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Abstract   
Different pitch parameters of the tool can lead to the changes in the delay of the machining system. A mechanical model of 
the variable pitch tool is developed by taking the regenerative chatter into account in the machining system with multiple 
delays. The dynamic differential equations with multiple delays are studied based on the fully discrete method; the Gauss-
ian integral method is used to approximate the state item of the vibration response in the discrete interval, and the periodic 
and the delay items are linearly approximated to determine the transition matrix of the discrete state in the multiple delays 
period. The relationship between cutting force coefficients and cutting parameters is defined based on the size effect of the 
tool-workpiece contact area; a nonlinear model of the cutting force coefficients is presented by the cutting force detection 
experiment of aluminum alloy milling with the variable pitch tool. The state transition matrix of the multiple delays system 
is obtained by combining the Gauss full discrete method with the nonlinear cutting force coefficients, and then the effective-
ness of the proposed method is verified by analyzing the convergence degree of the eigenvalue of state transition matrix. At 
the same time, the relationship between cutting parameters and the stability critical of the machining system is analyzed to 
draw the three-dimensional stability lobe diagram, which makes it clear that the limiting cutting depth of the tool increases 
about 2–3 times as the cutting width decreases. Combining with a cutting stability experiment of the variable pitch tool, 
it is verified that the dynamic model with the nonlinear dynamic parameters has higher prediction accuracy of the cutting 
stability than others. And it is observed that the eigenvalue of changes of the dynamic model is more violently in the low 
speed region (2000–4000 rpm), which indicates that the stability of the processing system is more sensitive to the cutting 
depth under the low speed condition, and the vibration reduction performance of variable pitch tools is more significant.
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1  Introduction

Cutting vibration determines the stability of the machining 
system and affects the process level and workpiece qual-
ity. In order to alleviate the milling vibration and suppress 
the vibration in a robust way, these ways mainly include 

the changes in the spindle speed and tool parameters, which 
can interfere with the system delay and improve the process 
damping. The variable pitch tool, as a typical damping tool, 
has unequal tooth parameters, which affects the delay effect 
and the excitation force in the milling process, and plays 
a role in improving the cutting stability of the machining 
system. The concept of a tool with an irregular tooth angle 
was proposed for the first time by Slavicek in 1965 [1]. Opitz 
et al. [2, 3] analyzed the damping properties of the variable 
pitch tool, and a linear inhomogeneous differential dynamic 
model was developed to determine the chatter limit. Turner 
et al. [4, 5] discussed the damping mechanism of variable 
helical milling cutters; a cutting stability model was estab-
lished. Jin et al. [6] presented a dynamic model of the mill-
ing system; process parameters were optimized to avoid 
chatter. The vibration mechanism of the variable pitch tool 
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is analyzed to fully demonstrate that this type of cutter has 
superior vibration damping properties.

