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Abstract
Modelling of the cutting process needs to move from 2D to 3D configurations to get closer to industrial applications. This
study introduces a predictive 3D finite element model of free orthogonal and oblique cutting with an artificial neural network
(ANN)-basedmaterial flow law and experimental validation in strictly the same conditions (cutting and geometrical). The flow
law based on a neural network allows simulating the cutting process based on data coming from the material characterization
tests without requiring any postulate concerning the expression of the flow law. The developments are applied to the formation
of continuous chips for the titanium alloy Ti6Al4V, and an unseen broad range of 36 cutting conditions is considered: two
cutting edge inclinations, three uncut chip thicknesses and six cutting speeds. The predictive performance of the model (i.e.,
the evaluation of the trends of fundamental variables with the absence of tuning of both numerical parameters and model
features when cutting conditions are significantly modified) is high for the forces, mainly cutting and passive, and the chip
thickness ratio on all 36 cutting conditions. The accuracy of the main cutting force is excellent: the average difference with the
experiments is 4%, within the experimental dispersion. No significant degradation of the results is brought by the apparition
of the third, out-of-plane, force, which shows the ability of the model to handle orthogonal and oblique cutting configurations.

Keywords Oblique cutting · Finite element method (FEM) · Predictive model · Artificial neural network (ANN) ·
Material flow law

1 Introduction

Selection of the tools and the cutting conditions in machin-
ing are still difficult to achieve because of the high level
of complexity and the related nonlinear phenomena. Com-
prehension of the influence of the process parameters on
the quality of a component and its optimization are also a
challenge for the same reasons. In the frame of digital man-
ufacturing and Industry 4.0, modelling the cutting process
supports them, while remaining a challenging task. As high-
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lighted byArrazola et al. [1],most finite element (FE)models
are developed in 2D (orthogonal cutting configuration usu-
ally) although industrial applications require 3D modelling.

The behaviour of the machined material is one of the key
aspects of a FE model [1, 2]. Research is very intense in this
area, leading to a growing number of constitutive material
models ranging from empirical models to physical mod-
els, some including microstructure effects [2]. The empirical
thermo-elasto-viscoplastic Johnson-Cook (JC) model [3] is
still the most widely used to this day:

σ y =
(
A + B ε pn

) (
1 + C ln

ε̇ p

ε̇
p
0

)

(
1 −

[
T − Troom

Tmelt − Troom

]m)
(1)

In thismodel, the flowstress,σ y , is a function of the plastic
strain, ε p; the plastic strain rate, ε̇ p; and the temperature, T . It
is composedof three termsdescribing independently the plas-
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tic, viscous and thermal aspects. One of the points in favour
of its adoption is the rather limited number of parameters
to be identified, 5: A, B, C , m and n. Here, ε̇ p

0 is the refer-
ence plastic strain rate, while Troom and Tmelt are respectively
the ambient (room) and melting temperatures. More recent
models developed on this basis, such as that of Calamaz et
al. [4], increase this number of parameters (for the particu-
lar Calamaz model to 9). Other authors have also used the
Zerilli-Armstrong model to simulate cutting processes [5].
The best description (in theory) of the behaviour is obtained
at the cost of a greater complexity of the identification pro-
cess and a reduction of the link with the physical meaning of
the model.

One of the problems of modelling material behaviour for
cutting simulation is the identification of parameters, espe-
cially as the experimental equipment does not allow the high
levels of strain, strain rate and temperature of machining to
be achieved [2]. Inverse identification is an alternative, but
the uniqueness of the solution is not always guaranteed [1,
2]. Early work by Özel and Altan [6] used the least squares
method to identify the input parameters of a FE model in an
inversemanner. Shrot andBäker [7] then used theLevenberg-
Marquardt algorithm for their identification of the material
parameters. They showed that similar results (cutting forces
and chip morphology) could be obtained by different sets
of parameters and thus highlighted the non-uniqueness of
the solution of the inverse problem. In addition to the flow
stress parameters, Klocke et al. [8] also identified the dam-
age parameters. In more recent work, such as Bosetti et al.
[9] and Denkena et al. [10], the approach to the inverse iden-
tification problem is shifting from optimization to artificial
intelligence (AI)-basedmethods. The downhill simplex algo-
rithm (DSA) is adopted by Bergs et al. [11] and by Hardt et
al. [12] for AISI 1045. Stampfer et al. [13] also chose DSA
when treating AISI 4140 quenched at three different tem-
peratures. In [14], Hardt et al. showed that particle swarm
optimization (PSO) was more efficient in solving the inverse
problem than DSA, even though the computational time is
still significant. In order to reduce the computational time, an
efficient global optimization algorithm (EGO) was recently
introduced byKugalur Palanisamy et al. [15]. They identified
simultaneously the parameters of the material constitutive
model and the friction model for Ti6Al4V. The identified
parameters showed good performance when applied to a dif-
ferent FE model [16]. Most of these works highlight the
non-uniqueness of the identification, and they all require
the definition of the analytical expression of the constitutive
model.

ANN (artificial neural network)-based material models
have been introduced to avoid postulating or knowing the
analytical expression of the material behaviour. Gorji et al.
[17] recently reviewed the use of recurrent neural networks
for material models, while Jamli and Farid [18] reviewed

their application in FE simulation of material forming.When
compared to classical, analytical and empirical models, such
as the JC model, they proved to be more powerful to rep-
resent the experimental behaviour [19]. The use of these
ANN-based models in FE simulation of forming processes
also turned out to provide better results than the classical
JC model [20] and to handle complex phenomena such as
dynamic recrystallisation [21]. No application of theseANN-
based models in FE simulation of cutting currently exists.

