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Abstract
Traditional service combination methods in the cloud manufacturing paradigm mainly focus on economic targets, such as time 
and cost and ignore the matching and collaboration effects between cloud services and manufacturing tasks, resulting in the 
constructed service combination solutions not fully meeting the individual requirements of users. In this paper, the concepts 
of service matching degree and service collaboration degree are proposed, and an evaluation system of cloud manufacturing 
service composition is established to measure the quality of cloud services. Then a double-constraint service composition 
optimization model is designed considering the interests of both manufacturing service requestors and resource providers, 
which is solved by using the improved ant colony algorithm (IACO). Finally, an automobile bumper cloud manufacturing 
case is carried out to demonstrate the feasibility and effectiveness of the proposed method.

Keywords Cloud manufacturing · Cloud service composition · Service matching degree · Service collaboration degree · 
Improved ant colony algorithm

1 Introduction

With the in-depth applications of cloud computing [1], 
Internet of Things [2], artificial intelligence, and other new-
generation information technologies in the manufacturing 
industry, many manufacturing enterprises are undergoing 
significant changes in operating models, manufacturing 
approaches, and service methods. In this context, mass cus-
tomization and networked collaboration-based manufactur-
ing has become a mainstream trend. Cloud manufacturing 

[3], a service-oriented intelligent manufacturing model 
integrating the above technologies, is gaining widespread 
attention from various discrete manufacturing enterprises, 
especially the large number of small and medium-sized 
enterprises. In the cloud model, some businesses can reg-
ister their redundant manufacturing resources and service 
capabilities on the cloud service platform to conveniently 
provide various specialized manufacturing services, such 
as machine tool leasing, networked outsourcing processing, 
and remote equipment maintenance. Other enterprises, that 
lack manufacturing resources and capabilities, can inexpen-
sively subscribe to these manufacturing services through the 
cloud platform to solve production challenges and enhance 
their overall competitiveness [4, 5]. Cloud manufacturing 
model breaks down the distance limitation and information 
gap between manufacturing enterprises, and enables them 
to carry out all kinds of web-based collaboration manufac-
turing services anytime, anywhere, and on-demand, which 
can promote the transformation of traditional manufactur-
ing enterprises from production-oriented manufacturing to 
service-oriented manufacturing, and increase the core value 
of the entire manufacturing industry chain.

In cloud manufacturing environment, personalized manu-
facturing requirements from users or enterprises are often 
characterized by complexity, diversity, and ambiguity, which 
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are often difficult to be met by a single, simple cloud ser-
vice. Therefore, for the complex customized manufacturing 
tasks submitted by service requestors, the cloud platform 
needs to invoke decomposition tools to separate tasks into a 
series of fine-grained sub-tasks according to corresponding 
manufacturing processes, and select optimal cloud manu-
facturing resources and services to execute these sub-tasks 
to meet corresponding manufacturing requirements [6]. As 
one of key enabling technologies to improve the utiliza-
tion and added value of manufacturing resources in cloud, 
manufacturing service combination plays an important role 
in the cloud manufacturing tasks implementation. In recent 
years, much research on manufacturing service combina-
tion methodologies has been carried out by domestic and 
international academics. In terms of the evaluation for the 
manufacturing service portfolio optimization, in addition to 
traditional metrics such as time, cost, and quality [7–10], 
Zhou et al. [11] considered combinability among manu-
facturing services and the reputation of service providers. 
Li and Yang et al. [12, 13] enriched the indicator system 
with delivery time, delay time, and energy consumption of 
manufacturing services from the perspective of sustainable 
manufacturing perspective, making the chosen services 
more relevant to real manufacturing situations. Although 
most of the above findings focus on a multidimensional 
evaluation of the cloud services supported by manufactur-
ing resources, and calculate the overall operational quality 
of each manufacturing service through constructing quanti-
tative mathematical models. However, the matching degree 
between cloud services and manufacturing tasks, as well 
as the collaboration degree among cloud services have not 
been considered, which makes it difficult for the selected 
cloud service combination to complete manufacturing tasks 
efficiently in cloud manufacturing environment. In addition, 
the evaluation models constructed above take into account 
the interests of manufacturing service requestors, but do not 
weigh their interests from the perspective of manufacturing 
resource providers. As a result, the cooperation between the 
supply and demand sides is not sustainable, which restricts 
the effective operation and long-term development of the 
cloud service platform. In light of the aforementioned, a 
matching-collaboration degree-based optimization method 
of cloud manufacturing service composition is proposed to 
address the above issues in this paper, and the main contri-
butions of this paper are as follows:

1. The concepts of service matching degree (Sm) and ser-
vice collaboration degree (CS) are proposed, and an 
evaluation metric system of cloud manufacturing service 
composition, including service time (St), service cost 
(Sc), service reliability (Sr), Sm, and CS, is established.