The cutting stability is a necessary problem for discussing 
the damping properties of the tool, the influencing factors 
of the vibration, and the optimization of system parameters, 
and then the solution method of the stability model affects 
the prediction accuracy. Altintas et al. [7–10] developed a 
prediction model of the regenerative chatter based on the 
frequency domain method to obtain the optimal pitch param-
eters, and a stability lobe diagram (SLD) of the variable 
pitch tool was obtained. Bari et al. [11] presented a new 
graphical-frequency method to determine the cutting stabil-
ity of serrated tools with arbitrary geometry, and simulation 
time for the stability of the complex dynamic model with 
multiple delays was reduced. Insperger et al. [12–14] pro-
posed the semi-discrete method (SDM) to solve the delay 
dynamics equation, and a higher-order discrete way was 
adopted to improve the prediction accuracy of the model. 
Sellmeier et al. [15] observed the generation mechanism of 
the stable island for the variable pitch tool under the condi-
tion of the low radial milling by combining the SDM. Based 
on the SDM, average time SDM, and finite element method 
(FEM), Sims et al. [16] verified a prediction model of the 
unequal tooth tool under different working conditions; the 
specific working conditions for different analysis methods 
were determined. Comak et al. [17] derived the optimal pitch 
parameters by the frequency domain method and the SDM. 
Guo et al. [18] adopted a semi-discretization method based 
on the improved Runge–Kutta to draw the stability lobe dia-
gram of thin-walled parts. Ding et al. [19, 20] conducted 
a first- and second-order fully discrete methods (FDM) 
approached with a linear and Lagrangian interpolation. 
Insperger [21] compared the prediction accuracy of the two 
discrete methods followed by the theoretical delay differen-
tial equations of the FDM and the SDM under conditions of 
low-speed and high-speed cutting, respectively. Zhang et al. 
[22] studied the stability prediction taken into account for 
the consideration of the tool helix angle, the pitch angle, and 
the runout. Quo et al. [23] improved the FDM by taking a 
third-order Newtonian integral algorithm. The least squares 
method to approximate the system state term was more time-
saving than the same-order integral method, and Ozoegwu 
et al. [24, 25] established the fourth-order FDM extended to 
a stability prediction model. Niu et al. [26, 27] presented the 
FDM with the Simpson and fourth-order Runge–Kutta algo-
rithms, which were applied to the cutting stability prediction 
of the unequal tooth milling cutter considering the runout. 
Yan et al. [28] proposed a high-order FDM for analyzing the 
milling stability of the single-delay system and extended to 
the stability lobe diagrams of the multiple delays system. 
Totis et al. [29] devised a probabilistic method based on 
the Polynomial chaos and Kriging metamodels to increase 
the accuracy and the reliability of the chatter prediction. 

Wei et al. [30] investigated systematically the influence 
mechanism of multiple milling parameters on the milling 
stability, and three-dimensional SLDs under multiple milling 
parameters could be obtained. The prediction accuracy of 
the cutting stability model is mainly controlled by the solu-
tion method. At the same time, the convergence of the solu-
tion for the periodic differential equations is often acceler-
ated by the analytical methods of differential equations. Liu 
et al. [31] studied the random vibration of structures with 
uncertain parameters and adopted the Gaussian integration 
method to calculate the response of the random structure, 
which effectively reduced the computational quantity. Sriv-
astava et al. [32] proposed a Gaussian integration method to 
solve nonlinear equations, which leads to sixth-order con-
vergence of the model solution. Liu et al. [33] proposed an 
efficient algorithm to calculate the dynamic response with 
first- and second-order derivatives based on the Gaussian 
integration method, and this method had a higher accuracy 
than the central difference method. A favorable analysis 
method can accurately and efficiently predict the cutting 
stability to present a theoretical basis for the stable cutting 
and high-quality machining.

The milling dynamic behavior affects the cutting stabil-
ity of the system, and the mechanical property in the tool-
workpiece contact is the major factor to affect the mill-
ing dynamic. The difference of cutting parameters under 
different cutting conditions leads to the size effect of the 
tool-workpiece contact, which affects the evolution of the 
mechanical behavior and the generation of the vibration 
excitation. The cutting force is the main source of the vibra-
tion excitation of the machining system during processing, 
and it affects the quality of the workpiece and the machining 
efficiency. The cutting force coefficient, as a major parameter 
of the cutting force model, is closely related to the machin-
ing size effect. For the identification of the cutting force 
coefficient, Ozturk et al. [34–37] proposed an algorithm for 
the calibration of milling force coefficients considering the 
lead angle, inclination angle, and helix angle for the free-
form surface milled with the ball-end milling cutter. The 
immersion angle is considered; Larue et al. [38] discussed 
the prediction of the milling force of conical and ball nose 
end mills during the side milling. Wang et al. [39] presented 
a new calibration method of cutting force coefficients by 
the multiple linear regression of the average milling force. 
Campatelli et al. [40] conducted a cutting force model by 
analyzing the influence of different cutting parameters on 
the cutting force coefficient. Yao et al. [41] derived a bicubic 
polynomial function to describe the influence of the nonlin-
ear cutting force coefficient and non-uniform chip size on 
the cutting force. Grossi et al. [42] investigated the cutting 
force coefficient under different spindle speeds followed by a 
genetic algorithm, and it was determined that the speed had 
a significant impact on the cutting force coefficient. Yu et al. 
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[43] calibrated the linear cutting force coefficients based on 
the average cutting force model to acquire the corresponding 
stability lobe diagram.

