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Abstract
Smart manufacturing systems combine sensor systems and manufacturing processes, and they have been widely adopted in 
the industry to solve real production problems, help manufacturing enterprises achieve rapid decision-making, and improve 
manufacturing value. However, manufacturing enterprises still face huge challenges with the coexistence of continuously 
changing dynamic demands, collaborative scheduling of dynamic resources, precise matching of manufacturing resources, 
and multiple resource constraints. To address this challenge, this research combines digital twin (DT) technology to propose 
a smart site-selection system with dynamic resource-accurate matching characteristics based on the attributes and associa-
tions of both resource sides, supply and demand sides, and site-selection sides, which can integrate and optimize resources 
according to the requirements of manufacturing tasks. In addition, by establishing the discovery mechanism of bottleneck 
processes and resource allocation methods, generating configuration priorities, and thus reducing the solution space for 
resource allocation, the precise allocation of limited resources is achieved more quickly and easily, and the scheduling chaos 
in the parallel scheduling of multiple resources is solved and the multi-objective robust optimization model is solved by 
combining smart optimization algorithms. Combined with the example analysis, the results show that the smart site-selection 
system and multi-resource cyclic allocation mechanism proposed in this paper can collaboratively match a large amount of 
dynamic resources, and the utilization rate of idle manufacturing resources can be increased by 60%. This research effec-
tively realizes the optimal allocation of multiple manufacturing resources in a resource-constrained environment and helps 
manufacturing enterprises create more manufacturing value.
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1  Introduction

With the development of digital network and the wide appli-
cation of sensors in industry, the manufacturing industry has 
entered the digital era. Meanwhile, the manufacturing indus-
try is facing challenges from the complex market environ-
ment and the rational allocation and utilization of resources 
in the manufacturing process. In this context, more and more 

manufacturing strategies are proposed by scholars, such as 
Industry 4.0 and IoT technologies. These strategies have the 
common aim of achieving smart manufacturing [1]. Smart 
manufacturing (SM) integrates the next generation of infor-
mation manufacturing technologies and integrates them 
throughout the product lifecycle. Active manufacturing tech-
nologies can respond in real time to complex and diverse 
situations in manufacturing. Germany, the USA, and other 
advanced manufacturing countries have been developing 
technologies to achieve smart manufacturing in various fields 
in the past few years. A key application of smart manufactur-
ing is to help enterprises achieve prediction and modeling, a 
process that requires effective visualization of products for 
analysis and the sharing of various data across the product 
lifecycle [2]. The digital network combines effective data 
computation output with the physical implementation of the 
data [3]. Computational tools can be used to predict future 
states and failures, thus generating better service and control 
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solutions. Smart manufacturing can start with digital twin 
technology. Digital twin refers to the organic whole of phys-
ical assets and their digital representation communicating, 
facilitating, and co-evolving with each other through two-
way interaction. DT digitizes entities and relationships in the 
physical world as a whole through various digital technolo-
gies, together with sensor data collection, big data analytics, 
and machine learning. DT can be used for monitoring, diag-
nosis, prediction, and optimization. Essentially, DT involves 
creating virtual models of physical entities in digital form 
to simulate entity behavior, monitor ongoing states, identify 
internal and external complexity, detect anomalous models, 
react to system performance, and predict future trends [4]. 
Essentially, DT involves creating virtual models of physi-
cal entities in digital form, monitoring ongoing states, and 
detecting anomalous models, ultimately reacting to system 
performance and predicting future trends. With the rising 
market demand, the development of DT shows new trends. 
For example, the application of DT has been gradually 
expanded from the initial military and aerospace fields to the 
civil field in recent years [5]. The international mainstream 
digital twin vendors and solutions are shown in Table 1.

The rational allocation of manufacturing resources mainly 
lies in the realization of cross-organizational coordination 
among enterprises, which will have certain requirements in 
terms of timely data sharing and response speed in the face 
of an unexpected market environment. There are still some 
challenges in the manufacturing resource allocation problem, 
and most of the previous manufacturing resource allocation 
is limited to the integration of resources within enterprises. 
However, with the development of digital networks, enter-
prises are more frequently connected, and interoperability 

of manufacturing resources in a cooperative manner already 
exists among some enterprises to enhance the overall manu-
facturing value among enterprises. Wang et al. modeled 
the corresponding services based on the digital twin to 
achieve resource allocation [6]. Wu et al. established a better 
resource allocation scheme for the resource allocation plan-
ning problem combined with a Bayesian approach [7]. Lee 
et al. proposed a smart data management resource allocation 
system designed to provide efficient and timely decisions for 
resource allocation; the complex system consists of product 
materials, people, information, control, and support functions 
to ensure production efficiency [8]. Chu et al. combined fuzzy 
integrated evaluation method to achieve optimal allocation of 
manufacturing resources including process planners, cutting 
tools, and manufacturing processes for aircraft construction 
[9]. Luo et al. combined a data-driven modeling and simu-
lation approach to ultimately achieve dynamic manufactur-
ing resource allocation [10]. Lee et al. proposed a resource 
allocation system, which combines fuzzy logic concepts to 
achieve better resource allocation [11].

In the manufacturing process, according to the demand 
of manufacturing tasks, a large number of manufactur-
ing services with similar functional characteristics will be 
generated. The complexity and diversity of manufacturing 
resources also increase the difficulty of resource allocation 
in manufacturing enterprises. Cao et al. proposed a method 
for selection of resource services based on the degree of 
dominance of intuitionistic fuzzy values, and discussed the 
performance and advantages of the method [12]. Wang et al. 
developed a smart resource allocation model using genetic 
algorithms to reduce the late delivery rate of orders, com-
municating the allocation of resources to each order through 

Table 1   Digital twin manufacturers and solutions

Trade names Solution Application area Industry application

Ansys Ansys Twin Builder Digital twin production equipment, digital 
twin based on empirical equation, digital 
twin based on simulation

Automotive, equipment, aerospace, and 
defense

AVEVA Unified Operations Center, 
PI System, Process Simu-
lation

Factory design, safe production and operation Chemical, energy, power, and other process 
industries

Altair Altair Activate Product development and operation Automotive, consumer electronics, aerospace, 
energy

Bentley iTwin Platform Design, planning, construction, operation, etc Digital city, manufacturing, power generation, 
utilities and communications, rail transporta-
tion, mining and marine engineering, etc

Dassault Systems 3DEXPERIENCE Design, production, manufacturing, delivery, 
operation, etc

Aerospace and defense, shipbuilding and 
marine engineering, industrial equipment, 
life science and health care, etc

ESI Group Hybrid twin Predictive physical models and virtual 
prototyping

Aerospace and defense, automotive, energy, 
heavy machinery

GE Digital Predix Multi-level data and information throughout 
the life cycle of parts

Aviation, electricity, oil and gas, manufactur-
ing, etc
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a fuzzy inference module [13]. Guo et al. used fuzzy averag-
ing algorithm to determine the priority of multiple objec-
tives for the optimization problem of manufacturing resource 
combination in group production [14]. Lee et al. proposed a 
smart data management-induced resource allocation system 
consisting of product material, people, information, control, 
and support functions to ensure productivity [8]. Chen et al. 
designed a fuzzy Markov model to evaluate the reliability 
of manufacturing systems, in response to the problem that 
the performance of manufacturing systems in enterprises can 
hardly meet the manufacturing needs of enterprises [15]. Xu 
et al. proposed a fuzzy two-level planning model to better 
achieve a rational allocation of manufacturing resources after 
considering customer uncertainty and supplier’s interest and 
analyzing the manufacturing resource allocation process [16].

Based on the previous research on the application of digi-
tal twin technology in enterprise co-production and the exist-
ing research on co-production, we found that there are still 
some shortcomings. First, the current digital factory research 
faces problems such as independent data and information, 
difficulty in establishing complex resource scheduling models 
between enterprises, and applications that cannot be managed 
autonomously [17]. In addition, in terms of digital twin appli-
cations, the existing digital twin technology mainly focuses 
on the development and exploration of the corresponding 
concepts, but there is a lack of research on the in-depth inte-
gration of digital twin and collaborative manufacturing pro-
cess, and there is not enough research on the production site 
selection process of manufacturing enterprises. In terms of 
collaborative manufacturing, it is difficult for manufacturing 
enterprises to develop and utilize big data with the help of 
digital twin technology, and there is a lack of research on the 
reasonable use of shared resources and the design of transfer 
schemes in the site selection process. In addition, there is 
usually a problem of reasonable allocation of multiple manu-
facturing resources (e.g., labor, equipment, raw materials, 
information systems) in the site selection process, and it is 
difficult for manufacturing enterprises to reasonably allocate 
limited manufacturing resources to new production sites. 
Based on the analysis of the above problems, we propose a 
smart collaborative manufacturing system based on digital 
twin to help manufacturing enterprises realize the rational 
scheduling of multiple resources present in the site selection 
process and generate the corresponding production plans. 
The main contributions made in the article are as follows:

•	 This paper proposes a smart collaborative manufacturing 
system based on digital twin technology to help manu-
facturing enterprises to analyze big data accurately and 
make reasonable site selection, resource allocation, and 
production planning plans with the help of sensors.

•	 This paper establishes a funnel model for analyzing the 
resource constraint environment by analyzing the attrib-

utes of both resource sides, supply and demand sides, and 
site selection sides and their correlation with each other, 
and integrates and optimizes the existing manufacturing 
resources by allocating the order tasks.

•	 By establishing the manufacturing resources needed for 
the bottleneck process, the optimal matching of resources 
is precisely realized, reducing the solution space and 
achieving the precise allocation quickly and easily.

•	 Different from the traditional resource allocation, facing 
the problem of difficult to quantify indicators in the pro-
cess of collaborative scheduling of multiple manufactur-
ing resources (the proficiency of workers’ operation, the 
depreciation of equipment, the adaptation matching of 
information system, etc.), this paper realizes the parallel 
scheduling decision of multiple resources based on the 
arithmetical intuitionistic fuzzy generalized �− Shapley 
Choquet ( AIFGSCg� ) operator, which solves the chaotic 
problem of parallel scheduling of resources in the schedul-
ing process; for the quantifiable capacity enhancement prob-
lem, a multi-objective robust optimization model is estab-
lished and solved using a population intelligence algorithm.