2. A double-constraint composition optimization model for 
cloud manufacturing services is designed in which the 

interests of both manufacturing service requesters and 
manufacturing resource providers are considered com-
prehensively.

3. An improved ant colony algorithm (IACO) for cloud 
manufacturing service composition is proposed, and an 
application example is given to verify the effectiveness 
of the proposed method.

The remainder of this paper is organized as follows: The 
related work on cloud manufacturing service composition 
is introduced in Section 2. Section 3 presents the evaluation 
metric system of cloud service composition including ser-
vice matching degree and composition synergy degree, and 
a double-constraint composition optimization model is con-
structed. An improved ant colony algorithm is designed in 
Section 4. Section 5 discusses an application case to verify 
the feasibility and effectiveness of the proposed method. The 
conclusion section includes the research summary of this 
paper and future works.

2  Related work

The purpose of service composition optimization is to assess 
the efficiency and quality of collaboration among multiple 
services by constructing a comprehensive evaluation system, 
so as to ensure that manufacturing requirements are fully 
met. In cloud manufacturing, kinds of massive, geographi-
cally dispersed, and heterogeneous manufacturing resources 
and capabilities are registered as web services with different 
quality properties. Therefore, it is challenging to perform 
complex manufacturing tasks in a multi-service collabora-
tive manner, which makes service composition evaluation 
and selection extremely significant and has been extensively 
studied by multinational researchers.

2.1  Cloud service composition

Service composition in cloud manufacturing is an NP-hard 
problem with multiple decision-making objectives, which 
is solved simplistically by using some heuristic algorithms, 
such as genetic algorithm [14–16], artificial bee colony algo-
rithm [17], particle swarm optimization algorithm [18], ant 
colony optimization algorithm [19], and chaos algorithm 
[20]. Many academics have also proposed hybrid algorithms 
to improve the problem solution by exploiting the advantages 
of the abovementioned algorithms. Wang et al. [21] pro-
posed a novel simplex-based bee-colony hybrid algorithm, 
using a simplex method along with a chaotic global opti-
mal guidance strategy, to solve the composition constraint 
model of manufacturing services. To achieve the quality-
aware cloud manufacturing service composition, Jin et al. 
[22] proposed a new hybrid teaching-based optimization 
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method, which combined the advantages of uniform muta-
tion, adaptive flower pollination, and a teaching-based opti-
mization algorithm. Gavvala et al. [23] proposed a whale 
optimization algorithm with eagle strategy (ESWOA) to 
ensure the proper balance among cloud services with dif-
fering quality features in collaborative operations. Zhu et al. 
[24] constructed a multi-batch subtasks parallel composition 
scheme of manufacturing cloud services, and designed an 
improved hybrid differential evolution and teaching-based 
optimization method to enable the combined manufactur-
ing service stable, reliable, and efficient. Bouzary et al. [25] 
proposed a hybrid approach based on a gray wolf optimizer 
and genetic algorithm to select and composite available 
manufacturing resources into an integrated cloud service, 
which could meet individual manufacturing requirements 
from users while keeping up the optimal quality of service.

2.2  Cloud service optimization selection

It has been a considerable challenge to select the optimal com-
bination of services from numerous candidate manufacturing 
services in cloud manufacturing. To address the multi-objec-
tive manufacturing service optimal-selection problem, Tao 
et al. [26] described the correlations among manufacturing 
services, and proposed an approach based on the principles of 
particle swarm optimization (PSO). Yi et al. [8] proposed an 
improved fast non-dominated ranking genetic algorithm with 
an elite strategy, which used the optimal decision method com-
bining hierarchical analysis and entropy value theory to com-
prehensively evaluate all manufacturing service compositions. 
Chattopadhyay et al. [27] studied the multi-constrained QoS-
aware cloud service selection problem, which was addressed 
by the proposed optimal approach based on Pareto front con-
struction. Yin et al. [28] proposed a non-dominated sorting 
genetic algorithm (NSGA) III-based optimization method for 
composition selection of cloud manufacturing services, and 
the conducted experiment showed that NSGA-III achieved the 
optimal solution more efficiently compared to other methods. 
Bi et al. [29] proposed a preference-based NSGA-III method to 
solve the service optimization selection problem in cloud man-
ufacturing. Compared with the traditional preference-based 
multi-objective algorithms, the proposed method directly 
distributed the preference reference points on the NSGA-III 
hyperplane according to the preference weights of QoS prop-
erties provided by users and facilitated the search for optimal 
solutions. In addition, Yuan et al. [10] designed an evaluation 
method based on gray correlation analysis for the optimiza-
tion selection of various manufacturing services. Liang et al. 
[30] proposed a deep reinforcement learning algorithm for the 
cloud service optimization problem, and experimental results 
showed that the presented method outperformed the deep 
reinforcement network and Q-learning algorithm. Liu et al. 
[31] discussed an adaptive service combination optimization 

problem, which was solved by the combined reinforcement 
learning and deep learning approach.