The damping mechanism and the cutting stability of 
variable pitch tools have been gradually refined, but the 
multiple delays dynamic model with this type of tool still 
lacks consideration of the dynamic nonlinear problem of the 
machining system, and an in-depth study is required to solve 
the stability limit efficiently and accurately. This study dis-
cusses the regenerative dynamics of multiple delays, which 
is the main problem of the cutting stability with variable 
pitch tools, and the Gauss integral method is used to improve 
the full discrete method to obtain the state transition matrix 
of the multiple delays machining system. The cutting force 
coefficients are calibrated by the milling test of aluminum 
alloy milling with variable pitch tools, and a nonlinear 
expression of cutting force coefficients is developed. And 
then a method combining the improved FDM and nonlinear 
cutting force coefficients is used to predict the cutting stabil-
ity; it has the effect of improving the prediction accuracy of 
machining system stability.

2 � Mechanical model

The variable pitch tools have different pitch parameters; 
the system delay and the thickness of each tooth are dif-
ferent. As the main excitation source in the machining 

process, the milling force resolves the vibration generation 
and the motion evolution of the system. The milling force 
is determined by the contact area between the tool and the 
workpiece. Figure 1 is a schematic diagram of mechanics 
with a variable pitch end mill (N = 4); the micro-element 
model of the milling force at the j-th tooth (Fig. 1(a)) is 
as follows:

where dFj =
[
dFtj, dFrj, dFaj

]
 , dFtj, dFrj, and dFaj are the 

tangential, radial, and axial milling force elements, respec-
tively; the stiffness of the machining system is high in the 
a-direction, dFaj is often ignored. Kc =

[
Ktc,Krc

]
 , Ktc and 

Krc are the tangential and radial shear force coefficients. 
Ke =

[
Kte,Kre

]
 , Kte and Kre are the tangential and radial edge 

force coefficients. dz and ds are the depth of cut and the edge 
lengths. h(ϕj(t)) is the cutting thickness, ϕj(t) is the contact 
angle of the tool-workpiece, and the expression relationship 
is as follows:

(1)dFj = Kch
(
�j(t)

)
dz + Keds

(2)�j(t) =

⎧
⎪⎪⎨⎪⎪⎩

wt − k�z =
n�t

30
− k�z j = 1

wt −

N�
j=2

�j − k�z j = 2, ......N

Fig. 1   Schematic diagram of down milling mechanics with a variable pitch end mill. a Micro-element distribution of the milling force. b Axial 
expansion of the cutting edge. c Dynamic cutting thickness. d Coordinate system of the milling force
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From Fig. 1(b), the progressive depth of cutting for the 
j-th helical edge zj =

R

tan �

(
�j − �st

)
 , then the lag angle of the 

helical edge relative to the tool tip � =
2z tan �

D
= k�z.

The cut-in and cut-out angles represent the effective cut-
ting area (①②), which determine the participation of multiple 
teeth in the cutting; its expression in the down milling is as 
follows:

Since the edge milling force is small, and it is not sensi-
tive to the dynamic characteristics of the cutting process, the 
system rigidity is high in the axial; the edge milling force 
and the axial milling force are considered to be ignored in 
this study. So, the j-th tooth milling force is expressed as 
follows:

where, K = Kc is coefficients matrix of the cutting force. 
hj(t) = h

(
�j(t)

)
 is mainly composed of the static cutting 

thickness h0 determined by the feed per tooth and the 
dynamic cutting thickness Δh influenced by the vibration 
displacement (Fig. 1(c)), and the expression is the Eq. (5). 
The vibration mark on the workpiece surface is directly 