Lagrangian and Eulerian formulations are the most used
for FEmodelling of the cutting process. Combinations of for-
mulations, such asArbitrary Lagrangian-Eulerian (ALE) and
Coupled Eulerian-Lagrangian (CEL), are increasingly being
used to avoid (or reduce) mesh distortions [22]. The CEL
formulation has recently been successfully applied to the
modelling of cutting (in 2D orthogonal configuration): it pro-
vides accurate results with realistic chip shape and no mesh
distortion. The first 3D applications are found in recentworks
[23–27]. They cover orthogonal (free) cutting or a simple 3D
operation, while free oblique cutting has yet to be studied.

Experimental validation of a model is a crucial step in
modelling the cutting process. The experimental configura-
tion should be as close as possible to the simulation. For the
validation of orthogonal cutting, a rotational motion usually
generates the cutting speed. This is often done in turning [28]
or milling [23], and the diameter of the rotating workpiece
must be large enough to reduce the influence of curvature
on the results. Experimental configurations under strictly
orthogonal cutting conditions are less often adopted, for
example, on broaching machines [29] or milling machines
[30, 31]. If they remove the assumptions related to the rotary
cutting motion, they generally allow lower cutting speeds
(except on a dedicated machine, as in Afrasiabi et al. [32]).
Free oblique cutting with a straight cutting edge has not yet
been studied: all efforts have been concentrated on orthogo-
nal cutting (mainly for the validation of 2D FE models).

This paper fills the gap in the oblique cutting literature
by investigating both orthogonal and free oblique 3D cut-
ting configurations, both experimentally and numerically. An
ANN, introduced in Pantalé et al. [33], is implemented in a
FE cutting model for the first time in place of the JC ana-
lytical law. A wide range of cutting speeds (6), uncut chip
thicknesses (3), and cutting edge inclination angles (2) result-
ing in 36 different conditions are considered to demonstrate
the predictive capability of the FEmodel for the fundamental
variables. The developments are applied to the formation of
continuous chips of the titanium alloy Ti6Al4V.

2 Experimental setup

A3-axis GFMikron VCE 600 Promillingmachine is used to
perform dry orthogonal and oblique cutting tests on Ti6Al4V
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(grade 5 annealed at 750 ◦C for 1h followed by air cooling)
with the same kinematics as a shaper. As shown in Fig. 1,
the tungsten carbide tool (modified LCGN160602-0600-FG,
CP500 from SECO) is fixed on a dedicated holder (modified
CFHN-06 from SECO), and the sample to be cut is clamped
in the spindle (no rotation is allowed during the test). The top
of the sample has three ribs of 1mm width (the width of the
tool is 6mm) and 10mm length. The test consists of remov-
ing the top layer (its height is the uncut chip thickness, h) of
a rib at the prescribed cutting speed, vc. The cutting speed
is provided by the feed rate, v f , of the machine (maximum
value of 40m/min ). The tool cutting edge inclination, λs ,
results from the relative angular orientation of the tool and
the sample. Table 1 shows the cutting conditions: six cut-
ting speeds, three uncut chip thicknesses and two inclination
angles, each repeated three times. An inclination angle of
6◦ is the typical value when turning Ti6Al4V, while cutting
speeds and uncut chip thicknesses values in accordance with
recommended ranges by SECO for the standard tool [34] are
adopted.

Forces are measured with a 3-component Kistler 9257B
dynamometer and are amplified by a Kistler 5070A charge
amplifier. Acquisition is performed at 3 kHz using a Kistler
5697A2 data acquisition system and DynoWare software.
The recorded forces are thenfilteredwith a second-order low-
pass Bessel filter at 750 Hz before calculating the average
value of the steady-state signal.

All chips are collected and observed with a Dino Lite dig-
ital microscope AM7013MZT (5 MP, magnification 20×–
250×). Each chip is measured three times along its length in
order to obtain an average value representative of the whole
chip.

3 Finite element model

3.1 Modelling choices

The main objectives of a predictive model are the accurate
modelling of trends in results as conditions change and the

Table 1 Cutting conditions of the study

Parameter Values

Cutting speed, vc (m/min) 5, 7.5, 10, 20, 30, 40

Uncut chip thickness, h (μm) 40, 60, 80

Cutting edge inclination, λs (◦) 0, 6

Width of the workpiece (mm) 1

Length of the workpiece (mm) 10

Width of the cutting edge (mm) 6 (1.1 in the model)

Cutting edge radius, rβ (μm) 20

Rake angle, γ0 (◦) 15

Clearance angle, α0 (◦) 2

good agreement of predicted valueswith experimental values
(exact values are not expected due to experimental disper-
sions of at least 10% around the mean values). This type of
model is intended to support future choices anddevelopments
without the need for experimental data. No assumptions are
made about the geometry of the workpiece in the model
(i.e., its width is the same as in experiments), while keep-
ing the calculation time relevant for industrial applications.
The CEL formulation is adopted to model the dry orthogo-
nal and free oblique cutting tests with Abaqus/Explicit 2020.
The 3D model is composed of a fixed Lagrangian tool and a
Eulerian part (Fig. 2). Chip formation occurs by plastic flow
through the Eulerian domain without mesh distortion. The
Eulerian formulation allows for chip formation without dam-
age properties, by removing modelling assumptions. These
two features contribute to the cutting models providing accu-
rate results and realistic chips [22].