Nevertheless, the above findings pay little attention to the 
matching degree between cloud services and manufacturing 
tasks, as well as the synergy degree among different cloud 
services. Meanwhile, most studies regard only the interests 
of manufacturing service requestors, but neglect the inter-
ests of manufacturing resource providers, which reduces the 
operational effectiveness of cloud services. For this reason, 
this paper establishes a double-constraint composition opti-
mization model that is solved by using the improved ant 
colony algorithm (IACO).

3  Mathematical model of cloud service 
composition

3.1  Problem description

The operation of the submitted complex manufactur-
ing tasks in the cloud platform can be divided into three 
main phases, including manufacturing task fragmentation, 
manufacturing subtask matching, and service composition 
optimization, as shown in Fig. 1. At the manufacturing task 
fragmentation stage, the cloud service platform first ana-
lyzes the manufacturing task T submitted by requesters, 
and based on the manufacturing process knowledge invokes 
task resolution tools to divide the task into manufacturing 
subtasks with process relevance, which can be expressed 
as T = {ST1, ST2,… , STi,… , STN} , where STi represents 
i-th manufacturing subtask. The decomposed subtasks will 
perform matching operations with various cloud services 
published by providers in the manufacturing subtask match-
ing phase. For the manufacturing subtask STi , a set of can-
didate services can be matched in the cloud resource pool, 
denoted as Si = {S1

i
, S2

i
,… , S

j

i
,… , SM

i
} , where Sj

i
 is the j-th 

candidate service for the manufacturing subtask STi and M 
is the number of candidate services for STi . In the service 
composition optimization stage, the most qualified manu-
facturing service Sj

i
 will be selected from each candidate 

service set Si to perform the manufacturing subtask STi 
based on the established evaluation criteria, which consist 
of QoS attributes of each candidate manufacturing service, 
including service time, service cost and service reliability, 
noted as QoS = {q1, q2,… , qr} , where r is the number of 
QoS attributes.

3.2  Evaluation metric system for cloud service 
composition

Traditional composition evaluation methods of cloud man-
ufacturing services only consider factors that describe the 
capability and quality of individual services [32, 33], with 
regard to service time, service cost, reliability of service 
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operation, and so on, without accounting for matching 
degree between cloud services and manufacturing tasks, as 
well as collaboration degree among cloud services. There-
fore, this paper establishes a novel cloud service composi-
tion evaluation system, which is described as follows:

3.2.1  Service time

In cloud manufacturing, the execution of manufacturing 
tasks involves the delivery and processing of workpieces. 
Thereby, service time represents the total time required 
for the best candidate services which takes the least time 
to complete the manufacturing subtasks, including service 
execution time and logistics time. The service time (St) is 
expressed by the formula (1).

where xij indicates the candidate service CSj
i
 from the can-

didate service set Si , mt
(
xij
)
 is the execution time of the 

j-th candidate service for manufacturing subtask STi , and 
lt
(
x(i−1)j, xij

)
 means the transport time of workpieces being 

machined between x(i−1)j and xij.

3.2.2  Service cost

Service cost is defined as the sum of the minimum manufac-
turing and logistics costs required to satisfy manufacturing 

(1)St =

N∑
i=1

min
[
mt

(
xij
)
+ lt

(
x(i−1)j, xij

)]

subtasks for the best manufacturing service selected from 
the candidate set, which is calculated by the formula (2).

where mc
(
xij
)
 denotes the manufacturing cost of the ser-

vice xij to complete the subtask STi , and lc
(
x(i−1)j, xij

)
 notes 

the material delivery cost between the subtask x(i−1)j and xij 
when the j-th candidate service is selected.

3.2.3  Service reliability

Service reliability (Sr) means the ability of all best candidate 
manufacturing services to correctly complete manufacturing 
task T under specific constraints, which can be obtained by 
the cloud platform based on historical operation records of 
the selected services and is expressed as the formula (3).

where r(xij) is the reliability of the candidate manufacturing 
service xij to accomplish the subtask STi.