(3)
�st = arc cos

(ae
R

− 1

)

�ex = �

(4)Fj(t) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜙j(t,ap)

∫
𝜙j(t,0)

R

tan 𝛽
Khj(t)dz𝜙st < 𝜙j < 𝜙st + 𝜃

Khj(t)ap 𝜙st + 𝜃 < 𝜙j < 𝜙ex

𝜙j(t,0)

∫
𝜙j(t,ap)

R

tan 𝛽
Khj(t)dz𝜙ex < 𝜙j < 𝜙ex + 𝜃

related to the regenerative effect of the machining system, 
as shown in Fig. 2; the phase between the vibration marks 
determines the dynamic cutting thickness, controls the 
occurrence of the regenerative chatter, and affects the evo-
lution of the motion trajectory of the system.

According to the micro-element model of the milling force 
with the variable pitch tool, the coefficient matrix of the mill-
ing force K represents the milling force in the unit area of 
the edge line, and which is mainly affected by the material 
of the tool and the workpiece. As shown in Fig. 1(d), when 
ae > R(1 − cos𝜑) , multi-tooth cutting of the helical edge 
occurs, then milling force model of the variable pitch tool in 
the x and y directions is as follows:

where, g
(
�j(t)

)
 is the step response function, indicating 

whether the cutter tooth is involved in the cutting.

Then the dynamic milling force model of the variable pitch 
tool is as follows:

(5)
hj(t)=h0j + Δhj = fzj sin

(
�j(t)

)
+ Δxj sin�j(t) + Δyj cos�j(t)

(6)

F(t) =

[
Fx(t)

Fy(t)

]
=

N∑
j=1

g
(
�j(t)

)[ cos�j(t) sin�j(t)

−sin�j(t) cos�j(t)

][
Ftj(t)

Frj(t)

]

(7)g
(
�j(z)

)
=

{
1�st ≤ � ≤ �ex + �

0 else

(8)F(t) =

N∑
j=1

1

2
ap
[
Kj(t)

]{
Δj(t)

}

Fig. 2   Tool path. a Cutting thickness of the tool-workpiece contact. b Vibration ripple and phase
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w h e r e ,  
{
Δj(t)

}
=

{
Δxj(t)

Δyj(t)

}
=

{
x(t) − x

(
t − �j

)

y(t) − y
(
t − �j

)
}

 , 

�j = T
�j

2�
 is the pitch delay, T is the milling period, a time-

varying coefficient matrix of the cutting force 

[
Kj(t)

]
=

[
axx axy

ayx ayy

]
 , 

axx =
(
Kt − Kt cos 2�j + Kr sin 2�j

)

axy =
(
Kt sin 2�j + Kr cos 2�j − Kr

)

ayx =
(
−Kt sin 2�j − Kr cos 2�j + Kr

)

ayy = −
(
Kt − Kt cos 2�j + Kr sin 2�j

)
.

Considering the relationship between the size effect and the 
cutting force coefficient, the milling force model with multiple 
delays of the variable pitch tool is developed by analyzing 
the relationship between regenerative effect and cutting thick-
ness. The dynamic milling force is the main disturbance of the 
machining system, and the vibration system is represented by 
a dynamic model with multiple delays. The FDM is used to 
solve the regenerative dynamic model with multiple delays 
to deepen the regenerative chatter mechanism of the variable 
pitch tool.

The traditional dynamics model is mainly as follows:

where, M, C, and K are the effective mass, damping, and 
stiffness of the system, respectively, and u(t) is the motion 
response of the tool. When considering the multiple delays 
factor and the regenerative effect of the variable pitch tool, the 
mechanical model of a regenerative delay system is as follows:

where Bj(t) =
1

2
g
(
�j(t)

)
apKt

[
Kj(t)

]
 , this model is a sec-

ond-order multiple delays differential equation. When 
U(t) = [u(t) u̇(t)]T , the dynamic Eq. (10) is expressed as a first-
order multiple delays state space by using the Cauchy transform.

