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Abstract
The application of the Factor of Intensity of Constraint (FIC) criteria becomes instrumental in quantifying effectiveness by 
measuring the reduction in mechanical energy at the fracture tip, thereby extending the structural life. The robust mechani-
cal properties offered by bonded composite patch repair technology, including enhanced fatigue resistance, mass gain, 
adaptability to complex sections, and corrosion resistance, play a pivotal role in fortifying damaged structures. Our findings 
highlight the interdependence of geometric and mechanical properties among the composite patch, adhesive, and damaged 
structure. Our investigation centers on M(T) aluminum alloy 6061 T6 centrally fissured samples from the 6000 series. We 
present a comprehensive examination of the effect of composite patch repairs on fatigue deterioration in aeronautical struc-
tures. Significantly, our study introduces novel insights by examining the effects of both constant and varying amplitude 
loads, emphasizing the contribution to comprehensive exploration that highlights the practical implications and benefits of 
composite patch repairs in enhancing fatigue resistance and longevity in aeronautical structures. Additionally, a detailed 
exploration is conducted to understand the effects of various parameter settings and service terms. This study contributes 
significant insights into the field, shedding light on the practical implications of composite patch repairs in enhancing the 
fatigue resistance and longevity of aeronautical structures.
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1  Introduction

Aeronautical structures made of aluminum alloy are 
subjected to fluctuating stresses while in service, such 
as pressurizations, pilot maneuvers, and atmospheric 
turbulence, which over time generates the phenomenon of 
fatigue [1–4], which modifies the properties localization of 
material and leads to the formation of cracks that propagate 
and lead to rupture, with fatigue accounting for 90% of 
structural failure [5–8].

For astronautical constructions, internal cracks can be 
particularly dangerous since they can suddenly break cata-
strophically [9–11].

Internal cracks are those that are below the surface of the 
material or inside the structure, making them invisible to 
the unaided eye. They can develop for a number of reasons, 
including vibrations, fatigue loads, temperature variations, 
thermal cycles, debris hits, and manufacturing mistakes [9, 
10, 12] (Fig. 1).
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These fractures can widen and lead to structural failure 
if they are not found and fixed in a timely way. As internal 
cracks are not visible to the unaided eye, they might be chal-
lenging to find. Internal fractures in astronautical structures 
can be found using non-destructive examination methods 
such as radiography, X-ray tomography, thermography, and 
ultrasound [13].

Depending on their size [14–16], location, and effect on 
the structure, internal fractures can be repaired with using 
different techniques including patch repair [17, 18] or fric-
tion stir welding [19].

Patch repair application in industry and aircraft airplane is 
used to repair localized damage or defects in structures such 
as composite materials [20, 21], metals, and alloys [22, 23]. 
In industry [24, 25], patch repair is used in various applica-
tions such as repairing pipelines, tanks, and pressure vessels 
[26, 27]. For example, if a pipeline has a localized defect, 
a patch can be applied over the damaged area to restore its 
strength and prevent leakage. Similarly, in tanks or pressure 
vessels, a patch can be applied to repair any cracks or dam-
age [26, 27].

In aircraft airplane, patch repair is used to repair damage 
to the aircraft’s structure, including the wings, fuselage, and 

tail [28–30]. Patch repair can be used for both minor and 
major damage, depending on the severity of the damage [28, 
29]. The patches used in these repairs are typically made 
from the same or similar materials as the original structure, 
such as composite materials or aluminum alloys [31].

Fazaz et al. studied the effect of plasticity on fatigue 
fracture formation in aluminum plates fixed with composite 
patches under single loading. The results showed a consider-
able increase in fatigue life, which was attributed to overload 
rather than the composite patch [32].

Yubo et al. investigated the reliability of unidirectional 
static load composite laminate patch repaired structures 
by developing a proxy model for maximum load capacity, 
taking into account repair material properties and design 
[33–35], incorporating probability distributions for random 
parameters, and conducting reliability and sensitivity anal-
yses emphasizing the model’s significance for subsequent 
design and evaluation of composite repaired structures [36].

Monika et al. developed a three-dimensional energy-
based progressive degradation model for patch-repaired 
laminates that include shear non-linearity under tensile pres-
sure. They analyzed the failure strengths of various pristine, 
drilled, and double-sided patch-repaired specimens [37].

Fig. 1   Possible interior crack caused by aircraft stress
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The primary goal of this research is to investigate the 
influence of crack propagation on 6061T6 aluminum alloy 
plates repaired using composite patch under various cyclic 
loading conditions (constant and varied amplitude). We car-
ried out a rigorous investigation on the case of an internal 
crack to understand the consequences of various parameter 
settings and service terms with solicitation conditions that 
are close to reality [38].