As shown in Fig. 3, the full width of theworkpiece (1mm),
i.e., one rib in the experiments, is modelled. To allow for chip
formation and lateral flow, the Eulerian domain is wider (it
includes the volume in which the material can move). The
volume above the initial part is also meshed with Eulerian
elements for the same reasons. As in the experiments and to
satisfy the assumption of an orthogonal and oblique free cut,
the tool is wider than theworkpiece (it is 1.1mm in themodel

Fig. 1 Experimental setup
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Fig. 2 Boundary conditions and schematic initial geometry of the
model

and 6mm in the experiments). It is very important to note
that the models are the same for both inclination angles: they
differ only in the rotation of the tool by 6◦ around the Y -axis
as in the experiments (Fig. 3). This, together with the absence
of assumptions when developing the models, contributes to
make the models predictive: no input is changed when the
cutting conditions are changed.

According to a previous sensitivity study of the mesh in
orthogonal cutting with the CEL formulation [24], the edge
size of the elements is 5 μm in the plane parallel to the cut-
ting speed. In the direction perpendicular to this plane, it
is 5 μm in the areas close to the lateral boundaries of the
Eulerian domain and 50 μm in the middle of the part. To
reduce the computation time, the size of the model depends
on the value of the uncut chip thickness. This results in a
Eulerian domain (EC3D8RT 8-node 3D linear Eulerian ele-
ments, coupled mechanical-thermal behaviour and reduced
integration) composed of 216,550 to 273,350 nodes and a
Lagrangian domain (C3D8T 8-node 3D linear Lagrangian
elements, coupled mechanical-thermal behaviour) of 4650
nodes.

Fig. 3 Configuration of the FE model for λs = 6◦

The Ti6Al4V part is assumed to be thermo-elasto-
viscoplastic (isotropic), and the inelastic thermal fraction is
0.9. The JC parameter set of Seo et al. [35] is adopted because
the value of A corresponds to the value of the typical yield
strength of Ti6Al4V, and this set was found to provide the
best results among the 20 sets available in the literature [36].
The TiN-coated tungsten carbide (WC) tool is assumed to
have linear elasticity. The material properties are given in
Table 2.

According to the experimental results of Rech et al. [39],
it is assumed that Coulomb friction occurs at the tool-piece
interface and that the coefficients of friction, μ, and heat
partition, β, depend on the cutting speed. The limiting shear
stress, τmax, is included and is given by the following:

τmax = yield stress√
3

= A√
3

(2)

All the friction energy is converted into heat. Table 3 shows
the friction coefficients adopted in this study. Gap heat con-
ductance based on the distance between the two surfaces
is not available in Abaqus/Explicit 2020. It is therefore not
included in the modelling.

An ambient temperature of 293 K is imposed on the top
and right surfaces of the tool and on the left and bottom
surfaces of theworkpiece (Fig. 2). It is assumed that radiation
and convection occur on the rake and clearance faces of the

Table 2 Materials properties [35, 37, 38]

Young’s modulus, E (GPa) Ti6Al4V 113.8†

WC 650

Poisson’s ratio, ν Ti6Al4V 0.34

WC 0.2

Density, ρ (kg/m3) Ti6Al4V 4430

WC 14850

Conductivity, k (W/m K) Ti6Al4V 6.3†

WC 100

Expansion, α (1/K) Ti6Al4V 8.6e−6 †

WC 5e-6

Specific heat, cp (J/kg K) Ti6Al4V 531 †

WC 202

JC flow stress A (MPa) 997.9

B (MPa) 653.1

C 0.0198

m 0.7

n 0.45

ε̇0 (1/s) 1

Troom (K) 293

Tmelt (K) 1873

†Dependence on the temperature, value provided at 293 K
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Table 3 Friction and heat transfer coefficients [13, 37, 39]

Cutting speed, vc (m/min) μ β

5 0.24 1

7.5 0.22 0.89

10 0.21 0.80

20 0.19 0.63

30 0.18 0.55

40 0.17 0.50

Limiting shear stress, τmax (MPa) 576

Convection, U (W/m2K ) 50

Radiation, ε 0.3

tool. The initial temperature of the tool and workpiece is set
to room temperature (293 K). The heat transfer coefficients
are provided in Table 3.

3.2 Material model of Ti6Al4V

In the numerical simulations presented inSection4, a thermo-
elasto-viscoplastic material model for Ti6Al4V is employed,
which utilizes a flow criterion based on an artificial neu-
ral network (ANN) identified for the material. This ANN is
implemented in the Abaqus/Explicit code through a Fortran
VUHARD subroutine, as proposed by Pantalé et al. [20, 33],
to compute the flow stress σ y as a function of the plastic
strain ε p, the plastic strain rate, ε̇ p, and the temperature T .
The approach replaces the analytical formulation of the flow
law, typically based on Johnson-Cook or Zerilli-Armstrong
type models, with a multi-layer ANN serving as a univer-
sal approximator. This enables the direct identification of the
neural network parameters from experimental data without
postulating a behavioural model, simplifying the procedure
and providing greater flexibility in model definition.