(9)Mü(t) + Cu̇(t) + Ku(t) =

N∑
j=1

Fj(t)

(10)

Mü(t) + Cu̇(t) + Ku(t) =

N∑
j=1

ΔFj(t) =

N∑
j=1

Bj(t)
[
u(t) − u

(
t − 𝜏j

)]

where A is the time-invariant coefficient matrix of the sys-

tem, Bj(t) = Bj(t + T) , �j is the delay of the system, 
N∑
j=1

�j = T

.
with

The above dynamic differential equation is numerically 
solved, according to the multiple delays characteristics of 
the variable pitch tool; the time period T is equidistantly 
discretized into m time intervals Δt ( T = mΔt ), the delay 

�j = kjΔt , m ≈
N∑
j=1

kj =
N∑
j=1

int

�
�j+0.5Δt

Δt

�
 (m and kj both are 

positive integers).  For each time interval [ t i, 
ti+1] = [iΔt, (i + 1)Δt] , taking U

(
ti
)
= Ui as the initial condi-

tion, the dynamic response is expressed as follows:

The status item U
(
ti+1

)
= Ui+1 in the discrete point ti+1 

is as follows:

According to the Gauss–Legendre integral formula, the 
numerical approximation of the above equation is as follows:

(11)U̇(t) = AU(t) +

N∑
j=1

Bj(t)
[
U(t) − U

(
t − 𝜏j

)]

(12)

A(t) =

�
0 I

−M−1K−M−1C

�

Bj(t) =

⎡
⎢⎢⎢⎣

0 0

−

�
M−1

K
Bj(t) 0

⎤
⎥⎥⎥⎦

(13)

U(t) = eA(t−ti)U
(
ti
)
+ ∫

t

ti

eA(t−�)
N∑
j=1

Bj(�)
[
U(�) − U

(
� − �j

)]
d�

(14)

Ui+1 = eAΔtUi + ∫
ti+1

ti

eA(ti+1−�)
N∑
j=1

Bj(�)
[
U(�) − U

(
� − �j

)]
d�

(15)Ui+1 = eAΔtUi +

N∑
j=1

Δt

2

{
eA(ti+1−t

∗
i )Bj

(
t∗
i

)[
U
(
t∗
i

)
− U

(
t∗
i
− �j

)]
+ eA(ti+1−t

∗
i+1)Bj

(
t∗
i+1

)[
U
(
t∗
i+1

)
− U

(
t∗
i+1

− �j
)]}

where t∗
i−1

=
ti+ti+1

2
+

Δt

2

�
−

1√
3

�
 , t∗

i
=

ti+ti+1

2
+

Δt

2

�
1√
3

�
.

The status item U
(
t∗
i

)
 and U

(
t∗
i+1

)
 are linearly 

approximated

(16)

U
�
t
∗

i

�
=

�
1 −

t
∗
i
− t

i

Δt

�
U
�
t
i

�
+

t
∗
i
− t

i

Δt
U
�
t
i+1

�

=
1

2

�
1 +

1√
3

�
U
�
t
i

�
+

1

2

�
1 −

1√
3

�
U
�
t
i+1

� The delay item U
(
t∗
i
− �j

)
 and U

(
t∗
i+1

− �j
)
 are linearly 

approximated

(17)

U
�
t
∗

i+1

�
=

�
1 −

t
∗
i+1

− t
i

Δt

�
U
�
t
i

�
+

t
∗
i+1

− t
i

Δt
U
�
t
i+1

�

=
1

2

�
1 −

1√
3

�
U
�
t
i

�
+

1

2

�
1 +

1√
3

�
U
�
t
i+1

�
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The above (16)–(19) are substituted (15)

with

w h e r e , 

E
1
= e

A
Δt

2

�
1+

1√
3

�
,E

2
= e

A
Δt

2

�
1−

1√
3

�
,C

1
=

1

2

�
1 +

1√
3

�
,C

2

=
1

2

�
1 −

1√
3

�
,B

i
= B

�
t
∗
i

�
,B

i+1 = B
�
t
∗
i+1

�
.