2 � Material mechanical characteristics 
and geometric model

The patch-repaired aluminum alloy cracked specimen’s 
shape and measurements are depicted in Fig. 2. The plate 
has a nominal thickness of 3 mm, a length of 320 mm, and a 
width of 160 mm. At the margin of each specimen, there is 
an initial interior crack that is 2a = 6 mm long. A compos-
ite patch with the following measurements is bonded to the 
damaged area of the plate: 80 mm in length, 80 mm in width, 
and 2 mm in thickness make up this structure.

Aluminum alloy 6061-T6 was the material employed in 
this investigation. In Table 1, the alloy’s mechanical char-
acteristics are listed.

Boron/epoxy, graphite/epoxy, and glare are used for patch 
healing (Table 2).

The bonding adhesives used are MB1113, FM-73, and 
3MAF163-2K (Table 3).

Figure 3 displays the dimensions and mechanical charac-
teristics of the FM adhesive-73.

In symmetry, there are six plaices (Fig. 4). The plate 
under consideration is stretched in tension in the direction 
of opening mode (Mode I) at a maximum stress of 100 MPa.

Table 4 shows the characteristics of the fatigue propaga-
tion model for the aluminum alloy 6061 T6.

3 � Results and analysis

3.1 � Loading with a constant amplitude

3.1.1 � Effect of ratio load

The impact of the load ratio on the cracking length m as 
a function of the number of cycles N is depicted in Fig. 5. 
Three load ratios are used in this work: R = 0.1, 0.2, and 
0.3. It is evident that lengthening the fatigue life improved 
the load ratio. As a result of this rise, the load amplitude, 
a = (max–min), decreases. These loads have corresponding 
amplitudes of 90, 80, and 70 MPa. The life to failure rose 

Fig. 2   Geometric model

Table 1   Mechanical properties of 6061 T61

бe (MPa) E (GPa) KC (MPa√m) KIc (MPa√m)

282.685 68,947.6 39.558 28.57

Table 2   Mechanical properties of patch

Boron/epoxy Graphite/epoxy Glare

E11 208 134 71
E22 25.4 10.3 71
E33 25.4 10.3 -
G12 7.2 5.5 344
G13 7.2 5.5 -
G23 4.9 3.2 -
ν 12 0.1677 0.33 0.3
ν 13 0.1677 0.33 0.3
ν 23 0.035 0.33 -

Table 3   Mechanical properties 
of adhesives

Adhesive Ga (MPa)

FM-73 0.413
MB1113 0.848
3MAF163-2K 1.100
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Fig. 3   Patch dimensions and 
adhesive properties

Fig. 4   Ply orientations and 
designed patch properties
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from 124,600 cycles to 168,600 cycles when the load was 
decreased from 90 to 70 MPa, which is equivalent to an 
increase rate of 1.35 times. Furthermore, when compared to 
the unrepaired specimen, the presence of the repaired patch 
extended the specimen’s life.

On the evolution of the cracking rate (propagation), the 
effect of the load ratio on fatigue cracking is clearly visible. 
The evolution of the cracking rate da/dN as a function of 
the amplitude of the stress intensity factor K is depicted 
in Fig. 6. The acquired result confirms the trend of the 
experimental data from the literature [39]. The cracking rate 
increases as the load ratio increases. The influence of the 
load ratio is more pronounced at the non-cracking threshold 
and/or at the beginning crack level.

The first stress intensity factor is decreased for the 
same initial fracture when the load ratio is increased. For 
a load ratio of R = 0.1, K = 7.36 MPa/m, while for R = 0.3, 
K = 5.91 MPa/m. For R = 0.1 to R = 0.3, K decreases from 
30.8 m to 23.5 MPa m at high stress intensity values and 
the same cracking rate, respectively. There is an increase 
in the cracking rate for a given stress intensity component. 
In the case of k = 20.4 MPa, for instance, the cracking rate 
for R = 0.1 is 1.13 × 10 − 6 m/cycle and for R = 0.3, it is 
1.77 × 10 − 6, which corresponds to an increase rate of 
36.15%.