	   The structure of the article is as follows: Section 2 is 
an introduction to the collaborative siting model based on 
dynamic resource scheduling, which includes as follows: 
the application of digital twin technology in smart col-
laborative manufacturing in combination, the manufactur-
ing environment under multiple resource constraints, the 
funnel model based on digital twin technology, and the 
introduction to the cyclic allocation system of manufac-
turing resources. Section 3 is an introduction to the multi-
resource scheduling model based on AIFGSCg� operator, 
which includes an introduction to the relevant fuzzy theory 
and its application in a multi-resource constrained environ-
ment. Section 4 is an introduction to the construction of a 
multi-objective collaborative optimization model for the 
site selection process of manufacturing enterprises. Sec-
tion 5 is an example analysis. Section 6 draws conclusions 
of the article and proposes future research directions.

2 � DT‑assisted collaborative site selection 
model based on dynamic resource 
scheduling

In the limited resource environment, collaborative manu-
facturing enterprises are faced with capacity constraints of 
bottleneck processes, and some manufacturing enterprises 
need to add new sites to face the increasing market demand, 
while in this process, manufacturing enterprises also face 
the problem of insufficient manufacturing capacity to 
regulate manufacturing resources. This study combines 
a funnel model to analyze the resource requirements of 
critical processes and solves the problem of collaborative 
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scheduling of multiple manufacturing resources by con-
structing a multi-objective siting model for collaborative 
manufacturing enterprises in a manufacturing environment 
with multiple resource constraints. In this process, com-
pared with the traditional equipment scheduling problem, 
we combine digital twin technology to realize resource 
information sharing among collaborative manufacturing 
enterprises, and establish the optimal resource scheduling 
solution, site selection solution, and corresponding pro-
duction solution by simulating the scheduling results of 
multiple resource scheduling solutions by computer. The 
principle of the smart collaborative manufacturing system 
based on the collaborative manufacturing enterprise site 
selection process species is shown in Fig. 1.

Firstly, the manufacturing resource provider combines 
sensors and other monitoring devices to store and upload 
various types of manufacturing resource information (such 
as the wear and tear level and working status of equipment 
resources, the proficiency level of talent resources, and the 
data analysis function of information systems) to the shared 

platform. In addition, the data at the end of the market will 
also be collected and stored in real time through comput-
ers and other market terminal devices, and then uploaded 
to the shared platform after sorting. The main role of the 
digital twin system lies in two aspects. On the one hand, 
the digital twin system combines data information to clas-
sify various manufacturing resources and establishes bot-
tleneck processes according to the funnel model to clarify 
various manufacturing resource information required in this 
production cycle. On the other hand, the digital twin system 
can simulate the scheduling process of various manufactur-
ing resources in the manufacturing network and construct a 
complex manufacturing resource analysis model and a multi-
objective robust optimization function. Combined with the 
swarm intelligence algorithm, the digital twin system estab-
lishes the optimal benefits under different scheduling condi-
tions and uploads the results to the sharing platform. Finally, 
the manufacturing resource demand side makes decisions on 
various scheduling situations and results based on its own 
needs. The manufacturing enterprise realizes the scheduling 

Temperature sensors Pressure sensorsChemical sensors Humidity Sensors Liquid level sensors
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End Market Data
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Fig. 1   Smart collaborative manufacturing system based on site selection
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of various manufacturing resources according to the final 
scheduling decision scheme and produces according to the 
production plan. In the production process of manufacturing 
enterprises, it is necessary to combine all kinds of monitor-
ing equipment to make real-time statistics, store all kinds of 
data information, and upload them to the sharing platform 
for other manufacturing enterprises to realize manufacturing 
resource scheduling decision in the next cycle. In the pro-
cess of site selection, manufacturing enterprises often face 
the problem of insufficient capacity at the new site, which 
mainly involves the following aspects:

•	 New site locations tend to create bottleneck processes 
that limit further capacity increases.

•	 Manufacturing enterprises themselves contain a limited 
number of manufacturing resources that make it difficult 
to provide better production services to new manufactur-
ing sites.

•	 The variety and sources of manufacturing resources 
within the platform make it difficult to achieve optimal 
decision-making.

•	 After the scheduling of multiple manufacturing resources 
is realized, the value of resources is still difficult to best 
match the actual required manufacturing value, which eas-
ily causes the problem of wasting manufacturing resources.

•	 Different locations face different manufacturing costs, 
and it is difficult to calculate the best production planning 
plan and scheduling plan of manufacturing resources.

2.1 � Multi‑resource constrained manufacturing 
environment

In the manufacturing process, manufacturing enterprises 
often face difficulties in increasing production capacity, 
which is partly caused by some bottleneck processes result-
ing in limited capacity. In addition to bottleneck process 
limitations, manufacturing enterprises are faced with a vari-
ety of manufacturing resources limited manufacturing envi-
ronment. The common manufacturing resources are mainly 
raw material resources, human resources, and equipment 
resources. In the environment of big data analytics, enter-
prises need to use suitable data analytics systems to assist 
production. As a result, manufacturing enterprises face the 
manufacturing situation of collaborative scheduling of mul-
tiple manufacturing resources. The specific multiple manu-
facturing resource-constrained environment and its schedul-
ing process are shown in the following figure (Fig. 2):

The corresponding model with basic parameters is con-
structed as follows: Assume that a distributed manufacturing 
network contains a total of J wholesalers. There are I sub-
sidiaries in the manufacturing enterprise Mt , and the number 
of scheduling available equipment is A . The following defi-
nitions are made: the nodes are represented by T , I,K, J,P , 

where {1, 2, ..., T} ∈ T  , {1, 2, ..., I} ∈ I  , {1, 2, ...,K} ∈ K  , 
{1, 2, ..., J} ∈ J , and {1, 2, ...,P} ∈ P are the set of Mt , Ci , 
Wk , DJ , and RP nodes of the manufacturing enterprise, sub-
sidiary enterprise, repository, wholesaler, and retailer. 
{1, 2, ...,M} ∈ M is the set of products. Ctm�

ij
,C

tm�

ij
, and Ctm�

ij
 

represent the labor cost, material cost, and other cost, respec-
tively. Vtm

ij
 is the sales price. Ctm

ijd
 represents the unit product 

transportation price of the unit product. D represents the set 
of transportation modes, d ∈ D . The arrival of goods 
received is Qtm

ijn
= Qtm

ij
∗ (1 − etm

ijd
) . The wholesaler’s order 

quantity is Qtm
ji

 . Qtm
pj

 represents the predicted demand. Qtm
kmax

 
represents the maximum storage capacity. Qtm

kn
 denotes the 

existing warehouse reserves, and Qtm
kn

∈ [0,Qtm
kmax

] . Qtm
jkn

 rep-
resents the actual cargo arrival, and Qtm

jkn
= Qtm

jk
(1 − etm

jkd
) , 

where Qtm
jk

 and etm
jkd

 represent the cargo volume and path wear 
rate respectively. Qtm

ki
 represents the amount of goods that the 

warehouse Wk returns the remaining goods of product m to 
the subsidiary Ci of the manufacturing enterprise Mt for 
reprocessing. Qtm

ijr
 and Qtm

ijf
 represent the reprocessing cargo 

volume of the subsidiary Ci of the manufacturing enterprise 
Mt and the cargo volume processed by the production line. 
Ttm
ijr

 and Ttm
ijf

 respectively represent the time required for the 
unit product reprocessing of product m and the time required 
for the production line processing. Ttm

aii′
 represents the sum 

of transportation and equipment adjustment time required 
for equipment to be transported from subsidiary Ci to sub-
sidiary Ci′ . Ttm

ijd
 denotes the unit product transportation time.

In this resource-constrained environment, manufacturing 
enterprises usually find it difficult to cope with the complex 
market environment and their own capacity load. Therefore, 
when faced with the problem of increasing market demand 
and building new sites, most manufacturing enterprises 
choose to increase their production capacity by scheduling 
their own equipment or purchasing new equipment, but at 
the same time, this will mean increasing the production cost 
of manufacturing enterprises, so the process of scheduling 
manufacturing resources among collaborative manufactur-
ing enterprises means increasing the value of manufacturing 
resources. Conventional manufacturing resource scheduling 
mainly contains equipment resources, human resources, etc. 
The matching of information system will also enhance the 
manufacturing capability of manufacturing enterprises to a 
certain extent. The process of scheduling equipment resources 
usually implies the improvement of production capacity to 
better match the market demand. Compared with equipment 
resources, the proper allocation of human resources and 
information system will mean the improvement of equip-
ment monitoring capability, fault prediction capability and 
the reduction of product defect rate in manufacturing pro-
cess. For equipment resources, the inter-enterprise equipment 
scheduling process can be reasonably calculated through a 
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formula to increase capacity, but at the same time, equipment 
depreciation, wear and tear, and model issues should also be 
taken into account. After idle equipment scheduling between 
manufacturing companies, the current manufacturing capacity 
of manufacturing enterprise Mt  for product m is:

where: COtm
i

 denotes the manufacturing capacity of sub-
sidiary Ci . Qtm

ki
 denotes the existing storage capacity of 

warehouse Wk corresponding to subsidiary Ci . When the 
manufacturing enterprise faces the problem of insufficient 
capacity in the process of site selection, it needs to achieve 
capacity growth through the scheduling of equipment 
resources. After scheduling, the capacity of subsidiary Ci is:

(1)
I∑

i=1

J∑
j=1

Qtm
ij

=

I∑
i=1

COtm
i
+

K∑
k=1

I∑
i=1

Qtm
ki
, t ∈ T ,m ∈ M

(2)