If 
[
I − Fi,2

]
 is the non-singular, the Eq. (23) is converted 

to a display expression

If 
[
I − Fi,2

]
 is the singular, then the generalized inverse of 

the matrix can be used instead of its inverse.
The processing system with the variable pitch tool con-

structs a discrete dynamic map on a single period in the case 
of multiple delays, and each discrete point is associated by 
mapping in the milling state space; the Eq. (24) is as follows:

where Vj is the state vector with

(18)
U
�
t∗
i
− �j

�
=

�
1 −

t∗
i
− ti

Δt

�
U
�
ti − �j

�
+

t∗
i
− ti

Δt
U
�
ti+1 − �j

�

=
1

2

�
1 +

1√
3

�
U
�
ti − �j

�
+

1

2

�
1 −

1√
3

�
U
�
ti+1 − �j

�

(19)

U
�
t∗
i+1

− �j
�
=

�
1 −

t∗
i+1

− ti

Δt

�
U
�
ti − �j

�
+

t∗
i+1

− ti

Δt
U
�
ti+1 − �j

�

=
1

2

�
1 −

1√
3

�
U
�
ti − �j

�
+

1

2

�
1 +

1√
3

�
U
�
ti+1 − �j

�

(20)

Ui+1 =
(
F0 + Fi,1

)
Ui + Fi,2Ui+1 +

N∑
j=1

Fi,1Ui−kj
+

N∑
j=1

Fi,2Ui+1−kj

(21)F0 = eAΔt

(22)Fi,1 =
Δt

2

(
E1C1Bi + E2C2Bi+1

)

(23)Fi,2 =
Δt

2

(
E1C2Bi + E2C1Bi+1

)

(24)

Ui+1 =
[
I − Fi,2

]−1(
F
0
+ Fi,1

)
Ui

+

N∑
j=1

[
I − Fi,2

]−1
Fi,1Ui−kj

+

N∑
j=1

[
I − Fi,2

]−1
Fi,2Ui+1−kj

(25)Vi+1 = DiVi

(26)Vi =
[
Ui,Ui−1, ...Ui−k1

, ...Ui−k2
, ...Ui−kmax

]

where kmax = max(kj), Zi is a discrete point, the conversion 
matrix between i and i + 1 is as follows:

where the positions of Mj,i,a and Mj,i,b are determined by the 
variable kj. According to Eqs. (26) and (27), if the solutions 
of k consecutive time intervals are coupled within a period 
T, then the state transition matrix Ω of the system in a single 
period is as follows:

The dynamic characteristics of the milling system are 
determined mainly by the eigenvalues of the state matrix 
Ω. If the modulus of all eigenvalues of the matrix Ω is 
less than 1 ( max (|eig(Ω)|) < 1 ), the system tends to be 
asymptotically stable via Floquet theory.

3 � Nonlinear cutting force coefficients

The mechanical model of the machine system with the var-
iable pitch tool is solved by using the FDM; the state space 
of the system is mapped under multiple delays to obtain 
the boundary conditions for the stable cutting. According 
to the milling experiment, the model parameters are cali-
brated to verify the performance of the theoretical model. 
The cutting force coefficients are mainly determined by the 
materials and the tool-workpiece contact. The size effect 
of the tool-workpiece contact motivates the mechanical 
behavior of the milling, which makes the cutting process 
shows multiscale and nonlinear characteristics. The size 
effect of the tool-workpiece contact is mainly determined 
by the cutting parameters and the geometry angles of the 
tool. The nonlinear relationship between cutting force 
coefficients and cutting parameters is obtained by the coef-
ficient calibration method.