3.1.2 � Effect of patch thickness

The thickness of the patch represents an important param-
eter when repairing cracks and improving the stiffness of 
the cracked structure. Figure 7 shows the influence of the 
thickness of the patch on the fatigue life; the different 
thicknesses of the patches are ep = 1.5 mm, ep = 2 mm, 
and ep = 2.5 mm. It can be seen that increasing the thick-
ness for the same number of ply increases the fatigue life. 
For thickness = 1.5 mm with a length of 49.29 mm, the 
number of breaking cycles is 140,300 cycles. For thick-
ness = 2 mm with a length of 49.69 mm, the number of 
rupture cycles is 148,100 cycles. For thickness = 2.5 mm 
with a length of 50.02 mm, the number of breaking cycles 
is 162,900 cycles.

The stress intensity factor for the specimen repaired 
by a patch is shown in Fig. 8 evolving as a function of the 
fracture length under the influence of the patch’s thickness. It 
is observed that a 50 mm increase in patch thickness results 
in an 11.39% drop in stress intensity factor for the same 
number of ply. Below 10 mm in crack length, the evolution 
of the stress intensity factor is nonlinear. Beyond this length, 
the evolution of the stress intensity factor is almost linear 
(stable evolution).

Table 4   Paramètre du modèle 
de propagation de l’alliage 6061 
T6

C N p q

1.84 × 10−9 2.3 0.5 0.5

Fig. 5   Influence of load ratio on the fatigue life of a repaired and 
unrepaired boron/epoxy component

Fig. 6   Effect of load ratio on cracking rate for a boron/epoxy repaired 
and unrepaired portion

Fig. 7   Influence of patch thickness on fatigue life
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3.1.3 � Effect of adhesive thickness

In determining the durability of patch-reinforced cracks, the 
adhesive’s thickness is crucial. Figure 9 illustrates how adhe-
sive thickness affects the fatigue life of the patched area. We 
tried several different thicknesses: 0.1 mm, 0.15 mm, and 
0.2 mm. For epa = 0.1 mm, the number of rupture cycles is 
140,100 cycles; for epa = 0.15 mm, the number of rupture 
cycles is 116,600 cycles, and for epa = 0.2 mm is 103,400 
cycles. It is noted that the reduction in thickness increases 
the fatigue life.

Figure 10 shows the effect of adhesive thickness on the 
stress intensity factor as a function of crack length. For 
epa = 0.1 mm, the final crack is length a = 40 mm, and the 
intensity factor is ∆k = 21.2 MPa √m. For epa = 0.15 mm, 
the final crack length is a = 40 mm, and the intensity factor 

is ∆k = 23.2 MPa √m. And for epa = 0.2 mm, the final crack 
length is a = 40 mm, and the intensity factor is ∆k = 23.9 
MPa √m. Reducing the thickness of the adhesive decreases 
the stress intensity factor at length a = 40 mm to 11.29% and 
increases the number of cycles from 3.67 × 104 to 26.19%. 
This shows that the best performance of the adhesive is for 
the low thicknesses of the latter.

3.1.4 � Influence of adhesive type

The characteristics of the adhesive type also have a sig-
nificant impact on how stable patch-reinforced cracks are. 
Figure 11 illustrates the relationship between the type of 

Fig. 8   Influence of patch thickness on intensity factor variation

Fig. 9   Influence of adhesive thickness on fatigue life

Fig. 10   Influence of adhesive thickness on variation of stress inten-
sity factor

Fig. 11   Effect of adhesive type
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adhesive and the influence of the number of cycles on the 
variation in crack length. At the same crack length, a = 50 
mm, we note that the FM-73 adhesive’s final cycle number 
was 140,300 cycles, the MB1113 adhesive’s final cycle num-
ber was 202,200 cycles, and the 3MAF163-2K adhesive’s 
final cycle number was 233,100 cycles. It is noticed that 
the lifetime of 3MAF163-2K is great with an increase rate 
of 39.98% compared to FM-73 and 13.25% compared to 
MB1113.

The relationship between the variation in stress inten-
sity factor (SIF) and fracture length is shown in Fig. 12 
as a result of the adhesive type. The shear modulus of the 
adhesive affects how strong the bonded patch is. Note that 
for the length of a = 50 mm, the type FM-73 the intensity 
factor ∆k = 27.2 MPa √m. For type MB1113, the intensity 
factor ∆k = 22.9 MPa √m, and for type 3MAF163-2K, the 
intensity factor ∆k = 21 MPa √m. When the 3MAF163-2K 
adhesive is utilized instead of the FM73 and MB1113 adhe-
sives, the stress intensity factor is decreased by 22.79% and 
8.29%, respectively. The stress intensity factor (SIF) falls as 
the shear modulus increases.