CO�tm
i

= COtm
i
+

A∑
a=1

T∑
t�=1

I∑
i�=1

xt�m
ai�i

ΔCOt�m
ai�i

, i ∈ I, t ∈ T ,m ∈ M

(3)
A∑

a=1

I∑
i=1

I∑
i�=1

xt
�m
aii�

≤ A, t� ∈ T ,m ∈ M

where CO′tm
i

 denotes the manufacturing capacity of sub-
sidiary Ci after equipment resource scheduling. xt′m

ai′i
 denotes 

the decision variable that determines whether equipment a 
of subsidiary Ci′ within manufacturing company Mt′ needs 
to be scheduled, and if scheduling is performed xt′m

ai′i
=1, 

then the device needs to be scheduled. When xt�m
ai�i

= 0 , the 
equipment does not need to be dispatched. ΔCOt�m

ai�i
 indicates 

the calculated amount of capacity improvement regarding 
product m after dispatching equipment a of subsidiary Ci′ 
within manufacturing company Mt′ to subsidiary Ci within 
manufacturing company Mt′ . Correspondingly, the new 
manufacturing capacity of manufacturing enterprise Mt′ 
with respect to product m after the equipment resources are 
dispatched is:

(4)

f (Qtm
ki
,ΔCOt�m

ai�i
) =

I∑
i=1

J∑
j=1

Qtm
ij

=

I∑
i=1

CO�tm
i
+

K∑
k=1

I∑
i=1

Qtm
ki

=

I∑
i=1

COtm
i
+

A∑
a=1

T∑
t�=1

I∑
i�=1

I∑
i=1

xt�m
ai�i

ΔCOt�m
ai�i

+

K∑
k=1

I∑
i=1

Qtm
ki
, t ∈ T ,m ∈ M
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Fig. 2   Multi-resource constrained environment and its scheduling process
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After the scheduling of equipment resources, the common 
costs are mainly divided into: scheduling costs of equipment 
resources, production costs, transportation costs, and site 
selection costs. Correspondingly, the profit of manufacturing 
enterprise Mt is:

(5)

f tm(x) =

I∑
i=1

J∑
j=1

Qtm
ij
Vtm
ij

−

A∑
a=1

I∑
i=1

I∑
i�=1

(Ctm
aii�

+ Ctm
ai�
)

−

I∑
i=1

J∑
j=1

[Qtm
ij

∗ (Ctm�
ij

+ C
tm�

ij
+ Ctm�

ij
)]

−

I∑
i=1

J∑
j=1

(Qtm
ij

∗ Ctm
ijd
) −

I∑
i
��

Ctm

i
�� , t ∈ T ,m ∈ M, d ∈ D

where Ctm
i′′

 is denoted as the plant construction cost of the 
additional plant site Ci′′ for manufacturing company Mt.

Manufacturing enterprises often face a variety of uncer-
tain factors in the manufacturing process, such as changes 
in market demand [18], uncertainty in enterprise output 
[19], and unstable performance of manufacturing resources 
after scheduling. Under the influence of various uncer-
tain factors, it is difficult for manufacturing enterprises to 
achieve the best production plan for production. Therefore, 
in order to alleviate the negative impact of uncertainties, 
we establish the corresponding robust optimization formula 
according to [20]. The corresponding robust optimization 
formulation is established as follows:

where Q�tm∗
ki

 represents the optimal output of the manufactur-
ing system. g

(
Q�tm∗

ki
,ΔCO�t

�
m

ai
�
i

)
≤ 0 represents the relevant 

equality and inequality constraints in actual production.

(6)
minmax
i,i�∈I,j∈J

{
f
(
Q�tm

ki
,ΔCO�t�m

ai�i

)
− f

(
Q�tm∗

ki
,ΔCO�t�m

ai�i

)

f
(
Q�tm

ki
,ΔCO�t�m

ai�i

)
|||||
g
(
Q�tm∗

ki
,ΔCO�t�m

ai�i

)
≤ 0

}
, t, t� ∈ T ,m ∈ M,∀�

Therefore, there is the basic multi-objective robust site 
selection optimization model as:

minmax
i,i�∈I,j∈J

{
f
(
Q�tm
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,ΔCO�t�m

ai�i
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− f

(
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(
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(
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}
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2.2 � DT‑based funnel model

The digital twin system achieves dynamic simulation of the 
production process by constructing the entire production 
scenario and modeling it in the production process. Taking 
Tencent’s “Transparent Factory” project as an example, the 
digital twin technology can realize automatic collection and 
integration of production, process, monitoring, quality, cost 
and other data, and then complete 3D dynamic modeling to 
realize data visualization [21]. There are many uncertain 
factors in modern manufacturing processes, which will lead 
to frequent transfer of bottleneck processes. Manufacturing 
enterprises make production planning and control decisions 
based on dynamic bottleneck processes to cope with the 
occurrence of uncertain factors [22]. The common response 
methods for bottleneck processes are usually to maintain the 
normal operation of the bottleneck process. In order to pre-
vent equipment failures in other processes, a certain reserve 
is usually set in advance to ensure the continuous operation 
of the bottleneck process [23]. However, this approach still 
limits the output of manufacturing enterprises. Based on the 
funnel model proposed by Ma et al. based on the critical 
process identification process [24], we made corresponding 
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improvements to identify the corresponding bottlenecks in 
the process as shown in Fig. 3.

The bottleneck process is identified by identifying the 
input and output volumes of the critical process, and the 
existing manufacturing resources are combined to increase 
the throughput of the bottleneck process until it becomes a 
non-bottleneck process, and then the next bottleneck process 
is found. After the next bottleneck is identified, the process 
of mobilizing existing manufacturing resources is repeated 
to help increase the overall throughput of the manufacturing 
system until the remaining manufacturing resources cannot 

be allocated to any of the processes. The corresponding 
manufacturing resource cycle allocation process is shown 
in Fig. 4.

The circular allocation of manufacturing resources 
designed for bottleneck processes can allocate the maximum 
amount of available idle resources to the required processes. 
The inflow of each process during the process flow is equal 
to the output of the previous process, so there is:

(7)
R∑
r=1

Qtimrl
Output

=

R∑
r=1

Q
timr(l+1)

Input
, t ∈ T , i ∈ I,m ∈ M, l ∈ L

Fig. 3   Funnel model for identi-
fying bottleneck processes
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where Qtimrl
Output

 and Qtimr(l+1)

Input
 denote the output and inflow of 

the parallel processes in step l and (l + 1) of the process of 
producing product m by subsidiary Ci in manufacturing com-
pany Mt , respectively. The actual processing volume of the 
process in the production process is limited by the output 
volume of the previous process, and since the processing 
volume of some processes does not reach the maximum pro-
cessing volume of the process, so there is:

where Qtimrl
Actual

 and Qtimrl
Process

 indicate that the actual processing 
volume of the process at step l in the process of producing 
product m in subsidiary Ci within manufacturing enterprise 
Mt should be no more than the theoretical processing vol-
ume, respectively. It is the limitation of the upstream bot-
tleneck process that causes the processing volume of the 

(8)Qtimrl
Actual

≤ Qtimrl
Pr ocess

, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

downstream process not to reach the theoretical processing 
volume, so there is:

where Δtimrl
Actual

 denotes the processing volume difference of 
the process at step l in the process of producing product m 
by subsidiary Ci within manufacturing enterprise Mt . In a 
process, flow process is usually accompanied by the emer-
gence of multiple poorly processed processes; the most criti-
cal bottleneck processes should be identified and resourced 
in a timely manner to achieve an increase in capacity, so 
there are:

(9)
Δtimrl

Actual
= Qtimrl

Pr ocess
− Qtimrl

Actual
, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

(10)Δtimrl
Actual

> 0, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

(11)Δtimrl
Actual

= 0, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

(12)argmin
r

{
Δtimrl

Actual

}
= argmin

r

{
Qtimrl

Pr ocess
− Qtimrl

Actual

}
, t ∈ T , i ∈ I,m ∈ M, l ∈ L

If Δtimrl
Actual

= 0 , the process is saturated and in good pro-
cessing condition. Δtimrl

Actual
> 0 indicates that the process is 

not saturated and its processing capacity can be enhanced 
by means of resource allocation. Thus, we propose 
argmin

r

{
Δtimrl

Actual

}
 to establish the critical bottleneck process 

among the poorly processed processes to achieve a col-
laborative scheduling process of multiple manufacturing 
resources. After the implementation of manufacturing 
resource allocation, the digital twin system will continue 
to combine real-time data information feedback from the 
manufacturing process. Among them, the cyclic configura-
tion system will achieve further bottleneck process inspec-
tion. The digital twin system, combined with bottleneck 
processes, continues to simulate the manufacturing 
resource scheduling process until manufacturing resources 
within the manufacturing network cannot continue to 
improve the processing capacity of bottleneck processes.

3 � Multi‑resource scheduling model based 
on AIFGSCg� operator

In a multi-resource scheduling model, it is difficult to measure 
the manufacturing value of different resources in the form of 
data, e.g., it is difficult to directly visualize the productivity 
gains from human resources for decision-makers. Faced with 
the bottleneck process problem in a resource-constrained envi-
ronment, it is necessary to combine the most effective types 

of resources to get rid of the dilemma of difficult production 
capacity increase. In order to facilitate the decision-making 
process of multi-resource scheduling for decision-makers, this 
paper combines digital twin technology to realize the inter-
operability of resource information; through the transfer of 
information data and the combination of AIFGSCg� operator 
to help decision-makers realize the decision-making of multi-
resource scheduling in the existing distributed network, and 
then select several better strategies to build a multi-objective 
model to finally obtain the most accurate multi-resource 
scheduling solution and production solution. In this paper, we 
use Shapley method to solve a related problem, which is used 
to measure the average of individual elements’ contributions 
to all alliances in a coalition. Shapley value is a mathematical 
method to solve a multi-person cooperative response prob-
lem. It mainly focuses on the application of the distribution of 
cooperative benefits among the cooperating parties. The Shap-
ley value achieves the magnitude of each cooperative mem-
ber’s contribution to that cooperative alliance, highlighting the 
importance of each member in the cooperation. The greatest 
advantage of the Shapley value method is that its principles 
and results are easily perceived as fair by each cooperating 
party and the results are easily accepted by all parties. In addi-
tion, the Shapley function is one of the most important indi-
cators in cooperative games, which satisfies the well-known 
axioms of validity, symmetry, and additivity. Because of 
these three axioms, many scholars believe that it is the most 
powerful tool for solving things with interconnected indica-
tors [25]. With the above advantages of AIFGSCg� operator, 
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the collaborative scheduling model of multiple resources in 
the process of collaborative manufacturing enterprise site 
selection is constructed to solve the problem of confusion in 
the scheduling process of multiple manufacturing resources 
and to realize the scheduling decision process of multiple 
manufacturing resources more quickly and easily. This paper 
mainly introduces and defines Choquet integral, AIFGSCg� 
operator and multi-attribute group decision-making method 
based on λ-Shapley Choquet integral.