3.2.4  Service matching degree

Service matching is a measurement of the quality level of 
the results produced by candidate services carrying out the 
assigned manufacturing subtasks in cloud manufacturing, 

(2)Sc =

N∑
i=1

min
[
mc

(
xij
)
+ lc

(
x(i−1)j, xij

)]

(3)Sr =

N∏
i=1

max r(xij)

Fig. 1  Cloud service composi-
tion optimization scheme
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which is related to service activity, service history, and ser-
vice delivery rate. Service activity refers to the number of 
times that manufacturing services are selected to satisfy the 
requirements of manufacturing subtasks over a period. There 
is a positive correlation between service activity and service 
matching degree, the higher the activity level, the better the 
execution ability of the services, and the higher the match-
ing degree between the services and the subtasks. For the 
i-th subtask, the activity of its j-th candidate service ( Saij ) 
is expressed as the formula (4).

where o
(
xij
)
 represents times the service xij has been 

invoked, and O(x) denotes the total number of times all ser-
vices have been invoked in the same period.

Service history means the track record of the selected 
service in performing various manufacturing tasks, includ-
ing service experience, knowledge, and service evaluation 
from users. Therefore, service history ( Shij ) is calculated by 
the formula (5).

where Toij is the effective uptime percentage of the service 
xij in cloud, Kij refers to the proportion of process knowledge 
held by the service xij to the knowledge of similar services in 
the whole platform, Eij is a triangular fuzzy number, which 
denotes the service satisfaction rating graded by users, �1 , 
�2 , and �3 are their weights, and �1 + w2 + w3 = 1 . Obvi-
ously, the richer the experience and knowledge of the 
selected service and the higher the service evaluation, the 
higher the matching degree of the service.

Service delivery ( Sdij ) is the ratio of the number of manu-
facturing tasks successfully performed by the service to the 

(4)Saij = o
(
xij
)
∕O(x)

(5)Shij = �1Toij + w2Kij + w3Eij

times the service was invoked, which is expressed by the 
formula (6).

Therefore, the matching degree of j-th candidate service 
( Smij ) can be represented as the formula (7). Here �1 , �2 , and 
�3 are weights, and �1 + �2 + �3 = 1.

3.2.5  Service collaboration degree

 Collaboration among services is also a key factor that affects 
the service quality in the cloud, which represents the ability 
of multiple cloud manufacturing services to work together to 
efficiently accomplish a complex manufacturing task. Conse-
quently, Service collaboration is mainly characterized by met-
rics such as service process execution time and the efficiency 
of information interaction among services. The faster informa-
tion interaction and execution among services, the higher the 
inter-service collaboration level[42]. And then, service collab-
oration degree can be calculated by the following formula (8).

where CSi(i+1) is the collaboration degree of best candidate 
service xij and x(i+1)j for subtask STi and STi+1 , respectively, Tij 
(or T(i+1)j ) denotes the time taken by service xij (or x(i+1)j ) to 
complete subtask STi (or STi+1 ) independently, and Ti(i+1)j is the 
total time spent by two cloud manufacturing services xij , x(i+1)j 
cooperating to complete two manufacturing tasks. The calcu-
lation of Ti(i+1)j is closely related to the interaction between 
services, which is calculated using the following formula.

(6)Sdij = od
(
xij
)
∕o

(
xij
)

(7)Smij = �1Saij + �2Shij + �3Sdij

(8)CSi(i+1) =
Tij + T(i+1)j

Ti(i+1)j

(9)
Ti(i+1)j =

⎧
⎪⎨⎪⎩

Tij + T(i+1)j, Subtasks STi and STi+1 are executed serially

max[Tij, T(i+1)j], Subtasks STi and STi+1 are executed parallelly

Tij + T(i+1)j + 2�i(i+1)
√
Tij ⋅ T(i+1)j, Subtasks STi and STi+1 are executed in close coupling

where �ij is the coupling coefficient between manufacturing 
services xij and x(i+1)j ; its value mainly depends on informa-
tion interaction efficiency among services. The more fre-
quent the information interaction between two services, the 
smaller the value of �ij ( 0 < 𝜉ij < 1 ). For example, when two 
manufacturing services collaborate frequently and informa-
tion interaction with each other is smooth, the value �ij can 
be 0.1; conversely, when the two services have no interac-
tion, �ij is 0.9.