Figure 3 shows the milling field experiment of Al7075-
T651 materials with the variable pitch tool; experimental 
planning adopts a single factor methodology which refers 

(27)

�
Di

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�
I − Fi,2
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to cutting parameters as in Table 1. The cutting force coef-
ficients of the mechanical model are calibrated by analyzing 
the milling force under different cutting parameters; a model 
of the cutting force coefficients (Eq. (29)) is developed based 
on the nonlinear fitting. Figure 4 shows the comparison 
between the experimental data and the theoretical model 
under different cutting parameters, which reflects the effect 
of cutting parameters on the cutting force coefficients, and 
it verifies the accuracy of the theoretical model of the cut-
ting force coefficients. At the same time, for the multi-factor 
variance analysis of the cutting force coefficients and cutting 
parameters, the variance analysis of the experimental results 
is carried out by using Matlab software. According to the 
results of variance analysis, the F ratio directly reflects the 
significant degree of the influence of the experimental fac-
tors on the experimental indexes, which are 2.37, 4.02, 4.86, 
and 2.21, respectively, that is, Ffr > Fap > Fae > Fn. Figure 5 
is the comparison between the experimental data and the 
numerical simulation of cutting force coefficients and mill-
ing forces. It is determined that the prediction accuracy of 
the milling force model can reach more than 90%, indicating 
that the cutting force coefficient model has better precision.

Figure 6 (a) shows the modal detection of the experiment 
system. The system response signal is obtained by giving 
a certain excitation to the tool, as shown in Fig. 6 (b). The 
modal parameters of the machining system are obtained 
by using the identification method of the modal parameter 
(Table 2)

(29)
Kt = 2.892a0.202

e
a0.301
p

f −0.318
r

n−0.261 × 103

Kr = 2.934a0.214
e

a0.342
p

f 0.383
r

n−0.232 × 103

4 � Cutting stability

The multiple delays factor of variable pitch tools and the size 
effect under different cutting parameters have an important 
impact on the dynamics of the machining system. A cutting 
force coefficient model is proposed by taking into account 
for the consideration of the nonlinear mechanical behavior 
of the size effect in the tool-workpiece contact area. The 
mechanical model of the regenerative chatter determines the 
mapping relationship of the state space of the machining 
system with multiple delays, and the stability boundary is 
determined by using proposed method (Gauss FDM) which 
combined the FDM and the Gauss integration.

Considering the multiple delays and the size effect, the 
stability boundary of the machining system is calculated by 
using the Gauss FDM to obtain the limiting cutting depth 
of the variable pitch tool. In order to fully illustrate the 
effectiveness of the analysis method proposed in this study, 
the cutting parameters n = 5000 rpm and radial immersion 
aD = ae/D = 25% are selected to compare the eigenvalue con-
vergence of the processing system under different discrete 

Fig. 3   Field milling experiment with the variable pitch tool

Table 1   Experimental cutting parameters

Series Spindle 
speed n 
(rpm)

Feed per revolu-
tion fr (mm/r)

Cutting 
width ae 
(mm)

Cutting 
depth ap 
(mm)

1 2000 0.2 2 1.0
2 3000 0.3 5 1.5
3 4000 0.4 10 2.0
4 5000 0.5 15 2.5
5 6000 0.6 20 3.0
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parameters (Fig. 7(a)). The result of the comparative analysis 
shows that the proposed method has better convergence by 
taking the linear FDM in the reference [19] as the conver-
gence criterion of numerical analysis. Figure 7 (b) shows 
the comparison of the SLD under different discrete param-
eters; it is determined that the discrete parameters used in 
the numerical simulation of the SLD are 100 × 100 sized 
grid in this study.