Analysis of this finding suggests that, in comparison to 
other adhesive types, the high shear modulus adhesive type 
3MAF163-2K efficiently transfers load to the targeted part 
during repairs. As a result, the degree of stress is reduced 
and the duration of fatigue is increased.

3.1.5 � Effect of patch nature

The nature of the patch’s material has an impact on stress 
intensity factor in addition to the effect of the patch’s thick-
ness, nature, and thickness of the adhesive. Three materi-
als were employed, including graphite/epoxy, boron/epoxy, 

and glare, to demonstrate how the patch material affected 
the variance of the stress intensity factor KI. The effect of 
patch material on crack length is shown in Fig. 13 as a func-
tion of life at length a = 50 mm for graphite/epoxy and glare 
adhesives, both of which have the same final cycle number 
of 153,900 cycles, and for the adhesive boron/epoxy, which 
has a final cycle number of 162,900 cycles. We can see that 
the boron/epoxy provides a long life.

Figure 14 depicts the evolution of the stress intensity fac-
tor as a function of crack length as influenced by the com-
posite patch materials used. We note at length a = 50 mm 
that for the graphite/epoxy and glare materials, the inten-
sity factor is ∆k = 25.6 MPa√m, and for boron/epoxy, the 
intensity factor is ∆k = 24.1 MPa√m. The results reveal that 

Fig. 12   Effect of adhesive type on variation of stress intensity factor

Fig. 13   Influence of patch material on fatigue life

Fig. 14   Influence of patch material on variation of stress intensity 
factor
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when boron/epoxy is used, the stress intensity factor is lower 
than when graphite/epoxy and glare are used. It is noted that 
the nature of the boron/epoxy patch is a better performance 
in terms of resistance to rupture.

3.1.6 � Effect number of ply

The amount of adhesive plies is critical to the stability 
of patch-reinforced cracks. Figure 15 illustrates how the 
amount of plies affects the fatigue life of the patch that has 
been fixed. The different ply counts of the patches are 6 ply, 
8 ply, and 10 ply. It can be seen that the increase in the num-
ber of plies for the same thickness ep = 1.5 mm increases the 
fatigue life. At length a = 50 mm for 6 plies, the final cycle 
number is 140,400 cycles. For 8 plies, the final cycle count 
is 144,000 cycles. For 10 plies, the final cycle number is 
149,700 cycles.

The difference in the number of plies for the same thick-
ness increases the number of final cycles, and the increase in 
oriented fibers reinforces and restricts the crack [40].

3.2 � Variable loading

3.2.1 � Effect of overload

Figures 16 and 17 show respectively the comparison of 
fatigue life and cracking rates between repaired and unre-
paired aluminum alloy 6061 T6 plate under the applica-
tion of constant amplitude loading with a single overload 
(τ = 2.2). For the unrepaired plate, the number of rupture 
cycles is 6.104 cycles in the presence of overload. Note the 
existence of a delay level [41]. The number of cumulative 
delay cycles is 165,735 cycles. The repair by patch in the 
presence of variable loads (overloads) contributed to the 

increase in the fracture life and reached a number of fracture 
cycles of 1.8 × 105 cycles. The difference in lifetime accu-
mulated by the application of repair by patch is 1.2 × 105 
cycles. During the propagation, there are four stages of delay 
due to the repetitions of the application of the overloads. The 
rate of improvement due to the combined effects of patch 
repair and the application of overloads is 65.82%. The rup-
ture length reached in the presence of the patch is 18 mm; 
on the other hand, the final rupture length of the unrepaired 
specimen is 28 mm.

Figure 17 compares the rates of cracking in the repaired 
and unrepaired plates under varying loads for = 2.2. For the 
case of the unrepaired plate, one notes the presence of a type 
of delay, an immediate delay (instantaneous) at crack length 
“a = 6.61 mm.” Its reduction speed is 1.05 × 10 − 7 m/cycle. 
We usually take note of the three forms of interaction delays 

Fig. 15   Effect of patch plaice number on fatigue life

Fig. 16   Influence of single overload on the fatigue life

Fig. 17   Effect of patch repair (boron/epoxy) under the application of 
an overload on the cracking rate
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in the case of the mended plate. The first is an immediate 
acceleration at fracture length a = 4.37 mm. The second is 
an immediate delay with a speed of 9.29 × 10 − 8 at a length 
of 14.45 mm, while the third is a delayed delay with a speed 
that reaches a maximum at 1.47 × 10 − 6 m/cycle before 
decreasing to 1.05 × 10 − 7 m/cycle.