3.3  Double‑constrained multi‑objective 
optimization model

The goal of cloud manufacturing service composition is to 
select a service collaboration program with the best overall 
QoS among many composition solutions to complete com-
plex manufacturing tasks submitted by users under various 
QoS constraint objectives. Therefore the constructed multi-
objective optimization model for a cloud manufacturing ser-
vice composition problem is as follows.
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where Tmax , Cmax , and Rmin are constraints given by the 
requirement users from the cloud platform in terms of ser-
vice time, cost, and reliability, �1 , �2 , �3 , �4 , and �5  are the 

weights of individual metrics, and 
5∑
i=1

�n = 1.

However, service time and cost are negative indicators that 
users expect to be as low as possible, service reliability, ser-
vice matching degree, and service collaboration degree are 
beneficial metrics for which users expect higher values. More-
over, these five indicators have different scales. Therefore, the 
above indicators need to be normalized by the formula (15). 
Formula (15a) is used to calculate the positive indicators, and 
other cost-based indicators are standardized by formula (15b).

(10)f (T) = �1Sm + �2CS + �3Sr + �4St + �5Sc

(11)Sm =

N∑
i=1

max
(
Smij ⋅ xij

)

(12)CS =

N−1∑
i=1

CSi(i+1)

(13)
s.t. St ≤ Tmax

Sc ≤ Cmax

Sr ≥ Rmin

(14)
xij =

{
1, The i − th manufacturing subtask is assigned to the j − th cloud service

0, others

(15)q =

⎧
⎪⎨⎪⎩

1 qmax − qmin = 0

(q − qmin)∕(qmax − qmin) qmax − qmin ≠ 0(a)

(qmax − q)∕(qmax − qmin) qmax − qmin ≠ 0(b)

2. m stands for the number of ants.
3. �lk(t) means the residual pheromone on the path from 

node l to node k at the time t. The initial time is set to 
�lk(0) = C and C is the initial pheromone concentration, 
usually a small constant.

4. �lk(t) represents heuristic information, and �lk(t) = 1∕dlk . 
dlk indicates the distance between node l to node k.

Thus, the probability that at moment t ant u chooses to 
move from node l to node k can then be calculated by the 
following Eq. (16).

where � and � denote the relative importance parameters 
of pheromone � and heuristic information � , respectively. 
allowedNs(l) records the set of all nodes allowed to be 
selected starting from node l, which is also the set of the 
next optional cloud manufacturing services. When all ants 
reach the end node, the number of iterations is increased 
by 1(t ← t + 1 ), and the pheromone is updated as shown in 
Eq. (17).

where � is the pheromone volatilization coefficient, 
Δ�lk(t, t + 1) represents the pheromone concentration incre-
ment generated by the ant from node l to node k, calculated 
by the formula (18).

where Δ�u
lk
(t, t + 1) denotes the pheromone concentration 

produced by ant u from node l to node k, which is calculated 
by the Eq. (19).

where Q is a constant, Lu is the total distance traveled by ant 
u after traversing all nodes in the current time cycle.

(16)pu
lk
(t) =

⎧
⎪⎨⎪⎩

[�lk(t)]
��
�ij(t)

��
∑

k∈allowedNs(l)
[�lk(t)]

�
[�lk(t)]

� , k ∈ allowedNs(l)

0 , otherwise

(17)�lk(t + 1) = (1 − �) ⋅ �lk(t) + Δ�lk(t, t + 1)

(18)Δ�lk(t, t + 1) =

m∑
u=1

Δ�u
lk
(t, t + 1)

(19)

Δ�u
lk
(t, t + 1) =

{
Q∕Lu, ant u is transferred from node l to node k

0, otherwise

4  An improved ant colony optimization 
algorithm

4.1  ACO algorithm

The ant colony optimization algorithm(ACO) is a new 
metaheuristic calculation method inspired by the foraging 
behavior of ant colonies in nature, which has been success-
fully applied to many fields [34]. Corresponding to the ACO 
algorithm, some parameters in this paper are as follows:

1. Mi denotes the number of candidate services for the i-th 
manufacturing subtask.
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4.2  Improvement strategies

The traditional ACO algorithm described above has been 
successful in solving the traveling salesman problem (TSP). 
However, the algorithm has the disadvantages of slow con-
vergence and vulnerability to fall into local optimization, 
which makes it unsuitable for solving the service composi-
tion problem. Therefore, this paper proposes corresponding 
improvement strategies.

Firstly, the path chosen by the ant after each traversal is divided 
into N steps, namely ⟨LS → S1⟩, ⟨S1 → S2⟩,… , ⟨SN−1 → SN⟩ , 
whereby the traversed nodes can be represented as follows.