3.1 � Relevant definitions of Choquet integral

Definition 1  [26]: Let X  be a non-empty set, 
A =

�⟨x, tA(x), fA(x)⟩��x ∈ X
�
 is called an intuitionistic fuzzy 

set (IFSs), where tA(x), fA(x) ∈ [0, 1] , tA(x) , and fA(x) are the 
membership and non-membership degree of the element x in X 
belonging to X , and satisfy the condition tA(x) + fA(x) ≤ 1 . In 
addition, �A(x) = 1 − tA(x) − fA(x) is defined to represent the 
hesitation degree of the element x in the intuitionistic fuzzy set 
X belonging to X . In particular, when �A(x) = 0 , the intuition-
istic fuzzy set X degenerates into the traditional fuzzy set [27].

Definition 2  Let �̃i =
(
t�̃i , f�̃i ,��̃i

)
(i = 1, 2) be two sets of 

intuitionistic fuzzy numbers, 𝜆 > 0 , have:

Definition 3  Let S be a finite set. P(S) denotes the power set 
of S . If � ∶ P(S) → [0, 1] satisfies the following conditions, 
then � is called a fuzzy measure defined on (S,P(S)).

(1)	 �(∅) = 0,�(S) = 1;
(2)	 A,B ∈ P(S),A ⊆ B ⇒ 𝜇(A) ≤ 𝜇(B).  

For the convenience of calculation, suppose that 
g�(C ∪ D) = g�(C) + g�(D) + �g�(C)g�(D)  ,  w h e r e 
� ∈ (−1,+∞) , for any C,D ∈ P(S),C ∩ D = ∅ , then g is 
called the fuzzy measure of � , denoted by g� . For a finite set 
S , g� satisfies the following conditions:

(13)
𝛼̃1 ⊕ 𝛼̃2 =

(
t𝛼̃1 + t𝛼̃2 − t𝛼̃1 t𝛼̃2 , f𝛼̃1 f𝛼̃2 ,

(
1 − t𝛼̃1

)(
1 − t𝛼̃2

)
− f𝛼̃1 f𝛼̃2

)

(14)
𝛼̃1 ⊗ 𝛼̃2 =

(
t𝛼̃1 t𝛼̃2 , f𝛼̃1 + f𝛼̃2 − f𝛼̃1 f𝛼̃2 ,

(
1 − f𝛼̃1

)(
1 − f𝛼̃2

)
− f𝛼̃1 f𝛼̃2

)

(15)𝜆𝛼̃1 =
(
1 −

(
1 − t𝛼̃1

)𝜆
, f 𝜆
𝛼̃1
,
(
1 − t𝛼̃1

)𝜆
− f 𝜆

𝛼̃1

)

(16)𝛼̃𝜆
1
=
(
t𝜆
𝛼̃1
, 1 −

(
1 − f𝛼̃1

)𝜆
,
(
1 − f𝛼̃1

)𝜆
− t𝜆

𝛼̃1

)

(17)g�(D) =

⎧
⎪⎨⎪⎩

1

�

�
Π
i∈D

�
1 + �g�(i)

�
− 1

�
, if � ≠ 0

�
i∈D

g�(i), if � = 0

Since �(S) = 1 , there is:

Therefore, when each g�(i) is given, the value � can be 
calculated by this equation.

Definition 4  If f  is a nonnegative real function defined on 
S and � is a fuzzy measure defined on S , then the discrete 
Choquet integral is:

At the same time, some scholars defined the intuitionistic 
fuzzy correlation averaging operator [28]:

where ̃�(i) =
(
t�̃(i) , f�̃(i) ,��̃(i)

)
(i = 1, 2, ..., n) is a set of intuition-

istic fuzzy numbers, (i) denotes a permutation of �i such that 
�̃(1) ≤ �̃(2) ≤ ... ≤ �̃(n),A(i) = {1, 2, ..., n},A(n+1) = ∅.

For decision-making problems, the fuzzy measure 
of experts and the fuzzy measure of attribute values are 
subjectively determined by experts, which will also pro-
duce corresponding contingency. The Shapley function 
can solve related problems. Marichal proposed the gen-
eralized Shapley value [29]. Meng et al. applied it to the 
decision environment [26], and the related expressions 
are as follows:

In Eq. 21, � is a fuzzy measure on S . In order to con-
sider the fuzzy measure of the set of experts and attributes 
as a whole, Meng et al. proposed a generalized Shapley 
Choquet integral fuzzy measure[27], which is expressed 
as follows:

Equation 22 reflects not only each expert, a single 
attribute value and between experts, but also the overall 
average fuzzy measure between attribute values. There-
fore, when Shapley value is used to deal with fuzzy meas-
ure, it can make the fuzzy measure closer to the actual 
situation.

(18)Π
i∈D

[
1 + �g�(i)

]
− 1 = �

(19)

C�

(
f
(
x(1), x(2), ..., x(n)

))
=

n∑
i=1

(
�
(
A(i)

)
− �

(
A(i+1)

))
f
(
x(i)

)

(20)
∫

𝛾̃d𝜇 = IFCA
(
𝛾̃1, 𝛾̃2, ..., 𝛾̃n

)
= ⊕

(
𝛾̃(i)

)(
𝜇
(
A(i)

)
− 𝜇

(
A(i+1)

))

=

(
1 −

n

Π
i=1

(
1 − t𝛾̃(i)

)(𝜇(A(i))−𝜇(A(i+1)))
,

n

Π
i=1

(
f𝛾̃(i)

)(𝜇(A(i))−𝜇(A(i+1)))
)

(21)

𝜌sha
𝜅

(𝜇, S) =
∑

O⊆S�K

(n − k − o)!o!

(n − k + 1)!
(𝜇(K ∪ O) − 𝜇(O)),∀K ⊆ S

(22)

𝜌sha
𝜅

(
g𝜆, S

)
=

∑
O⊆S�K

(n − k − o)!o!

(n − k + 1)!

(
g𝜆(K ∪ O) − g𝜆(O)

)
,∀K ⊆ S
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3.2 � Intuitionistic fuzzyAIFGSCg�operator

Definition 5  [26]: Let the intuitionistic fuzzy set 
�̃i =

(
t�̃i , f�̃i ,��̃i

)
(i = 1, 2, ..., n) be a set of intuitionistic fuzzy 

numbers, g� be a fuzzy measure on S , let AIFGSCg� ∶ Ωn
→ Ω , 

if:

where (i) denotes a permutation of �i such that 
�̃(1) ≤ �̃(2) ≤ ... ≤ �̃(n),A(i) = {1, 2, ..., n},A(n+1) = ∅ . Then 
the function AIFGSCg� is called the generalized �-Shapley 
Choquet integral operator of n-dimensional intuitionistic 
fuzzy arithmetic.

Theorem  1  [26]: Let the intuitionistic fuzzy set 
�̃i =

(
t�̃i , f�̃i ,��̃i

)
i = 1, 2, ..., n be a set of intuitionistic fuzzy 

numbers, and g� be a fuzzy measure on S , then:

3.3 � λ‑Shapley Choquet integral TOPSIS 
multi‑attribute group decision‑making method

Definition 6  Let ̃�i =
(
t�̃i , f�̃i ,��̃i

)
, �̃�

i
=
(
t�̃�

i

, f�̃�
i

,��̃i�

)
(i = 1, 2, ..., n) be any 

two intuitionistic fuzzy numbers, g� is a fuzzy measure on S , then 
the Hamming distance between them is defined as:

(23)

∫
𝛼̃d𝜌sha

(
g𝜆, S

)
= AIFGSCg𝜆

(
𝛼̃1, 𝛼̃2, ..., 𝛼̃n

)

= ⊕𝛼̃(i)

(
𝜌sha
A(i)

(
g𝜆, S

)
− 𝜌sha

A(i+1)

(
g𝜆, S

))

(24)

AIFGSCg𝜆

(
𝛼̃1, 𝛼̃2, ..., 𝛼̃n

)

=

(
1 −

n

Π
i=1

(
1 − t𝛼̃i

)(𝜌sha
A(i)
(g𝜆 ,S)−𝜌shaA(i+1)

(g𝜆 ,S)
)
,

n

Π
i=1

(
f𝛼̃i

)(𝜌sha
A(i)
(g𝜆 ,S)−𝜌shaA(i+1)

(g𝜆 ,S)
)
,

n

Π
i=1

(
1 − t𝛼̃i

)(𝜌sha
A(i)
(g𝜆 ,S)−𝜌shaA(i+1)

(g𝜆 ,S)
)
−

n

Π
i=1

(
f𝛼̃i

)(𝜌sha
A(i)
(g𝜆 ,S)−𝜌shaA(i+1)

(g𝜆 ,S)
))

(25)

d
(
𝛼̃, 𝛼̃�

1

)
=

1

2

n∑
j=1

d(i)
(
𝛼̃, 𝛼̃�

)(
𝜌sha
A(i)

(
g𝜆, S

)
− 𝜌sha

A(i+1)

(
g𝜆, S

))

In Eq. 25, d
(
�̃, �̃�

1

)
=
||||t�̃i − t�

�̃i

|||| +
||||f�̃i − f �

�̃i

|||| +
||||��̃i − ��

�̃i

|||| , (i) 
denotes a permutation of d

(
�̃, �̃′

1

)
 such that 

d(1)
(
�̃, �̃�

)
≤ d(2)