3.2.2 � Effect of overload rate

Figure 18 shows the effect of different overload rates on the 
fatigue life of the patch-repaired specimen. According to the 
data, patch repair increases fatigue life for various overload 
rates. The presence of delay levels is observed. The lifetime 
caused by the delay is of the order of 4.2 × 104 cycles. The 
effect of repair by patch is more significant for an overload 
rate “τ = 2.2.” The number of delay stages is increased and 
consequently the life at break. The difference in lifetime for 
“τ = 2.2” compared to constant amplitude loading for R = 0.2 
is 9 × 104 cycles. This represents an increase rate of 39.13%.

3.3 � Overload band effect

Figure 19 shows the influence of variable block loading 
on the life and cracking rate of the M(T) plate repaired by 
boron/epoxy in aluminum alloy 6061T6. Two types of cyclic 
loading blocks are applied named L–H block and H–L block. 
Comparing the loading of constant amplitude for R = 0.35 
and the block of cyclic loadings “L–H,” it can be seen 
that the application of the cyclic loading by block “L–H” 
increased the residual life of the plate fissured and repaired 
by patch. This increase is of the order of 60,266 cycles and 
13,242 cycles, respectively, compared to the cyclic loading 
with constant amplitude and the loading “L–H.” It is noted 
that the application of the H–L block reduces the fatigue life, 

and it is noted that the difference in the fatigue life of the 
two blocks “H–L” and “L–H” are very small. The effects of 
applying “L–H” and “H–L” blocks are more significant at 
the start of cracking. One notes for the block “L–H” a weak 
speed at the beginning of cracking compared to the speed 
for a loading with constant amplitude R = 0.35 the speed at 
the beginning of cracking is of the order of 2.82 × 10 − 8 m/
cycle is increased abruptly at 5.83 × 10 − 8 m/cycle after the 
application of the “H” loading of the “L–H” block, and it 
reaches the cracking rate due to the constant amplitude load-
ing R = 0.35. The application of the “H–L” block indicates 
that at the start of cracking, the speed takes on the appear-
ance of the loading cracking speed at a constant amplitude 
R = 0.35. After the duration of application of the “H” loading 
of the “H–L” block, which is 40,000 cycles, the cracking 
speed is reduced and has increased from 6.29 × 10 − 8 m/
cycle to 4.42 × 10 − 8 m/cycle. The results also indicate that 
the duration of the blocks at the start of cracking “N = 40,000 
cycles” affects the residual lifetimes and the cracking speeds.

4 � Conclusion

The research focuses on the use of patch repair in the 
aerospace industry [42], specifically for treating localized 
damage in 6061T6 aluminum alloy plates with constant 
amplitude and varied loading. The research takes into 
account patch and adhesive qualities, as well as load-
related parameters. Overload rate, delay model, overload 
application, and load ratio are all considered in the analy-
sis. The findings revealed that.Fig. 18   Effect of different overload rate on patch repaired specimen 

fatigue life

Fig. 19   Effect of different overload band on repaired specimen 
fatigue life
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–	 The effect of applying the composite patch for repair 
and increasing the load ratio extended the fatigue life 
and reduced the stress intensity factor.

–	 The effect of increasing the thickness of the patch 
resulted in an extension of life and reduction of FIC.

–	 Improved fatigue life and reduced FIC due to reduced 
adhesive thickness.

–	 The high shear modulus adhesive type 3MAF163-
2K results in good load transmission to the part to be 
repaired, therefore increasing the fatigue life and reduc-
ing the stress intensity factor.

–	 Boron/epoxy offers better resistance to breakage com-
pared to other repair materials.

–	 The reinforcement of the composite patch through an 
increase in oriented fibers serves to restrict crack prop-
agation.

–	 Patch repair under variable loading with a single over-
load increased fatigue life and reduced cracking speed.

–	 The variation of overload rate extended the delay life, 
and the analysis of the cracking speed curves reveals 
two types of delay: instantaneous delay and deferred 
delay.

–	 The application of the different models on the repaired 
part showed that the Willenborg model gave a significant 
speed reduction rate.

–	 The increase in delay rate increased the number of final 
cycles and delayed the cracking rate.—The “H–L” load-
ing increased the fatigue life compared to the “L–H” 
loading and the “R = 0.35” loading, and the onset of 
cracking makes it possible to increase the cracking rate 
at the constant amplitude loading rate.

–	 The “L–H” loading has a small effect on the fatigue life, 
and the cracking rate is reduced after the application of 
the “H” block of the “L–H” loading. Finally, the com-
bination between repair by patch and the application of 
loads with overloads offers a high resistance to fatigue 
failure (increases the life of the structure).
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