In contrast to the classic approach, which involves con-
ducting experiments on a material, postulating an analytical
form for the flow law and identifying the parameters that best
fit the experimental data, the use of ANN allows for direct
identification of the law from experimental data without the
need to postulate the analytical form of the flow law. This
method also enables the computation of the three derivatives
of the flow stress σ y with respect to the three input variables
of the model, which is necessary for implementing the model
as a flow law in the form of a VUHARD subroutine in the
FEM code Abaqus/Explicit. The same network architecture
and identified trained parameters are used to compute the
flow stress σ y and the derivatives in a one-step procedure
[20, 33].

In order to verify the influence of the neural network com-
plexity on the numerical results of the simulation and on the
computation time, several ANN architectures (i.e., hyperpa-

rameters of the ANN) are tested afterwards (in Section 3.4).
The chosen global architecture has two hidden layers with a
variable number of neurons for the first hidden layer (ζ = 9
to 17) and seven neurons for the second hidden layer, three
inputs (the plastic strain, ε p; the plastic strain rate, ε̇ p; and
the temperature, T ) and one output (the yield strength, σ y).
The global architecture of this type of ANN is given in Fig. 4
for nine neurons in the first hidden layer. According to Pan-
talé et al. [33], this ANN is referred to as ANN 3-9-7-1-sig,
as it has three inputs, nine neurons in the first hidden layer,
seven neurons in the second hidden layer, one output and a
sigmoid activation function. The selection of an architecture
with two hidden layers was made based on the conclusions
drawn in Pantalé et al. [33]. Additionally, the decision to use
the sigmoid activation function was guided by the findings in
Pantalé [40], who identified the most efficient and accurate
activation functions for finite element simulations in thermo-
mechanical forming.

In a preliminary phase, after having selected the global
architecture of the neural network, it is necessary to pro-
ceed to its training from some inputs. The inputs for this
application were generated from the Johnson-Cook flow law
expression reported in Eq. (1) and the identified parameters
reported in Table 2. This approach was chosen to demon-
strate the ability of the neural network flow law to replace
a classically formulated flow law such as Johnson-Cook’s
for the simulation of metal cutting. In future developments,
experimental tests on a Gleeble thermomechanical simula-
tor associatedwith Taylor impact tests or Hopkinson bar tests
will be used to generate this network training data. The train-
ing data, presented in the form of a data table containing the
plastic strain ε p, the plastic strain rate ε̇ p, the temperature T
and the flow stress σ y , is processed by a learning algorithm,
developed at LGP, in Python, using the Tensorflow library
[41]. One hour of training on a Dell XPS13 7390 laptop run-

Fig. 4 Architecture of the ANN 3-9-7-1-sig used for the flow law
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ning Ubuntu 20.04 64 bits with 16 GiB of Ram and an Intel
4-core i7-10510U processor allows obtaining the converged
parameters of the ANN model.

Once this learning phase is completed, the neural net-
work parameters resulting from the learning process are used
directly by a Python program, in charge of automatically gen-
erating the Fortran source code of the VUHARD subroutine
in order to compute the flow stress σ y and its three deriva-
tives, required for the explicit Abaqus FEM code.

Themain advantage of this approach (the use of an ANN),
after the learning phase, is that, for example, the output σ y

of the network is now linked to the inputs ε p, ε̇ p and T by
Eqs. (3) to (7) for a two-hidden layer neural network with a
sigmoid activation function as proposed previously.

Thus, in the VUHARD subroutine, the computation of the
flow stress σ y from the three input variables ε p, ε̇ p, and T is
performed using the following procedure. The first step is to
scale the input data to the interval [0, 1] using the following
equation:

−→x =

⎧⎪⎨
⎪⎩

x1 = ε p−[ε p]min[ε p]max−[ε p]min

x2 = ln(ε̇ p)−[ln(ε̇ p)]min[ln(ε̇ p)]max−[ln(ε̇ p)]min

x3 = T−[T ]min[T ]max−[T ]min

(3)

where quantities [ ]min and [ ]max are the boundaries of the
range of the corresponding field during the training phase.
Corresponding values, for the proposed case, are given in 5.
According to the architecture of the network, the outputs
of the neurons of the first hidden layer −→y1 are given by the
following equation:

−→y1 = sig
(
w1·−→x + −→

b1
)

(4)

where w1 and
−→
b1 are the weights and biases associated with

the first hidden layer and sig( ) is the sigmoid activation func-
tion defined by the equation (5):

sig(x) = 1

1 + e−x
(5)

Then, the output of the neurons of the second hidden layer
is given by the equation (6):

−→y2 = sig
(
w2·−→y1 + −→

b2
)

(6)

where w2 and
−→
b2 are the weights and biases associated with

the second hidden layer. Finally, the σ y output of the ANN
is thus given by the equation (7):

σ y = ([σ y]max − [σ y]min
) (−→w T ·−→y2 + b

)
+ [σ y]min (7)

where −→w and b are the weights and the bias associated with
the output layer.

On the other hand, the three derivatives of the yield stress
σ y with respect to the three input variables ε p, ε̇ p and T are
given by the equation (8):

⎧⎪⎨
⎪⎩

∂σ y/∂ε p = s′
1

[σ y ]max−[σ y ]min[ε p]max−[ε p]min

∂σ y/∂ε̇ p = s′
2

[σ y ]max−[σ y ]min
[[ε̇ p]max−[ε̇ p]min ]ε̇ p

∂σ y/∂T = s′
3

[σ y ]max−[σ y ]min[T ]max−[T ]min

(8)

where s′
i is the i

th component of the vector −→s ′ defined by
the equation (9):

−→s ′ = wT
1 ·

[
wT
2 ·

( −→w ◦ e−−→y2[
1 + e−−→y2

]2
)

◦
(

e−−→y1[
1 + e−−→y1

]2
)]

(9)

and ◦ is the element-wise product, known as the Hadamard
product. In Eqs. (3) to (9), quantities w1, w2,

−→w ,
−→
b1 ,

−→
b2

and b are evaluated by the training procedure of the ANN.
Corresponding values for anANNcontaining nine neurons in
the first hidden layer and seven neurons in the second hidden
layer are reported in 5. The set of Eqs. (3) to (9), together with
the network parameters identified in the learning phase, is
automatically translated into a VUHARD Fortran subroutine
used by the FEM code Abaqus to simulate the cutting model.