(
�̃, �̃�

)
≤ ... ≤ d(n)

(
�̃, �̃�

)
,A(i) = {1, 2, ..., n},

A(n+1) = ∅.
According to [30], the Hamming distance between two 

decision matrices Ã(k) and Ã(h) is:

The intuitionistic fuzzy Ãk Hamming distance is:

The �-fuzzy measure of expert ek is defined as:

For the determination of attribute fuzzy measure, accord-
ing to [30], let Ã =

(
�̃ij
)
m∗n

 be an integrated intuitionistic 
fuzzy matrix, let �j and �j be the membership and non-mem-
bership degree of the attribute value cj ∈ C , respectively. The 
cj evaluation value of the scheme ai attribute can be expressed 
by the intuitionistic fuzzy number, denoted by �̃cj =

(
�j, �j

)
 , 

then the gE
�

(
cj
)
 of the attribute value cj is located in the closed 

interval [glj
�
, g

uj

�
] , where glj

�
= �j, g

uj

�
= �j . Let the decision-

maker choose a scheme ai(i = 1, 2, ...,m) from the attributes {
cr1, cr2, ...crn

}({
r1, r2, ..., rv

}
⊆ {1, 2, ..., n}

)
 . The decision-

maker gives the fuzzy measure gC
�

(
cr1

)
, gC

�

(
cr2

)
, ..., gC

�

(
crn

)
 

o f  t he  a t t r i bu t e  va lue s  cr1, cr2, ...crn  ,  whe re 
g
lrp

�
≤ gC

�

(
crp

)
≤ g

urp

�
, p = 1, 2, ..., v.

Some scholars established the fuzzy measure of attribute 
set by constructing a linear goal programming model and 
solving it with Lingo11 software. The corresponding linear 
goal programming model is:

(26)

dkh =

m∑
i=1

m∑
j=1

||||t𝛼̃i − t�
𝛿i

|||| +
||||f𝛼̃i − f �

𝛿i

|||| +
||||𝜋𝛼̃i − 𝜋�

𝛿i

||||
2

, (k, h = 1, 2, ..., q)(k ≠ h)

(27)dk =

m∑
k=1,h≠k

dkh, k = 1, 2, ..., q

(28)gE
�

(
ek
)
=

1

dk
, k = 1, 2, ..., q

(29)

m∑
i=1

((
1

2
tij −

3

2
fij + 1

)
∗ gC

�

(
cr1

)
+
(
1

2
tij −

3

2
fij + 1

)
∗ gC

�

(
cr2

)
+ ... +

(
1

2
tij −

3

2
fij + 1

)
∗ gC

�

(
crp

))

s.t. g
lrp

�
≤ gC

�

(
crp

)
≤ g

urp

�
, p = 1, 2, ..., v

The positive ideal solution and the negative ideal solution 
can be identified as:

(30)𝛽+ =

{⟨
cj,

(
max

i
t𝛼̃ij

)|||| j ∈ J1,
(
min
i

t𝛼̃ij

)|||| j ∈ J2,
(
min
i

t𝛼̃ij

)|||| j ∈ J1,
(
max

i
t𝛼̃ij

)||||j ∈ J2, i = 1, 2, ...,m

⟩}
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(31)𝛽− =

{⟨
cj,

(
min
i

t𝛼̃ij

)|||| j ∈ J1,
(
max

i
t𝛼̃ij

)|||| j ∈ J2,
(
max

i
t𝛼̃ij

)|||| j ∈ J1,
(
min
i

t𝛼̃ij

)||||j ∈ J2, i = 1, 2, ...,m

⟩}

where J1 and J2 are revenue attribute set and cost attribute 
set respectively.

The weighted positive separation measure and negative 
separation measure of scheme ai are defined as:

The relative closeness coefficient of scheme ai is:

The schemes can be sorted according to the relative pro-
gress coefficient equation.

4 � Construction and solution 
of multi‑objective site selection model

Section 4 mainly introduces the construction and solution 
process of the multi-objective location model and the opera-
tion flow chart of the system. In Section 4.1, we construct 
a multi-objective robust optimization model based on the 
analysis of practical engineering problems and Section 2. 
In the Section 4.2, the non-dominated sorting genetic algo-
rithms-II-multiple objective particle swarm optimization 

(32)

di
(
hi, 𝛽

+
)
=

n∑
j=1

di(j)

(
h̃ij, 𝛽

+
j

)(
𝜌sha
A(j)

(
g𝜆, S

)
− 𝜌sha

A(j+1)

(
g𝜆, S

))

(33)

di
(
hi, 𝛽

−
)
=

n∑
j=1

di(j)

(
h̃ij, 𝛽

−
j

)(
𝜌sha
A(j)

(
g𝜆, S

)
− 𝜌sha

A(j+1)

(
g𝜆, S

))

(34)U−
i
=

di
(
hi, �

−
)

di
(
hi, �

−
)
+ di

(
hi, �

+
)

(NSGA-II-MOPSO) algorithm is used to solve the multi-
objective robust optimization model. The quality of the solu-
tion is improved by the algorithm fusion to avoid the result 
falling into the local optimal solution. The multi-objective 
location model based on digital twin technology integrates 
various methods and concepts, so we have provided a 
detailed introduction and explanation of the operating prin-
ciple and flowchart of the smart collaborative manufacturing 
system in Section 4.3.

4.1 � Construction of multi‑objective site selection 
model

After the scheduling of manufacturing resources, the digi-
tal twin system will simulate the capacity increase of each 
resource agent and collect real-time data. Maximizing 
manufacturing profits is one of the important directions 
for manufacturing enterprises’ production [31]. Fluctuat-
ing market demand often brings greater production risks to 
manufacturing enterprises [32]. Robust optimization meth-
ods can effectively alleviate the negative impact of uncer-
tain factors when manufacturing enterprises face changing 
market demands and production capacity changes caused 
by manufacturing resource scheduling [33]. Combined 
with practical analysis, we establish the maximization 
of supply and demand matching ability of manufacturing 
enterprises and the maximization of manufacturing Profit 
maximization as the objective function. Based on the anal-
ysis of manufacturing resource constraint environment in 
Section 2, this paper establishes a specific multi-objective 
robust optimization function. The specific objective func-
tion is shown below:

minmax
i,i�∈I,j∈J

{
f
(
Q�tm

ki
,ΔCO�t�m

ai�i

)
− f

(
Q�tm∗

ki
,ΔCO�t�m

ai�i

)

f
(
Q�tm

ki
,ΔCO�t�m

ai�i

)
|||||
g
(
Q�tm∗

ki
,ΔCO�t�m

ai�i

)
≤ 0

}
, t, t� ∈ T ,m ∈ M,∀�

f tm(x) =

I∑
i=1

J∑
j=1

Qtm
ij
Vtm
ij

−

A∑
a=1

I∑
i=1

I∑
i�=1

(Ctm
aii�

+ Ctm
ai�
)

−

I∑
i=1

J∑
j=1

[Qtm
ij

∗ (Ctm�
ij
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tm�

ij
+ Ctm�

ij
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−

I∑
i=1

J∑
j=1

(Qtm
ij

∗ Ctm
ijd
) −

I∑
i
��

Ctm

i
�� , t ∈ T ,m ∈ M, d ∈ D

s.t.

A∑
a=1

I∑
i=1

I∑
i�=1

xt
�m
aii�

≤ A, t� ∈ T ,m ∈ M

I∑
i=1

J∑
j=1

Qtm
ij

=

I∑
i=1

COtm
i
+

K∑
k=1

I∑
i=1

Qtm
ki
, t ∈ T ,m ∈ M
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CO�tm

i
= COtm

i
+

A∑
a=1

T∑
t�=1

I∑
i�=1

xt
�m
ai�i

ΔCOt�m
ai�i

, i ∈ I, t ∈ T ,m ∈ M

I∑
i=1

J∑
j=1

Qtm
ij

=

I∑
i=1

CO�tm
i
+

K∑
k=1

I∑
i=1

Qtm
ki

=

I∑
i=1

COtm
i
+

A∑
a=1

T∑
t�=1

I∑
i�=1

I∑
i=1

xt�m
ai�i

ΔCOt�m
ai�i

+

K∑
k=1

I∑
i=1

Qtm
ki
, t ∈ T ,m ∈ M

(35)
Qtm

ijn
=(Qtm

ijr
+ Qtm

ijf
) ∗ (1 − etm

ijd
), i ∈ I, j ∈ J, d ∈ D, t ∈ T ,m ∈ M

(36)

I∑
i=1

(Qtm
ijr

∗ Ttm
ijr
) +

I∑
i=1

(Qtm
ijf

∗ Ttm
ijf
) +

I∑
i=1

(Qtm
ij

∗ Ttm
ijd
)

+

A∑
a=1

I∑
i=1

I∑
i�=1

Taii� ≤ Tjmax, k ∈ K, t ∈ T ,m ∈ M, d ∈ D

(37)Qtm
ij

= Qtm
ijr
+ Qtm

ijf
, i ∈ I, j ∈ J, t ∈ T ,m ∈ M

(38)Qtm
kn
+

I∑
i=1

Qtm
ki

≤ Qtm
kmax

, k ∈ K, t ∈ T ,m ∈ M

(39)
J∑
j=1

Qij ≤ COtm
i
+

A∑
a=1

I∑
i�=1

ΔCOtm
ai�i

, i ∈ I, t ∈ T ,m ∈ M

R∑
r=1

Qtimrl
Output

=

R∑
r=1

Q
timr(l+1)

Input
, t ∈ T , i ∈ I,m ∈ M, l ∈ L

Qtimrl
Actual

≤ Qtimrl
Pr ocess

, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

Δtimrl
Actual

= Qtimrl
Pr ocess

− Qtimrl
Actual

, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

Δtimrl
Actual

> 0, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

Δtimrl
Actual

= 0, t ∈ T , i ∈ I,m ∈ M, r ∈ R, l ∈ L

argmin
r

{
Δtimrl

Actual

}
= argmin

r

{
Qtimrl

Pr ocess
− Qtimrl

Actual

}
, t ∈ T , i ∈ I,m ∈ M, l ∈ L

xtm
aii

� =

{
1, Idle equipment a is transformed from manufacturing enterprise Ci to Ci

�

0, others

, a ∈ A, t ∈ T ,m ∈ M, i, i
�

∈ I

Equation 35 shows that the goods received by whole-
saler Dj are equal to the number of shipments minus the 
number of shipping losses. Equation 36 shows that the 
sum of processing time and goods transportation time of 
subsidiaries is not more than the goods delivery time. 
Equation 37 indicates that the total amount of produc-
tion from the manufacturing enterprise Mt within the 
subsidiary Ci about product m is equal to the sum of the 
amount processed by the production line and the amount 
of product stored by re-processing. Equation 38 indi-
cates that each wholesaler Dj returned to the warehouse 
Wk the number of goods and warehouse Wk the sum of 
existing goods storage should not be greater than the 
warehouse Wk on the maximum storage capacity. Equa-
tion 39 indicates that the sum of the quantity of goods 
shipped from subsidiary Ci to each wholesaler Dj within 

manufacturing enterprise Mt should be no more than the 
existing capacity.