Then, cloud manufacturing service composition is a 
multi-objective optimization problem, which is subject to 
dual constraints from service requestors and resource pro-
viders in the cloud platform. Therefore, it is necessary to 
eliminate invalid paths that do not satisfy these constraints. 
Specifically, only ants taking valid paths are selected to 
update the pheromone concentration, and only optimal 
paths can trigger pheromone updating. As a result, there-
fore, both the objective function and the above formula 
(19) need to be converted into the following equations.

Although the above improvement strategies enhance the 
convergence speed of the algorithm, which may make it 
fall into the local optimum. For this reason, the roulette 
mechanism is adopted, so that the algorithm can go to 
the next candidate services with a smaller probability, and 
traverse the new path to solve the local optimum prob-
lem. The flow of the proposed improved ACO algorithm is 
shown in Fig. 2. The specific solution steps are described 
below:

Step 1: The set of paths that ants are allowed to visit is 
set. The number of ants m and the pheromone concen-
tration C is initialized.
Step 2: All indicators are normalized according to 
Eq. (15), which is used to build the objective function 
(21).
Step 3: Randomly place m ants on each of the allowed 
path set nodes.
Step 4: Search all the paths connected to this ant node 
and calculate the state transition probability that the ant 
can visit the next node using the formula (16).

(20)allowedNs(Si) = S
j

i
(S

j

i
∈ Si, j = 1, 2, 3,⋯ ,M)

(21)f �(T) = 1∕�1Sm + �2CS + �3Sr + �4St + �5Sc

(22)Δ𝜏best
lk

(t, t + 1) =

{
Q∕Lbest, the best ant u travel < l → k >

0, otherwise

Step 5: A roulette mechanism is used to select the next 
node where the ant will visit based on the probability 
calculated in Step 4.
Step 6: Determine whether it is the optimal ant and 
whether the path is valid. If the answer is true, the 
access path pheromone is updated; otherwise, the pher-
omone increment on the invalid path is set to 0.
Step 7: Pheromones are updated and the contraindica-
tion table is cleared based on Eqs. (17)–(19).
Step 8: Repeat Steps 3 to 7 until the maximum number 
of iterations, and then the optimal solution is outputted.

5  Application case

5.1  Case description

To verify the feasibility and effectiveness of the proposed 
method in solving the cloud manufacturing service compo-
sition optimization problem, this paper applies the method 
to a cloud service application case of automotive compo-
nent manufacturing. In this case, there are 100 car bumper 

Start

Initialization

Heuristic information calculation

Place the ants at the initial node

Transition probabilities calculation

Use roulette to select the next node to visit

Whether it is the optimal 

ant and a valid path

Incremental pheromone 

is zero

No

Pheromone updating

Yes

Reset contraindication table

Whether the maximum 

number of iterations is 

reached

No

The optimal solution

Yes

Fig. 2  Flow of IACO algorithm
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manufacturing tasks are submitted by the service requestor to 
the cloud platform that has been developed and commercially 
operated by the Chongqing University intelligent manufactur-
ing team for more than 10 years. The requestor specified the 
execution constraints for these manufacturing tasks, including 
execution time Tmax of no more than 30 days, total cost Cmax 
of no more than RMB 80,000, and service reliability Rmin of 
no less than 0.93. Based on the manufacturing process, this 
complex manufacturing task is divided into five sub-tasks by 
invoking the task decomposition tool in the platform, including 
mold design and forging subtask ST1 , part processing subtask 
ST2 , assembly subtask ST3 , performance testing subtask ST4 , 
painting and packaging subtask ST5 . Each subtask has been 
matched with a corresponding set of manufacturing cloud ser-
vices using an intelligent search engine in the cloud platform, 
namely S =

(
S1, S2, S3, S4, S5

)
 , and QoS attribute values for 

each candidate service are shown in Table 1, which are dynam-
ically updated in the cloud platform according to the service 
market. Logistics time and cost between candidate services 
are shown in Table 2.

Combining with the service history records shown in the 
cloud platform, the values of �1 , �2 , and �3 are set to 0.4, 0.3, 
and 0.3, respectively, so the matrix of service matching degree 
Sm can be obtained by using the Eq. (7).

