutting param-
eters based on correlation of determination R2

AE features Cutting stages

Entry-stage Cutting stage Exit stage

AEMIN 0.72 0.49 0.652
AEMAX 0.778 0.627 0.724
AEμ 0.142 0.0834 0.151
AERMS 0.894 0.825 0.793
AEVAR 0.724 0.625 0.693
AEσ 0.631 0.435 0.545
AECF 0.327 0.107 0.311
AEFF 0.128 0.407 0.121
AECD 0.191 0.118 0.129
AECA 0.36 0.244 0.233
AESk 0.155 0.308 0.251
AEkur 0.389 0.207 0.305

Table 6  Affecting cutting parameters on AE signal features in the 
entry stage

(*)Indicates non-statically effective factors

AE features Vc fz ap Material Cutting tool

AEMIN 1 2 3 4 5*
AEMAX 1 2 3 4 5*
AEμ 1* 2* 3* 5* 4*
AERMS 1 2 3 4 5*
AESTD 1 2 3 5* 4
AEσ 1 2 4* 5* 3
AECF 3 2 4* 1 5*
AEFF 1* 4* 3* 2* 5*
AECD 1 5* 3* 4* 2*
AECA 2 3* 1 5* 4*
AESk 1 3 2 4* 5*
AEkur 2 1 4* 3 5*

Table 7  Affecting cutting parameters on AE signal features in the 
cutting stage

(*)Indicates non-statically effective factors

AE features Vc fz ap Material Cutting tool

AEMIN 1 2 3 5* 4
AEMAX 1 2 3 4* 5*
AEμ 1* 3* 3* 4* 5*
AERMS 1 2 3 5* 4*
AESTD 1 2 3* 5* 4*
AEσ 1 2 3 5* 4
AECF 1 2 5 4 3
AEFF 3 4 1 2 5
AECD 1* 5* 4* 4* 2*
AECA 1* 2* 3* 4* 5*
AESk 1* 3* 2* 5* 4*
AEkur 4 1 3 5 2



273The International Journal of Advanced Manufacturing Technology (2024) 132:265–275 

understanding of the material properties, including ductil-
ity, to make well-informed decisions when selecting cutting 
parameters and improving the machining process. It is worth 
noting that signals obtained from machining centers, such 
as CNC machines, are prone to various levels of mechani-
cal, electrical, and acoustic noises, which can greatly affect 
the accuracy of the signals. Milling, in particular, presents 
more complex signals compared to other non-traditional 
machining operations. As previously noted [8, 9, 30, 31], 
milling operations frequently encounter phenomena such as 
burr formation, built-up edge (BUE), and the adherence of 
workpiece material to the cutting implementation. Initial tri-
als assessed and regulated system stability and background 
noise to address these difficulties, while fresh inserts were 
employed for every cutting examination. Notwithstanding 
these constraints, the empirical data from this research dispel 
skepticism concerning the sufficiency of AE signal data in 
milling operations.

The burgeoning field of manufacturing has witnessed 
significant advancements in monitoring machining opera-
tions, notably through the use of AE signals. A recent study 
rigorously substantiates the precision and efficacy of AE 
signals acquired during milling processes. Findings from 
extensive studies elucidate that variants in the AE signals 
predominantly correlate with the cutting parameters, such as 
cutting speed and feed per tooth. These factors induce more 
pronounced AE signal changes than variations from different 
coating and tested materials. Through meticulous analysis, 
the responsiveness of AE signal parameters to machining 
intricacies becomes more discernible. This investigative 
approach unveils a greater understanding of AE signals’ 
pivotal role in monitoring and controlling milling. The con-
duit for future studies is observable in contemplating diverse 
models that could enrich the statistical analysis of machining 

data. Subsequent inquiries may delve deeper into the realm 
of sophisticated mathematical models and interpretative 
methodologies.

In an innovative stride, applying AI-based techniques, 
most notably Neural/Deep Networks, offers a formidable 
avenue for redefining process monitoring. Implementing 
these advanced tactics could enable the construction of 
robust classification and predictive models, significantly 
enhancing the capacity to monitor and optimize machin-
ing operations. It is advocated that further investigations 
embrace higher frequency ranges in conjunction with state-
of-the-art filtering and anti-aliasing algorithms. This will 
refine the process, enabling the isolation of non-deflecting, 
pure AE signals. Steadily, the approach of forecasting AE 
signal parameters through theoretical modeling is gaining 
traction as a feasible method to obviate the necessity for 
repetitive empirical testing. It holds promise for developing 
a systematic predictive maintenance framework in the manu-
facturing milieu. The validation of AE signal information 
thus is a compelling testament to the technological evolution 
in precision machining.