4.2 � Solution of multi‑objective site selection model

Assuming an N-dimensional space, the solution composition 
of the problem can be represented by a n-dimensional vector. 
At each iteration of the algorithm, the current best position 
determined by particle q is pop(i).Best.Position . In addi-
tion, combined with the roulette operator, the algorithm can 
choose a non-dominated solution as the global optimal solution 
leader.Position . The algorithm uses the vectors pop(i).Position 
and pop(i).Velocity to represent the position and velocity of 
particle q , respectively. The update equations for the particle 
velocity and position vectors are shown as follows:
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(40)
pop(i).Velocity = � ∗ pop(i).Velocity + c1 ∗ rand(Varsize).

∗ (pop(i).Best.Position) − pop(i).Position)

+ c2 ∗ rand(VarSize). ∗ (leader.Position − pop(i).Position)

where � is the inertia coefficient. c1 and c2 are the accelera-
tion factors. rand(VarSize) is a uniformly distributed inde-
pendent random number between [0,1].

4.2.1 � Particle coding

	 1.	 Set the algorithm parameters. npop , nrep represent 
the number of populations and the number of non-
dominated solution populations, respectively. MaxIt 
represents the number of iterations. nGrid represents 
the size of the extended network of the solution set 
domain.

	 2.	 Initialize the particle population. This includes ini-
tializing the position and velocity information of the 
particle population and then constructing a particle 
population with a structure.

	 3.	 Calculate the objective function values of the particles 
within the algorithm, determine the individual optimal 
positions of the individual particles pop(i).Position and 
calculate the optimal fitness value pop(i).Best.Cost.

	 4.	 The NSGA-II-MOPSO algorithm generates non-dom-
inated solution sets and iterates them.

	 5.	 Update pop(i). Position and pop(i). Velocity in the par-
ticle swarm.

	 6.	 When the particle satisfies the constraints in this paper, 
then skip to step 7. If the particle does not satisfy the 
constraints, then skip to step 8.

	 7.	 Calculate the evaluation index of each particle and 
update the individual optimal particle. Skip to step 11.

	 8.	 The particle enters the while loop and transform the 
particle swarm particle pop(i) into the genetic particle 
chromo(i) ). Generate parent population chromo_parent 
with the help of multi-objective genetic algorithm prin-
ciple.

	 9.	 The algorithm adopts selection, crossover, and muta-
tion strategies for the genetic particle chromo(i) and 
thus obtains the child population chromo_off .

	10.	 Combine the parent population chromo_parent with the 
child population chromo_off  and compute the values 
of non-dominated ordering, crowding, etc. Keep the 
non-dominated genetic particles to generate non-dom-
inated solution set. Until the genetic particle satisfies 

(41)pop(i).Position = pop(i).Position + pop(i).Velocity
the constraints end the while loop. And convert genetic 
particle chromo(i) to swarm particle pop(i) . Skip to 
step 11.

	11.	 The algorithm updates the set of nondominated solu-
tions. The final algorithm retains nrep optimal solutions.

	12.	 Determine whether the corresponding number of itera-
tions has been reached. If it is less than the maximum 
number of iterations. Skip to step (3). If the maximum 
number of iterations is reached, end the iteration and 
plot the particles within the non-dominated solution set 
to generate the pareto surfaces. The algorithm outputs 
the corresponding non-dominated solution set.

In addition, after generating i ∗ j particles in each pro-
duction range, the corresponding supply and demand 
matching capacity and profit are calculated where Qij 
denotes the transportation volume of the path. At the same 
time, in order to facilitate the comparison of algorithms, 
this paper takes the opposite of the manufacturing compa-
ny’s profit as the result of the objective function II, where 
if the particle generated by the (i + 1) th iteration is smaller 
than the value of the multi-objective function correspond-
ing to the particle generated by the i th iteration, the value 
Qij representing the transportation volume of the path is 
recorded; otherwise, it is not recorded.

4.2.2 � Particle decoding

Statistical information on various types of manufacturing 
resources within each manufacturing company such as idle 
equipment models, quantities, workers’ operational profi-
ciency, and convenience of information systems. The digital 
twin simulates the scheduling process for each type of manu-
facturing resource and calculates the ΔCOt

�
m

ai
�
i
 for each manu-

facturing resource to be scheduled to each manufacturing 
company. In addition, the manufacturing resource demand 
enterprise forecasting method establishes the market demand 
and uploads the demand results to the manufacturing 
resource platform. The system constructs a multi-objective 
robust optimization model based on different manufacturing 
enterprise information and supply information such as maxi-
mum storage capacity and path wear rate. Finally, we com-
bine the NSGA-II-MOPSO algorithm to generate the cor-
responding scheduling plan and execute the corresponding 
production plan.
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4.2.3 � Experimental parameter setting

In order to verify the applicability and effectiveness of 
NSGA-II-MOPSO, this paper applies the algorithm to prac-
tical problems of different scales. The basic background of 
the practical problem is the multi-objective problem of 
multi-manufacturing resource scheduling among multi-
manufacturing enterprises. The parameters of the simulation 
are designed as follows: the maximum demand Qjmax cor-
responding to each demand point is 90, 110, 30, 100, and 80. 
The demand quantity Qj of products at each demand point is 
randomly generated within [0,Qjmax ]. The maximum storage 
capacity Qtm

kmax
 of product m in warehouse Wk is 15, 10, 13, 

10, and 15. The warehouse Wk corresponding to the subsidi-
ary Ci in the manufacturing enterprise Mt is randomly gener-
ated in [0,Qtm

kmax
 ] for the existing reserves Qtm

ki
 of the product 

m . The total number of idle equipment A is 20. The output ∑I

i=1
COtm

i
 of the subsidiary company Ci in the manufacturing 

enterprise Mt before scheduling is randomly generated in 
[100,150]. The labor cost, material cost, and other cost cor-
responding to the production unit product m in the produc-
tion process of the subsidiary company Ci in Mt manufactur-
ing enterprise: Ctm�

ij
,C

tm�

ij
, and Ctm�

ij
 are randomly generated 

in [80,120], [1000,1300], and [40,70]. The transportation 
unit price and equipment installation unit price of equipment 
resource a transported to subsidiary Ci : Ctm

aii
′ and Ctm

ai
′ are ran-

domly generated in [1200,1400] and [500,900] respectively. 
The NSGA-II-MOPSO algorithm uses the following param-
eter settings: the individual and population learning coeffi-
cients c1 and c2 are 1 and 2, respectively, the initial weight 
�=0.5, the crossover probability Pc = 0.5 , and the genetic 
probability Pm = 1∕x_num , where x_num represents the 
number of populations. The maximum number of iterations 
max It =100, the maximum speed Vmax is 1. The algorithm 
is implemented by MATLAB programming, the running 
environment is a PC, and the CPU is Pentium IV 2.50 GHz. 
For the convenience of comparison, the objective function 
2 is negative and the unit is one hundred thousand dollars.

4.2.4 � Algorithm testing

In order to verify the complexity of the NSGA-II-MOPSO 
algorithm, this paper selects multiple indicators. The perfor-
mance evaluation index of the multi-objective evolutionary 
algorithm solution set is mainly divided into three aspects: 
convergence metric, spacing metric, and diversity metric 
[34]. The specific calculation method and principle of the 
index are as follows:

•	 Convergence metric: Generational distance (GD) [35] 
denotes the average minimum distance from each point 
in the solution set P to the reference set P∗ . The smaller 

the GD value, the better the convergence. 

GD(P,P∗) =

√∑
y∈Pminx∈P∗dis(x,y)

2

�P�  where P is the solution 
set obtained by the algorithm. P∗ is the solution set of the 
optimal Pareto surface. dis(x, y) denotes the Euclidean 
distance between the solution y in the solution set P and 
the solution x in the solution set P∗.

•	 Spacing metric [36]: Spacing(P) =
�

1

(N−1)

∑N

j=1

���dmean − dj
���
2 

where dj denotes the minimum distance from the j th solu-
tion to the other solutions in the non-dominated solution 
set, and dmean denotes the mean value of all dj . Spacing(P) 
is used to calculate the standard deviation of the minimum 
distance from each solution to other solutions in the non-
dominated solution set. The smaller the S Spacing(P) 
value is, the more uniform the solution set is.

•	 Diversity metric [37]: DM =

√(
maxf1i −min1i f1i

)2
+
(
maxf2i −min2i f1i

)2 . 
This metric determines the diversity of non-dominated 
solutions which are achieved by each algorithm. In this 
metric, the algorithm with a higher value has a better 
capability.