Because of the large number of identified parameters for
all the ANNmodels (from 114 to 202 for nine and 17 neurons
for the first hidden layer, respectively), the other four sets of
ANNparameters used in this publication canbe found in [42].

3.3 Sensitivity study of the results to mass scaling

FE modelling of the cutting process is very expensive in
terms of CPU time due to the coupling of many nonlinear
phenomena and the large amount of tinyfinite elements.Mass
scaling (MS) is introduced into the model to reduce the CPU
computation time while checking that it does not influence
the results (forces and energies) via amass scaling sensitivity
study. MS factors, MS f , ranging from 1E6 (theoretical CPU
time scale of

√
MS f = 1000) to 1 (no scale), were used for

a cutting condition (0◦, vc = 30m/min and h = 60 μm). The
same signal processing procedure is applied to the numerical
forces as to the experimental forces (cf. 2): they are filtered
with a second-order low-pass Bessel filter at 750 Hz before
calculating the steady-state average value. Table 4 gives the
results of the model with MS normalized (F̂i ) by those of the
model without MS:

F̂i = Fi with MS

Fi without MS
(10)
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Table 4 MS sensitivity study (selected MS factor, MS f , in bold;
F̂c, normalized cutting force; F̂ f , normalized feed force; K E , kinetic
energy; I E , internal energy)

MS f CPU scaling Speed-up F̂c F̂ f
K E
I E (%)

1E2 10 9 1.006 0.982 2.2E–2

1E3 32 21 1.008 0.940 2.2E–1

1E4 100 61 1.012 0.921 2.4

1E5 316 173 Erratic Erratic 22

1E6 1000 207 Unstable Unstable 58

with i = c for the cutting force and i = f for the feed force.
As expected, the real speed-up does not increase linearlywith
the MS f , but it remains significant. A MS f of 1E6 leads to
an unstable computation, and a MS f of 1E5 leads to erratic
force evolutions. These results are confirmed by high values
of the ratio of the kinetic (K E) to the internal (I E) energies
(it should not exceed a few percent [43, 44]). A value of
MS f of 1E3 is chosen as it offers a good balance between
reducing the computation time and the impact on the forces,
while keeping the K E

I E below 1%. To provide an order of
magnitude of CPU computation time, between 10 and 50h
(depending on the value of h) are required on four cores of
an Intel i7-5700HQ CPU at 2.7–3.5 GHz.

3.4 Sensitivity study of the results to the number
of neurons

The number of neurons in the hidden layers may influence
the results. A sensitivity study on the number of neurons of
the first hidden layer, ζ , is performed in order to select the
ANN offering the best balance between CPU computation
time and the quality of the results. The results of the study
are provided in Table 5. F̌i corresponds to the results of the
model with ANN normalized by those of the model with the

Table 5 Sensitivity of the forces to the number of neurons of the first
layer, ζ (selection in bold; F̌c, normalized cutting force; F̌ f , normalized
feed force)

ζ Time increase (%) F̌c F̌ f

Built-in 0 1.000 1.000

9 6 1.000 0.999

11 6 1.001 1.000

13 7 1.000 0.998

15 8 1.001 1.001

17 10 1.000 1.000

built-in JC model:

F̌i = Fi with ANN

Fi with JC
(11)

They show no influence on the numerical results for the
forces compared to the built-in Johnson-Cook model, and
only the computation time is influenced by the number of
neurons in the first hidden layer and increases with it. This
increase in computation time is not only due to the increasing
complexity of the neural network with the number of neu-
rons, but also to the need to go through a VUHARD user
subroutine. A first hidden layer of nine neurons is therefore
selected as it leads to the smallest increase in CPU computa-
tion time, without influence on the final result.

4 Experimental and numerical results

An example of the temporal evolution of the numerical and
experimental forces is plotted for the three directions in Fig. 5
at λs = 6 ◦, vc = 10m/min and h = 40m/min. The FE
models are calculated up to a few microseconds after the sta-
tionary state is reached. Then, a linear extrapolation (dashed
line between the last twomarkers in Fig. 5) is used to provide
numerical values for the same time range as the experimental
values. The average and standard deviation (2 σ ) are calcu-
lated from the3 experimental values. The resultingdispersion
is shown in Fig. 5 around the average values of each force.
Steady state takes longer to be reached for the experiments
than for the numerical model, in particular for the cutting
force. The dispersion around the evolution of the average
force is greater for the feed force than for the cutting force,

Fig. 5 Temporal evolutions of experimental (E) and numerical (N )
forces at λs = 6◦, vc = 10m/min and h = 40 μm with dispersion
around average experimental values (linear extrapolation of numerical
values in dashed)
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Fig. 6 Temperature contours (in
K) of the numerical chip after
1.5 ms at vc = 10m/min, h =
40 μm and a λs = 0◦ and b
λs = 6 ◦

while the average value of the feed force is 46% of the aver-
age value of the cutting force. The numerical cutting force
is very close to the experimental average cutting force; it is
only 4% higher. This difference, � j , is calculated by the
following:

� j =
∣∣ j (sim) − j (exp)

∣∣
j (exp)

× 100 (12)

where j is the cutting force, the feed force, the passive force
or the chip thickness. j (sim) is the average value from the
simulation, while j (exp) is the average experimental value.