6  Conclusion

By performing milling cutting experiments on an aluminum 
alloy workpiece and applying a suggested approach for seg-
menting and analyzing AE signals, the sensitivity of time-
domain parameters of measured AE signals to variations 
in cutting conditions was investigated. This would address 
the gaps often seen in the literature regarding the influence 
of cutting conditions on AE signal behavior for real-time 
monitoring purposes.

• AERMS, AE  AEMAX, and  AEMIN are the most sensitive 
time series AE parameters to changes in cutting param-
eters, including cutting speed, feed per tooth, and depth 
of cut, respectively, regardless of the cutting stage being 
studied.

• These cutting parameters directly and significantly 
impact AE power and material removal rate (MRR).

• The outcomes of this work suggest that cutting factors 
have a stronger influence on AE signals than material 
properties.

• This study has shown that Acoustic Emission (AE) sig-
nals are reliable measures for tracking the performance 
of milling operations over time, despite previous doubts 
about their effectiveness due to noise, friction, or chip 
pileup. By using wavelet analysis, AE signals have 
proven useful for monitoring milling activity.

• Therefore, AE signals can now be applied in scenarios 
where they were once considered unsuitable due to 

Table 8  Affecting cutting parameters on AE signal features in the exit 
stage

(*) Indicates non-statically effective factors

AE features Vc fz ap Material Cutting tool

AEMIN 1 2 3 4 5*
AEMAX 1 2 3 5* 4
AEμ 1* 2* 5* 4* 3*
AERMS 1 2 3 5* 4
AESTD 1 2 3 5* 4
AEσ 1 2 4* 5* 3
AECF 1 2 4* 3 5*
AEFF 1* 2* 5* 4 3
AECD 1 5* 2* 4* 3*
AECA 2 3* 5 1* 4*
AESk 1 3 2 4* 5*
AEkur 1 2 3 5 4
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issues with noise, friction, and the challenge of accu-
rately determining and choosing signal features.

• To enhance the dependability of the proposed algo-
rithm and minimize uncertainties, it is recom-
mended to incorporate the insights gained from this 
study, include higher frequency range data, develop 
advanced filtering, antialiasing, and artificial intelli-
gence algorithms, and utilize additional sensors, such 
as dynamometers.

• The aim of this study is to get a better understanding 
of what affects the sound waves produced during cut-
ting, and to spot the sound wave characteristics that are 
really affected by different cutting settings.

• Other goas of this work was to get better at spotting 
problems in real-time while cutting different materials. 
The precise applications of artificial intelligence, accu-
rate sensors, a wide range of sound wave frequencies, 
and improved filtering techniques are proposed to make 
our detection methods more effective.

• A detailed and clear understanding of key cutting con-
ditions and the way they affect sound wave signals can 
definitely make prediction models for spotting faults 
and real-time monitoring in various cutting tasks 
stronger.

Appendix

Description of AE parameters

Maximum value of the signal, Amplitude:  AEMAX (1)

Minimum value of the signal (Min) :  AEMIN (2)

Average value (mean) : AE
�
=

1

n

∑

x
i

(3)

Root Mean Square  (AERMS):  AERMS is used to quantify the 
energy of signal:

AE
RMS

=

�

1

n

∑

x
i

(4)

Variance  AEVAR:
�
2(VAR) =

1

n

∑
�

x
i
− x

�2

(5)

Standard deviation (σ):
� =

�

1

n

∑
�

x
i
− x

�2

(6)

Crest factor:
C
F
=

X
max

X
rms

(7)

Form factor:
F
F
=

M
1

X
rms

(8)

Coefficient of dispersion:
C
D
=

�

X
rms

(9)

Coefficient of asymmetry:
C
A
=

s
B

(�2)
3

2

(10)

Third-time statistical distribution (Skewness):
S
B
=

1

�3n

∑

X
3

i

(11)

Fourth-time statistical distribution (Kurtosis):
K
B
=

1

�4n

∑

X
4

i

(12)
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