In order to analyze the performance of the algorithm 
combined with this problem, this paper compares MOPSO, 
NSGA-II, and NSGA-II-MOPSO algorithm. The size of the 
solution is set as follows: a ∗ (b ∗ c) , where a represents 
the actual demand, and (b ∗ c) represents the number of 
product categories and manufacturing enterprises that can 
be located. Multiple tests are performed on the scale of the 
solution. The test results are shown in Fig. 5a–h.

In order to analyze the performance of the algorithm in 
more detail, this paper introduces hypervolume (HV) to ver-
ify the comprehensive performance of the algorithm. The 
comprehensive performance of the algorithm is illustrated 
by the calculated non-dominated solution set and the volume 
of the region in the target space of the reference point siege. 
The larger the HV value, the better the comprehensive per-
formance of the algorithm.

where � denotes the Lebesgue measure, which is used to 
measure the volume. |S| denotes the number of non-domi-
nated solutions. �i denotes the hypervolume of the reference 
point and the i th solution in the solution set. According to 
the calculation, the comprehensive performance of NSGA-
II-MOPSO algorithm is better than that of MOPSO algo-
rithm and NSGA-II algorithm under each operation scale. 
The calculation results of each index are shown in Table 2 
and the following conclusions are drawn: Firstly, MOPSO, 
NSGA-II, and NSGA-II-MOPSO algorithms have obtained 
the non-dominated solution set of the location problem 
under resource constraints. In terms of solution speed, the 

(42)HV=�
(
∪
|S|
i=1

�i

)
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(a) Scale: 100*6 (b) Scale: 100*9

(c) Scale: 100*12 (d) Scale: 100*15

(e) Scale: 150*6 (f) Scale: 150*9

(g) Scale: 150*12 (h) Scale: 150*15
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NSGA-II-MOPSO algorithm solves better than the MOPSO 
algorithm. Also, NSGA-II-MOPSO outperforms NSGA-II in 
terms of uniformity of non-dominated solutions, which are 
uniformly distributed. In terms of diversity metrics, NSGA-
II-MOPSO significantly outperforms NSGA-II and MOPSO 
algorithms in terms of wider search of non-dominated solu-
tions. In addition, it is more obvious that NSGA-II-MOPSO 
is significantly better than NSGA-II and MOPSO algorithms 
in terms of the convergence of pareto surfaces. The MOPSO 
algorithm lacks the escape mechanism of local optimum 
and is prone to fall into the local optimum solution but the 
quality of the solution is higher. NSGA II can effectively 
improve the global search capability of the algorithm under 
the perturbation strategies such as mutation and crossover 
operator but the quality of the solution is lower. NSGA-II-
MOPSO combines the advantages of the two algorithms, 
and has significant performance in the indexes of solution 
speed, solution quality, solution range, and uniformity of 
the non-dominated solution. Combined with the data analy-
sis, the NSGA-II-MOPSO algorithm can effectively solve 
the problem under the resource limitation proposed in this 
paper, and the algorithm has good solution performance.

4.3 � Flow chart of smart collaborative 
manufacturing system

In summary, with the help of digital twins, manufacturing 
enterprises can efficiently and conveniently identify bot-
tleneck processes and achieve the scheduling of various 
manufacturing resources. Smart collaborative manufactur-
ing systems can effectively assist manufacturing resource 
demand enterprises in achieving the decision-making pro-
cess of manufacturing resources. The system consists of 
multiple mathematical models related to it, so this article 
constructs corresponding flowchart explanations. The spe-
cific smart collaborative manufacturing system process is 
shown in Fig. 6.

Due to the extensive use of models, algorithms, and 
data, the system of smart collaborative manufacturing sys-
tems is relatively complex. For the convenience of expla-
nation, we divide the smart collaborative manufacturing 
system into four parts based on the different functions 
of each part and label them in different colors in Fig. 6. 
Firstly, manufacturing resource demand enterprises and 
manufacturing resource providers upload their own needs 
and enterprise data. Secondly, the resource platform clas-
sifies manufacturing resources and stores corresponding 
data information. The location selection system based on 
digital twins simulates the scheduling process of various 
manufacturing resources and incorporates various models 

in this process: manufacturing resource ranking combined 
with Choquet integral, multi-objective robust optimization 
model combined with resource scheduling, and identifica-
tion model of bottleneck processes. The final scheduling 
decision plan is generated through a large amount of data 
simulation for decision-makers to make decisions. The 
specific process of a smart collaborative manufacturing 
system is as follows:

Step 1: Manufacturing resource providers establish their 
own idle manufacturing resources and upload various 
information of corresponding resources to the manufac-
turing resource platform for other manufacturing enter-
prises to schedule manufacturing resources.
Step 2: The manufacturing resource platform classifies 
manufacturing resources based on their characteristics to 
facilitate the selection of resource demanding enterprises.
Step 3: The demand enterprise determines the order 
demand to clarify the production capacity difference and 
establish the production capacity target of the factory site, 
as well as to establish alternative factory site locations.
Step 4: By establishing bottleneck processes through 
the manufacturing resource cycle configuration system, 
manufacturing enterprises can clarify various manufac-
turing resource requirements, and upload the results of 
various manufacturing requirements to the manufacturing 
resource platform.
Step 5: After receiving resource information from both 
supply and demand sides, the manufacturing resource 
platform uniformly classifies resources into talent 
resources, equipment resources, and information system 
resources.
Step 6: The digital twin system organizes historical data 
from sensors and other observational data. In addition, 
the system, combined with AIFGSCg� operator, helps 
manufacturing enterprises achieve preliminary sorting 
of manufacturing resources to complete the preliminary 
screening process of various resources.
Step 7: The digital twin system simulates the scheduling 
process of various manufacturing resources and estab-
lishes a multi-objective robust optimization model based 
on location selection problems. The digital twin system 
is solved by combining the NSGA-II-MOPSO algo-
rithm, and ultimately the manufacturing resource demand 
enterprise establishes a scheduling plan for equipment 
resources.
Step 8: Repeat steps 4 ~ 7 until the manufacturing 
resources are difficult to improve the processing capacity 
of the bottleneck process in the manufacturing resource 
demand enterprise.
Step 9: Generate the final location plan, scheduling plan 
of various manufacturing resources, and production plan. 
At the same time, the system combines sensors to realize 

Fig. 5   Algorithm pareto surface comparison figures under different 
scales

◂
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real-time recording of data in the production process to 
prepare for the next production cycle.

5 � Model application

There are three enterprises, A, B, and C. Each manufactur-
ing enterprise contains multiple subsidiaries. Each subsidi-
ary has independent production capacity. The subsidiaries 
of each steel manufacturing enterprise can produce four 
products: cold-rolled high-strength steel plates with phos-
phorus, seamless steel pipes, galvanized steel coils, and low-
carbon wire rod for drawing. The choice and construction of 
a new site for manufacturing enterprise A due to high market 
demand. After government coordination and relevant policy 
support, there are two locations available for manufacturing 
enterprise A to choose from. For the convenience of repre-
sentation, we will use ◎, ○, ☉, and ▽ for subsidiaries with 
the ability to process cold-rolled high-strength steel plates 
with phosphorus, seamless steel pipes, galvanized steel coils, 
and low-carbon wire rod for drawing, respectively. The main 
products manufactured by each enterprise are shown in 
Table 3. The original transportation path is shown in Fig. 7. 
The subsidiaries are named by “enterprise + subsidiary,” 
such as A1, A2, A3, A4, and A5 (A4 and A5 are alternate 
locations).

Step 1: Each collaborative manufacturing enterprise 
establishes idle manufacturing resources, taking equip-
ment resources as an example, and the results are shown 
in Table 4. Meanwhile, the manufacturing enterprises 
upload the results to the manufacturing resource platform.
Step 2: Manufacturing platform for specific classifica-
tion of manufacturing resources, according to the type 
of manufacturing resources will be divided into three 
categories of existing resources, respectively: equipment 
resources, human resources, information systems, the 
corresponding classification results are shown in Table 5 
(for the convenience of labeling, the four products are 
distinguished by a, b, c, and d, and the human resources 
and information systems are marked separately to show 
the distinction)
Step 3: According to the government planning and policy 
support to obtain the corresponding alternative plant site 
locations, respectively A4 and A5, the corresponding 
processing task is to produce sufficient quantities of gal-
vanized steel coils and low carbon wire rod for drawing. 
The floor plan of each subsidiary, warehouse, wholesaler, 
and demand point is shown in Fig. 8.
Step 4: Combine the digital twin technology to simulate 
the production process at A4 and A5 sites, and establish 
the corresponding bottleneck processes through the cir-
cular scheduling system to achieve targeted scheduling of Ta
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Collaborate with manufacturing companies to establish
their own idle resources and upload them to the platform

The platform classifies manufacturing resources according to
their characteristics, such as the function of equipment resources

and the operational proficiency of personnel

Manufacturing companies identify
locations available for site selection

Manufacturing companies establish order requirements
and specify capacity requirements for additional sites

Establishing bottleneck processes through
manufacturing resource cycle allocation system

The platform receives information from both the
supply and demand sides of manufacturing resources

Talent Resources Information System
Resources

Multi-objective robust optimization modeling to
achieve finalized solutions for equipment resources

Simulating production after resource
scheduling in combination with digital

twin technology

Establishing the final site selection plan, various
resource scheduling plans, and production plans

Y

NAre there still bottlenecks 
in the process?