The numerical feed force is underestimated by the model,
but is within the 95% experimental confidence interval. The
numerical passive force difference is also underestimated
and is not within the narrower experimental dispersion. The
difference between the average values of the experimental
and numerical feed and passive forces is 25%. A less well-
modelled feed force than the cutting force is typical of FE
models of the cutting process, and the difference with the
experimental value is similar to other studies for a narrower
range of cutting conditions [32, 45–48]. Hardt andBergs [27]
also obtained larger differences for feed and passive force

than for cutting force. The difference for passive force was
higher than for feed force, which is the opposite observation
of this work.

Numerical chips at vc = 10m/min and h = 40 μm for
0◦ and λs = 6 ◦ are provided in Figs. 6 and 7. Due to the
absence of heat gap generation in the model, temperatures
in the tool increase mainly by the heat generated by friction.
They are therefore underestimated: the maximal tempera-
ture in the tool is under 400 K (and all temperatures in the
tools are in the blue colours with the scale of Fig. 6). When
the inclination of the cutting edge is 0◦, both sides of the
chip are identical, and a symmetry plane can be drawn in
the middle of the workpiece (Fig. 7a). On the other hand,
for an inclination of the cutting edge of 6◦, the chip is no
longer aligned with the workpiece. The chip bends to one
side due to the orientation of the tool, and symmetry is lost
in both the geometry and the thermal and mechanical fields,
as shown in Fig. 7b. This produces helical chips for the incli-
nation angle of 6◦ as in the experiments. Figure8 shows the
variation of the chip thickness across its width: it is thicker
in the middle (i.e., the body of the chip) than on its sides.
This underlines the importance of 3Dmodelling, even for the
orthogonal cutting configuration as highlighted earlier [24].

Fig. 7 Temperature contours (in
K) of the back of the numerical
chip (tool is removed) after
1.5 ms at vc = 10m/min,
h = 40 μm and a λs = 0 ◦ and
b λs = 6 ◦

123



The International Journal of Advanced Manufacturing Technology (2024) 131:921–934 929

Fig. 8 Temperature contours (in
K) of the top of the numerical
chip after 1.5 ms at vc =
10m/min, h = 40 μm and λs =
0◦

The 3D modelling also allows reproducing the lateral flow
that occurs in the experiments for both values of cutting edge
inclination (Fig. 6), unlike a 2D model [23–25]. Although
this leads to higher computation times, future cutting models
should be in 3D, even when orthogonal cutting is consid-
ered. In this case, it is recommended to take advantage of
the symmetry of the configuration to reduce the computation
time. This simplification has not been included in this study
to avoid any difference in the FE models between the two
inclinations of the cutting edge.

Average values of the experimental forces and their dis-
persion are shown in Figs. 9, 10, 11, 12, and 13 together
with the average numerical values. Passive force values are
of course only plotted for λs = 6◦ as they are equal to zero
when λs = 0◦.

The increase in cutting force with uncut chip thickness
is clearly observed in Figs. 9 and 10 for both experimental
and numerical results at the two inclination angles, as well
as the decrease in force with increasing cutting speed. This
shows that temperature softening dominates strain rate hard-
ening for Ti6Al4V and is accurately modelled. Increasing
the inclination angle from 0 to 6◦ slightly reduces the cut-
ting force; this is well captured by the model. For cutting

Fig. 9 Comparison of experimental and numerical cutting forces at the
cutting edge inclination of 0◦ for the three uncut chip thicknesses and
the six cutting speeds

speeds of 20–40m/min and an inclination angle of 0◦, Fc is
almost constant with cutting speed for uncut chip thicknesses
of 40 μm and 60 μm, while it decreases slightly for 80 μm;
this small stabilization is less marked for the model.

An increase in the deviation around the average value with
the cutting speed is noted for values above 10m/min. All
numerical values are within 95% confidence of the experi-
ments (35 of the 36 conditions are within 68% confidence).
The average difference with the experiments is 4%, which
is remarkable, also considering the wide range of cutting
conditions considered and the absence of model tuning. This
underlines the predictive ability and accuracyof theFEmodel
for both inclination angles.

Figures 11 and12 show the results for the feed force,where
the two clearest trends for the experiments are its decrease
with the inclination angle and its increase with the uncut chip
thickness (even though it is lower than expected). For 80μm,
Ff decreases overall with vc in the experiments. For 40 μm
and 60μm, the force decreases at lower vc, then increases for
0◦, while a decrease is observed at all vc for 6◦ (the exper-
imental dispersion is high for both inclination angles, but
the average trend with cutting speed is clear at 6◦, not at
0◦). For the numerical values, the overall trend is the same