The boundary conditions for the stable cutting under dif-
ferent cutting parameters are obtained based on the above 
model dynamic parameters and simulation parameters. The 
direction matrix axx of the cutting force coefficient is evalu-
ated in different radial immersions based on the nonlinear 
model of the cutting force coefficient (Fig. 8), and Fig. 9 
shows the three-dimensional SLD (n-ap-aD). The process 
system is high intermittency with decreasing aD; the cutting 
stability region becomes larger. Considering the nonlinear 

Fig. 4   Relationship between 
cutting force coefficients and 
cutting parameters. (a) Relation-
ship curve between ae and K. 
(b) Relationship curve between 
ap and K. (c) Relationship curve 
between fr and K. (d) Relation-
ship curve between n and K 

Fig. 5   Comparison of experi-
mental data and model simula-
tion for the cutting force. a The 
cutting force in the x direction. 
b The cutting force in the y 
direction
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relationship between model parameters and cutting param-
eters, the cutting depth has different changes in the corre-
sponding speed region. When aD is decreased from 100 to 
10%, the limiting cutting depth is approximately increased 
by 2–3 times within the spindle speed of 2000–10000 rpm.

Fig. 6   Modal experiment of the 
machining system. a Experi-
mental site. b Response signal

Table 2   Modal parameters of the machining system

Direction m (kg) wn (Hz) ξ (%)

x 1.5 2170 4.78
y 0.8 2025 3.51

[19]

[19]

Fig. 7   Convergence of the eigenvalues. a Convergence rate of the critical eigenvalue for different discretization methods. b Stability boundary 
for different discrete parameters
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When aD = 25%, based on the milling experiments of 
the aluminum alloy (Fig. 10), the stability regions of the 
variable pitch tool with different types of cutting force coef-
ficients are compared to verify the prediction accuracy of 
the theoretical model. As shown in Fig. 10(a), the nonlinear 
cutting force coefficient can improve the prediction accuracy 
of the cutting stability of the mechanical model. Based on 
the relationship between the eigenvalues of the system and 
cutting parameters in Fig. 10(b), it is obvious that the chang-
ing of eigenvalues of the system is more significant in the 
low-speed region (2000–4000 rpm). It also shows that the 
stable regions of different types of cutting force coefficients 
are more obviously in the low-speed region. Therefore, the 
dynamic characteristics of the machining system have a 
more sensitive dependence on the model parameters under 
low-speed cutting conditions.

Fig. 8   Evaluation of the cutting force coefficient matrix

Fig. 9   Stability lobe diagram. a Three-dimensional SLD. b Two-dimensional SLD with different aD

[43]

Fig. 10   Milling stability lobe diagram. a Comparison between SLD with constant, nonlinear, and linear [43] cutting force coefficients. b Distri-
bution of system eigenvalues
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5 � Conclusion

In this paper, combining the multiple delays and the regenera-
tive effect, a dynamic cutting force and a dynamics mode of 
variable pitch tools are developed in the machining process. The 
state item is approximated by using the Gauss integral method, 
and linear interpolation is utilized to approximate the periodic 
and the delay terms. Then, the state transition matrix of the dis-
crete system in the multiple delays period is obtained to analyze 
the milling chatter, and the cutting stability of the machining 
system is predicted based on the Floquet theory. According 
to the experimental data of the cutting force about aluminum 
alloy milling with the variable pitch tool, the influence law of 
cutting parameters on cutting force coefficients is conducted to 
acquire a nonlinear model of cutting force coefficients. The con-
vergence speed of the proposed method is faster by comparing 
the convergence of the Gauss FDM and the traditional linear 
FDM on the eigenvalues of the state matrix of the dynamic 
model, which indicated that the proposed method has higher 
prediction efficiency than others. A three-dimensional SLD of 
the variable pitch tool is drawn to determine the boundary con-
ditions of various cutting parameters for stable cutting, and the 
limiting cutting depth of the tool increases by 2–3 times when 
the radial invasion aD changes from 100 to 10%. The stabil-
ity regions of three different types of cutting force coefficients 
are predicted by using Gauss FMD method. Combining with 
the milling experiment of the variable pitch tool, it is verified 
that the nonlinear cutting force coefficient can be better for 
improving the accuracy in the stability prediction than linear 
and constant cutting force coefficients. It was also found that the 
changing of dynamic model parameters is more sensitive on the 
low speed range of the spindle speed (2000–4000 rpm), and the 
vibration reduction performance of variable pitch tools is more 
significant under low speed cutting conditions.
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