According to the above definition of service collaboration 
degree and its formulae (8) and (9), the service collaboration 
degree CS can be calculated as follows:

Sm =

⎡
⎢⎢⎢⎢⎢⎣

0.72 0.29 0.43 0.53 0.49

0.77 0.37 0.44 0.53 0.54

0.62 0.48 0.53 0.47 0.67

0.31 0.65 0.69 0.44 0.64

0.89 0.61 0.72 0.65 0.74

⎤⎥⎥⎥⎥⎥⎦

Table 1  QoS attribute of candidate services

Candidate services Service time (St/
day)

Service costs 
(Sc/¥)

Service 
reliability 
(Sr)

S1 S1
1

2 246 0.96
S2
1

2 229 0.92
S3
1

3 195 0.98
S4
1

4 183 0.91

S5
1

3 157 0.98
S2 S1

2
4 112 0.92

S2
2

5 100 0.99
S3
2

6 85 0.96
S4
2

3 95 0.93

S5
2

3 86 0.97
S3 S1

3
3 60 0.98

S2
3

5 45 0.96
S3
3

5 68 0.97
S4
3

5 31 0.95

S5
3

3 63 0.93
S4 S1

4
2 55 0.99

S2
4

5 52 0.95
S3
4

4 56 0.92
S4
4

4 59 0.91

S5
4

3 34 0.95
S5 S1

5
6 238 0.98

S2
5

4 151 0.92
S3
5

3 179 0.95
S4
5

6 168 0.97

S5
5

4 243 0.96

Table 2  Logistics time and cost between candidate services

Logistics  
connection

Logistics time (day)/Logistics costs(¥)

1 2 3 4 5

S1
1
-Sj

2
5/45 4/46 3/26 2/18 2/25

S2
1
-Sj

2
3/25 6/65 4/40 4/36 2/20

S3
1
-Sj

2
3/25 2/30 5/34 5/46 4/50

S4
1
-Sj

2
4/35 6/60 4/50 5/55 3/36

S5
1
-Sj

2
2/25 4/36 1/12 2/27 4/34

S1
2
-Sj

3
1/17 1/18 4/32 2/23 5/42

S2
2
-Sj

3
4/41 1/16 5/44 2/25 3/32

S3
2
-Sj

3
4/43 5/58 1/18 1/20 2/28

S4
2
-Sj

3
3/31 2/21 4/35 2/24 3/26

S5
2
-Sj

3
3/21 4/36 2/16 3/18 4/32

S1
3
-Sj

4
1/8 2/22 1/9 2/15 2/13

S2
3
-Sj

4
3/15 4/38 3/26 2/14 2/10

S3
3
-Sj

4
4/46 3/35 5/65 4/50 6/68

S4
3
-Sj

4
3/30 2/25 3/25 4/42 4/45

S5
3
-Sj

4
5/66 4/45 2/20 2/36 3/28

S1
4
-Sj

5
5/48 4/42 5/55 3/32 4/42

S2
4
-Sj

5
5/48 6/72 3/35 5/60 4/45

S3
4
-Sj

5
6/60 5/55 2/25 1/12 2/18

S4
4
-Sj

5
1/15 2/27 3/38 3/32 4/45

S5
4
-Sj

5
1/16 3/38 2/24 3/32 5/48
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CS12 =