Fig. 10 Comparison of experimental and numerical cutting forces at
the cutting edge inclination of 6◦ for the three uncut chip thicknesses
and the six cutting speeds
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Fig. 11 Comparison of experimental and numerical feed forces at the
cutting edge inclination of 0◦ for the three uncut chip thicknesses and
the six cutting speeds

for the three uncut chip thicknesses and the two inclination
angles: a decrease for the lowest values of vc and then an
increase. It should be noted that the numerical model does
not correctly handle the trends of the feed forces: as Fig. 12
clearly shows, the numerical forces have an overall increas-
ing trend with the cutting speed, while their average value
mainly decreases when the uncut chip thickness increases.
The differences between the average numerical and exper-
imental values increase with the uncut chip thickness: the
forces are closer at 40 μm than at 80 μm. The numerical
values are generally not within the 95% confidence inter-
val (they do not clearly change with the cutting conditions).
Coupled with the differences in trends, this shows that Ff is
less well modelled (the average difference is 39%) than Fc as
usual in FE modelling of the cutting process and even more
so in 3D [27]. The influence of the uncut chip thickness on
the feed force should therefore be improved. The parameters
of the material model are known to have an impact on the

Fig. 12 Comparison of experimental and numerical feed forces at the
cutting edge inclination of 6◦ for the three uncut chip thicknesses and
the six cutting speeds

forces (and on the chip morphology) [15, 36]. The friction
model should also be improved to strengthen the results [27].

The passive force is non-zero for the inclination angle
of 6◦ (Fig. 13). Like the cutting force, it increases with the
uncut chip thickness and decreases with the cutting speed.
The comparison with experiments is broadly the same as for
Fc, except for a greater difference in themagnitude of Fp (the
average difference is 26%, but it is small in absolute terms—
less than 5N).Most of the numerical values do not fall within
the experimental 95% confidence interval. A lower magni-
tude of the passive force from the simulation than from the
experiments with the correct trends when the cutting condi-
tions change was also observed by Hardt and Bergs [27]. The
differences were mainly attributed to differences in cutting
edge radius, friction modelling and material model. In this
work, the impact of the cutting edge radius can be neglected
as it is the same in the model as in the experiments.

As far as the chip morphology is concerned, all chips are
continuous. For both the simulation and the experiments, the
chip thickness ratio, λh ,

λh = h′

h
(13)

with h the uncut chip thickness and h′ the chip thickness,
is almost independent of the uncut chip thickness (Figs. 14
and 15). It is slightly reduced from λs = 0◦ to λs = 6◦,
which means that the chip thickness decreases with the incli-
nation angle. This influence is underestimated by the model:
the reduction of λh is smaller than in the experiments. The
average difference between the experimental and numerical
λh is 17% over the whole range of cutting conditions. The
chip thickness ratio decreases with cutting speed due to the
reduction in friction, which is correctly accounted for by the
model. As with the feed force, the results should be improved
bymore complex frictionmodels and a set ofmaterial param-

Fig. 13 Comparison of experimental and numerical passive forces at
the cutting edge inclination of 6◦ for the three uncut chip thicknesses
and the six cutting speeds
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Fig. 14 Comparison of experimental and numerical chip thickness
ratios at the cutting edge inclination of 0◦ for the three uncut chip
thicknesses and the six cutting speeds

eters for which the identification includes forces and chip
thickness [15].

The differences calculated according to Eq. (12) are pre-
sented in Table 6 to provide a quantitative overview of the
results. The cutting force is the best-modelled quantity as
observed in the literature. This result was to be expected as
the parameter set of the material model was selected mainly
due to its good approximation of the cutting force [36]. As
this selection was made with a 2D model, the results show
the ability of the model to correctly handle the third (passive)
force. Based on the average differences, the performance of
the model is very close for the cutting and feed forces for
both cutting edge inclinations, although a small degradation
(1% and 2%, respectively) is noted for 6◦. This degradation
is more important (7%) for the chip thickness ratio and must
be linked to the difference in passive force. Indeed, the chip
thickness and out-of-plane force models are deeply linked.
Improving the friction at the tool-workpiece interface should

Fig. 15 Comparison of experimental and numerical chip thickness
ratios at the cutting edge inclination of 6◦ for the three uncut chip
thicknesses and the six cutting speeds

Table 6 Synthetic quantitative overview of the results

Difference �Fc (%) �Ff (%) �Fp (%) �λh (%)

Average λs = 0◦ 3 38 – 14

Average λs = 6◦ 4 40 26 21

Max. global 10 60 29 38

Min. global 1 10 19 2

Average global 4 39 26 17

Differences between the experimental and the numerical results (aver-
age difference for each cutting edge inclination and maximal, minimal
and average differences for all the conditions) for the cutting force,�Fc ,
the feed force,�Ff , the passive force,�Fp and the chip thickness ratio,
�λh

be a key point. It should be noted that the chip thickness is
very well modelled under certain cutting conditions with a
minimum difference of 2%. The difference is larger for the
feed force than for the passive force, a trend opposite to that
of Hardt and Bergs [27]. The average and range (min–max)
of the differences are larger for the feed force. The smaller
range of the passive force confirms a shift for all cutting con-
ditions, similar to the results of Hardt and Bergs [27]. Again,
the friction modelling should be the first aspect of the model
to be improved in future developments.

5 Conclusions

An experimental and numerical study of the orthogonal and
oblique free cutting of Ti6Al4V was carried out for a wide
range of cutting conditions using an ANN-based flow law.
The following main conclusions are drawn:

• The experimental study was carried out with the same
setup in free orthogonal and free oblique cutting for the
titanium alloy Ti6Al4V (the only change is the cutting
edge inclination). This is a reference to evaluate the per-
formance of the FE 3Dmodel introducing anANN-based
flow law developed under the same conditions. An unpre-
viously seen wide range of cutting conditions, 36, is
considered, including two cutting edge inclinations.

• Amajor novelty of this work is the accurate evaluation of
the fundamental variables and their trends in 3D, with-
out the need to adjust the numerical parameters and the
model characteristics when the cutting conditions and the
inclination angle are changed significantly. Themere fact
of changing the inclination angle from free orthogonal
cutting to oblique cutting while maintaining the quality
of the results has no equivalent in the current literature,
especially since no studies (experimental or numerical)
on free oblique cutting are available.

• Taking into account the material’s flow law by means
of a neural network makes it possible to overcome the
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limitations of conventional flow laws and to reduce the
approximations associated with the establishment of an
analytical formulation of the flow law as convention-
ally adopted. The numerical model is then able to better
reproduce the real behaviour of the material and to take
into account thermomechanical transformations which
are sources of nonlinearities, difficult to take into account
with an analytical flow law model. Current work, using a
Gleeble thermomechanical simulator, on the behaviour of
a modified carbon alloy AISI P20 shows the advantages
of this approach compared to models in the literature
such as Johnson-Cook, Zerilli-Armstrong [5] or Hansel-
Spittel [49], insofar as one is then able to better reproduce
more complex material behaviours.

• The cutting force is the best-modelled quantity with an
average difference of 4% with the experiments. Chip
thickness ratio and passive force show a larger devia-
tion from the experiments (17% and 26%, respectively),
but their trends as the cutting conditions change are accu-
rate. This is in line with the expected results provided by
a predictive model. The deviation for feed force is higher
(39%), and opposite trends compared to the experimen-
tal reference are observed. The lack of influence of uncut
chip thickness on friction in the model seems to be one
of the aspects to be included as a priority in future work.
The model is found to handle the occurrence of the third
force, out of plane, well without significant degradation
of the results.

• The predictive capabilities of the model make it suitable
for the development of straight-edged tools, for example.
This work also demonstrates the ability tomodelmaterial
behaviour with ANN and opens up possibilities in this
promising direction.

Appendix. Coefficients of theANN3-9-7-1-sig

In this appendix, we present the values obtained after the
training phase of an ANN containing nine neurons in the
first hidden layer and seven neurons in the second hidden
layer. Conforming to [33], this one is referred to as ANN 3-
9-7-1-sig. The training of the neural network was performed
using a dataset containing 3430 data points defined by the
following:

• 70 equidistant values for ε pε[0, 3], so that [ε p]min = 0
and [ε p]max = 3.

• 7 plastic strain rates ε̇ p ∈ [1/s, 10/s, 50/s, 500/s,
5000/s, 50, 000/s, 500, 000/s], so that [1n(ε̇ p)]min = 0
and [1n(ε̇ p)]max = 13.12236.

• 7 temperatures T ∈ [293K , 400K , 500K , 700K , 900K ,

1200K , 1500K ], so that [T ]min = 293K and [T ]max =
1500K .

Stresses in the training dataset ranges from [σ y]min =
171.4 MPa to [σ y]max = 2606.1 MPa. The results of the
training process are given hereafter for the ANN quantities
w1, w2,

−→w ,
−→
b1 ,

−→
b2 and b. The weight matrix for the first

hidden layer w1 is a 9 × 3 matrix:

w1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.87229 −0.47675 −1.50771
−0.95762 −0.25619 1.65222

−10.61660 0.22003 −0.11539
3.67883 0.37146 −1.51069

−63.39468 0.15466 −0.95431
0.54807 0.25959 −5.44355

−1.33883 0.36089 −1.66735
−0.68125 1.02121 0.34242
0.08740 0.18764 −41.32542

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The weight matrix for the second hidden layer w2 is a
7 × 9 matrix:

wT
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.66285 −0.59645 −3.17333 0.20706 1.18760 2.01250 −0.82147

−0.26237 −2.50330 −1.45941 −1.59833 4.05169 −1.21146 1.05610

−0.12958 0.67119 −5.85989 −2.55061 4.85245 4.31876 3.24070

−2.12890 0.68296 0.71183 0.81706 −0.09405 0.34919 −1.41223

2.33631 −0.08089 14.65789 0.12531 23.66363 2.55872 2.15338

0.11567 1.77629 −1.80448 0.77825 −1.58254 1.90442 1.23152

1.49265 0.41821 −3.53803 −0.48705 −0.23671 0.75887 −0.37441

0.95990 0.69041 0.43870 0.28393 −1.40101 −0.64569 −0.38964

5.89937 −0.13015 2.99264 1.78534 −3.90189 1.17494 −3.78854

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The weight vector for the output layer −→w is a 7 compo-
nents vector:

−→w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.34701
1.42079

−0.96564
0.62467

−0.56322
0.40960

−0.42810

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The biases of the first hidden layer
−→
b1 is a 9 components

vector:

−→
b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.57141
0.22673

−1.16985
−0.11246
−0.82210
−2.13264
0.78794
1.20434

−3.48681

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The biases of the second hidden layer
−→
b2 is a 7 components

vector:

−→
b2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.36566
−1.14445
−0.79065
−0.50670
1.30136
0.04521

−0.29995

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The bias of the output layer b is a scalar:

b = 0.04213

The corresponding coefficients for the other networks
identified during this work (ANN 3-11-7-1-sig, ANN 3-13-
7-1-sig, ANN 3-15-7-1-sig and ANN 3-17-7-1-sig) can be
found in [42].
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