⎡
⎢⎢⎢⎢⎢⎣

0.736 0.684 0.546 0.632 0.667

0.588 0.784 0.625 0.772 0.736

0.909 1.000 0.589 0.770 0.770

0.625 0.835 0.567 0.760 0.624

0.523 0.836 0.628 0.668 0.914

⎤
⎥⎥⎥⎥⎥⎦

, CS13 =

⎡
⎢⎢⎢⎢⎢⎣

1.000 0.579 0.668 0.775 0.652

0.559 0.909 0.715 0.628 0.715

0.652 0.553 0.855 0.756 0.954

0.834 0.910 0.669 0.770 0.717

0.910 0.810 0.773 0.825 0.866

⎤
⎥⎥⎥⎥⎥⎦

CS14 =

⎡
⎢⎢⎢⎢⎢⎣

0.834 0.628 0.566 0.755 0.850

0.866 0.910 0.909 0.563 0.772

1.000 0.910 0.905 0.788 0.699

0.556 0.770 0.642 0.885 0.916

1.000 0.766 0.769 0.854 0.559

⎤
⎥⎥⎥⎥⎥⎦

, CS15 =

⎡
⎢⎢⎢⎢⎢⎣

0.595 0.668 0.866 0.705 0.910

0.899 0.866 0.909 1.000 0.699

0.755 0.769 0.599 0.527 0.625

0.771 0.671 0.593 0.925 0.936

1.000 0.855 0.647 0.980 0.735

⎤
⎥⎥⎥⎥⎥⎦

CS23 =

⎡⎢⎢⎢⎢⎢⎣

0.835 0.863 0.985 0.772 0.593

0.542 0.754 0.910 0.855 0.776

0.669 0.996 1.000 0.885 0.668

0.886 0.735 0.863 0.566 0.775

0.566 0.897 0.910 0.915 0.866

⎤⎥⎥⎥⎥⎥⎦

, CS24 =

⎡⎢⎢⎢⎢⎢⎣

0.860 0.960 0.875 0.834 0.836

0.755 0.760 0.541 0.536 0.952

0.845 0.865 0.596 0.945 0.987

0.696 0.910 0.955 0.996 0.771

0.962 0.625 0.788 0.667 0.911

⎤⎥⎥⎥⎥⎥⎦

CS25 =

⎡⎢⎢⎢⎢⎢⎣

0.569 0.910 0.854 0.770 0.996

0.820 0.520 0.778 0.652 0.837

0.885 0.746 0.910 0.996 0.945

0.536 0.642 0.668 0.886 0.955

0.996 0.756 0.734 0.634 0.566

⎤⎥⎥⎥⎥⎥⎦

, CS34 =

⎡⎢⎢⎢⎢⎢⎣

0.778 0.623 0.668 0.996 0.886

0.714 0.557 0.770 0.996 0.995

0.910 0.565 0.835 0.832 0.885

0.945 0.856 0.775 0.536 0.533

0.966 0.910 0.752 0.760 0.886

⎤⎥⎥⎥⎥⎥⎦

CS35 =

⎡⎢⎢⎢⎢⎢⎣

0.863 0.775 0.966 0.775 0.911

0.927 0.863 0.523 0.715 0.775

0.759 0.912 0.690 0.910 0.836

0.886 0.662 0.556 0.678 0.833

0.889 0.799 0.835 0.978 0.955

⎤⎥⎥⎥⎥⎥⎦

, CS45 =

⎡⎢⎢⎢⎢⎢⎣

0.887 0.775 0.663 0.995 0.669

0.863 0.669 0.559 0.667 0.775

0.998 0.687 0.597 0.710 0.812

0.915 0.966 0.956 0.855 0.872

0.823 0.833 0.956 0.996 0.886

⎤⎥⎥⎥⎥⎥⎦

Fig. 3  Experimental result

5.2  Experimental analysis

The experiment is carried out using MATLAB R2018a, 
and the IACO algorithm parameters are set as follows: the 
number of ants m = 10 , the initial pheromone concentra-
tion C = 1 , the pheromone increment coefficient Q = 1 , 

the pheromone factor � = 1 , the heuristic factor � = 5 , the 
pheromone volatilization coefficient � = 0.25 , the weights of 
five metrics �1 = �2 = �3 = �4 = �5 = 0.2 , and the maximum 
number of iterations is set to 100. The experimental result 
is shown in Fig. 3.
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As illustrated in Fig. 3, the experimental result is con-
vergent after 11 iterations of the algorithm, and the opti-
mal fitness value obtained is 2.3889. Correspondingly, the 
values of five objective QoSs are St = 28 , total Sc = 79100 , 
Sr = 0.968 , Sm = 3.41 , and CS = 8.157 , and the optimal 
service composition solution is 

(
S1
1
, S5

2
, S1

3
, S5

4
, S1

5

)
.

In order to validate the performance of the IACO algo-
rithm, it was compared with the Particle Swarm Algorithm 
(PSO), Genetic Algorithm (GA), and the original Ant 
Colony Optimisation Algorithm (ACO) to solve the above 
service composition optimization problem via MATLAB 
R2018a. As shown in Fig. 4, it can be found that the pro-
posed algorithm in this paper has a faster convergence 
rate and outperforms the other three algorithms in terms 
of accuracy and optimization effectiveness. Therefore, the 
proposed method in this paper has better performance in 
solving cloud service composition optimization problems.

6  Conclusions

In order to realize more efficient and accurate matching and 
execution of various personalized manufacturing require-
ments and cloud services on the manufacturing service 
platform, the concepts of service matching degree between 
cloud services and manufacturing tasks, as well as the col-
laboration degree among cloud services were proposed in 
this paper. A novel evaluation system of cloud manufac-
turing service composition, including service time, service 
cost, service reliability, service matching degree, and ser-
vice collaboration degree, was constructed. Then, taking 
into account the interests of both the service supplier and 
requestors in the platform, a two-constraint service compo-
sition optimization model was constructed, and solved by 
using the IACO algorithm. Finally, through a car bumper 

cloud manufacturing case from the cloud platform that has 
been developed and commercially operated by the Chong-
qing University intelligent manufacturing team, the feasibil-
ity and effectiveness of the proposed method were verified.

In future research, with the penetrating application of 
the new generation artificial intelligence technologies in 
the industrial field, we will devote ourselves to studying the 
application of advanced algorithms, such as deep learning 
and reinforcement learning, to support the efficient operation 
of cloud manufacturing services.
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