Initial ranking of manufacturing resources
in combination with Choquet points

Whether existing resources can meet the resource 
needs of manufacturing companies

Combine sensors to collect
historical data from each resource

Y

Collaborate with manufacturing companies 
to establish idle manufacturing resources

Manufacturing companies 
establish capacity requirements

Site selection model incorporating 
digital twin technology

The construction and operation 
process of the resource platform

Equipment Resources

N

Next cycle production

Fig. 6   Smart collaborative manufacturing system process

Table 3   Subsidiary main production product table

Product classification Product Subsidiary enterprise

A1 A2 A3 A4 A5 B1 B2 C1 C2 C3 Wholesaler

Cold rolled products Cold-rolled high-strength steel plates 
with phosphorus

◎ ◎ ◎ ◎ 1, 3, 6, 7, 9

Cast pipe products Seamless steel pipes ○ ○ ○ ○ 2, 5, 8, 9, 10
Cold rolled products Galvanized steel coils ☉ ☉ ☉ ☉ ☉ 3, 4, 7, 9, 10
High speed wire products Low-carbon wire rod for wire drawing ▽ ▽ ▽ ▽ ▽ 1, 2, 5, 6, 8
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A1 A2 A3 A4 B1 B2 C1 C2 C3

Wholesaler1 Wholesaler2 Wholesaler3 Wholesaler4 Wholesaler5 Wholesaler6 Wholesaler7 Wholesaler8 Wholesaler9 Wholesaler10

: Cold-rolled high-strength steel plates with phosphorus production capacity 

: Seamless steel pipes production capacity

: Galvanized steel coils production capacity

: Low-carbon wire rod for drawing production capacity

: Enterprise

: Subsidiary

: Wholesaler

: Cold-rolled high-strength steel plates with phosphorus distribution path

: Seamless steel pipes distribution path

: Galvanized steel coils distribution path

: Low-carbon wire rod for drawing distribution path

A5

Fig. 7   Original system transportation path diagram

Table 4   Equipment resource statistics

Sub-
sidiary 
enter-
prise

Facility resource

2030 cold 
rolling mill

1580 hot 
rolling 
mill

2550 hot 
rolling 
mill

Pipe-
forcing 
system

Ф140 continu-
ous pipe rolling 
machine

1550 cold 
rolling mill

1870 hot dip 
galvanizing 
unit

High speed wire 
rod rolling mill

Finely rolled 
pole column

A A1 √ √
A2 √
A3 √ √
A4
A5

B B1 √ √
B2 √ √ √

C C1 √ √
C2 √
C3 √ √

Table 5   Manufacturing resource 
classification table

Subsidiary 
enterprise

Resources information

Equipment resource Talent resources Information system

Product a b c d a b c d a b c d
A A1 √ √ √3 √4

A2 √ √6
A3 √ √ √ √1 √7 √1
A4
A5

B B1 √ √ √5 √8 √8
B2 √ √ √2 √2 √5

C C1 √ √ √6 √7
C2 √ √4
C3 √ √3
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Fig. 8   Planar distribution of 
manufacturing resources before 
scheduling A1

C1

A2

B1
A4

C2

C3
A3

B2
: Subsidiary

: Wholesaler

: Warehouse

: Demand point

A5

Table 6   Expert e1 gives the 
evaluation matrix Ã1

c1 c2 c3 c4 c5

a1 (0.5, 0.3, 0.2) (0.5, 0.4, 0.1) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2) (0.6, 0.3, 0.1)

a2 (0.7, 0.1, 0.2) (0.7, 0.1, 0.2) (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) (0.7, 0.2, 0.1)

a3 (0.7, 0.2, 0.1) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2)

a4 (0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) (0.5, 0.2, 0.3) (0.7, 0.1, 0.2)

Table 7   Expert e2 gives the 
evaluation matrix Ã2

c1 c2 c3 c4 c5

a1 (0.7, 0.1, 0.2) (0.6, 0.2, 0.2) (0.6, 0.2, 0.2) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2)

a2 (0.5, 0.30.2) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) (0.7, 0.2, 0.1)

a3 (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.6, 0.3, 0.1) (0.7, 0.1, 0.2)

a4 (0.8, 0.1, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.5, 0.3, 0.2)

Table 8   Expert e3 gives the 
evaluation matrix Ã3

c1 c2 c3 c4 c5

a1 (0.7, 0.1, 0.2) (0.6, 0.1, 0.3) (0.7, 0.1, 0.2) (0.5, 0.3, 0.2) (0.6, 0.2, 0.2)

a2 (0.6, 0.2, 0.2) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.5, 0.2, 0.3)

a3 (0.5, 0.2, 0.3) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1)

a4 (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.7, 0.2, 0.1)
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manufacturing resources. For example, the manufacturer 
first establishes the bottleneck process in the production 
of galvanized steel coils and uploads the capacity demand 
to the manufacturing resource platform.
Steps 5–6: According to the manufacturing resource clas-
sification table and the historical data of the sensor, the 

preliminary resource scheduling decision is made and the 
manufacturing resources are sorted by AIFGSCg� operator. 
Taking the 2030 hot rolling mill required in the produc-
tion process of cold rolled high strength steel plate with 
phosphorus as an example, four subsidiaries A1, A3, B2, 
and C3 can provide mechanical equipment with different 
types and wear degrees. The four subsidiaries are recorded 
as 
{
a1, a2, a3, a4

}
 , and the four alternatives can be evalu-

ated by five evaluation indexes 
{
c1, c2, c3, c4, c5

}
 . The wear 

degree of the equipment 
(
c1
)
 , the number of maintenance 

of the equipment 
(
c2
)
 , the number of years of use of the 

equipment 
(
c2
)
 , the radiation degree of the equipment 

(
c4
)
 , 

and the increase of the capacity of the equipment 
(
c5
)
 . The 

scoring process is converted into a benefit indicator and 
three experts are invited, recorded as 

{
e1, e2, e3

}
 ( q = 3 ), to 

Table 9   Separating degree and sticking progress coefficient obtained 
from AIFGSCg�

di
(
hi, �

+
)

di
(
hi, �

−
)

U−

a1 0.5304 0.5419 0.5054
a2 0.5984 0.4946 0.4525
a3 0.4623 0.6036 0.5663
a4 0.5109 0.5762 0.5300

(a). pareto surface of cold-rolled high-
strength steel plates with phosphorus (b). pareto surface of seamless steel pipes

(c). pareto surface of galvanized steel coils (d). pareto surface of low-carbon wire rod for
wire drawing

Fig. 9   Pareto surface of four products
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judge the four devices based on their knowledge and experi-
ence. The evaluation results are shown in Table 6, 7, and 8.
On this basis, the fuzzy measure of the three experts is deter-
mined by using the Eqs.  26–28: gE

�

(
e1
)
≈ 0.156 , 

gE
�

(
e2
)
≈ 0.185 , gE

�

(
e3
)
≈ 0.192 . Using Eq. 17, �1 = 4.007 

is obtained. The fuzzy measures of the three groups of 
expe r t s  a re  a s  fo l lows :  gE

�

(
e1, e2

)
= 0.457 , 

gE
�

(
e1, e3

)
= 0.468 , gE

�

(
e2, e3

)
= 0.519 , gE

�

(
e1, e2, e3

)
= 1 . 

The fuzzy measure of �-Shapley is obtained by using Eq. 22: 

�sha
{e1}

(
gE
�

)
= 0.251, �sha

{e2}

(
gE
�

)
= 0.283, �sha

{e3}

(
gE
�

)
= 0.289, 

�sha
{e1,e2}

(
gE
�

)
= 0.404, �sha

{e1,e3}

(
gE
�

)
= 0.408, �sha

{e2,e3}

(
gE
�

)
= 

0.422, �sha
{e1,e2,e3}

(
gE
�

)
= 1, �sha

{∅}

(
gE
�

)
= 0.

The intuitionistic fuzzy arithmetic λ-Shapley Choquet 
integral operator AIFGSCg� of Eq. 24 is used to aggregate 
the decision matrices Ã1 , Ã2 , and Ã3 of the three experts 
to construct the aggregate intuitionistic fuzzy decision 
matrix A1.

A1 =

⎛⎜⎜⎜⎝

(0.5449, 0.2020, 0.2531)

(0.7375, 0.1545, 0.1080)

(0.5683, 0.3018, 0.1299)

(0.5739, 0.1678, 0.2583)

(0.4928, 0.0638, 0.4434)

(0.5967, 0.1801, 0.2232)

(0.6028, 0.1495, 0.2477)

(0.4775, 0.1900, 0.3325)

(0.5960, 0.1654, 0.2386)

(0.5775, 0.1900, 0.2325)

(0.5967, 0.1297, 0.2736)

(0.6036, 0.1041, 0.2923)

(0.5791, 0.1971, 0.2238)

(0.6448, 0.2931, 0.0621)

(0.3864, 0.2768, 0.3368)

(0.5122, 0.1678, 0.3200)

(0.3864, 0.3090, 0.3046)

(0.5448, 0.4241, 0.0311)

(0.6209, 0.2020, 0.1771)

(0.5451, 0.1545, 0.3004)

⎞
⎟⎟⎟⎠

Using Eq. 29, the fuzzy measures of each attribute are 
determined as follows: gc

�

(
c1
)
= 0.55 , gc

�

(
c2
)
= 0.45 , 

gc
�

(
c3
)
= 0.5 , gc

�

(
c4
)
= gc

�

(
c5
)
= 0.55 . According to 

Eq. 17, the integral value of attribute �2 is − 0.971, and 
the corresponding correlation measure between attrib-
utes is as follows: gc

�

(
c1, c2

)
= 0.760, gc

�

(
c1, c3

)
= 0.783 , 

Table 10   Final production plan schedule

Product Subsidiary enter-
prise

Wholesaler Objective function 
one

Objective function 
two

1 3 6 7 9

Cold-rolled high-
strength steel 
plates with phos-
phorus

A1 20.70113 14.9507 13.42805 6.51767 24.10083 0.17303 587938
A3 0 29.15124 6.664829 0.470299 22.60688
B2 11.38224 13.5062 7.42403 18.42525 17.76814
C3 15.43225 24.78122 5.919409 3.949987 31.38512

Seamless steel pipes Subsidiary enter-
prise

Wholesaler Objective function 
one

Objective function 
two2 5 8 9 10

A1 7.59048 5.211002 2.025645 18.29741 14.5326 0.121358 567666
A3 5.871523 23.42818 16.27975 8.49775 6.549293
B2 20.09838 21.70598 19.13546 27.4689 19.69716
C2 1.384348 17.25868 8.556592 8.030317 24.23458

Galvanized steel 
coils

Subsidiary enter-
prise

Wholesaler Objective function 
one

Objective function 
two3 4 7 9 10

A2 18.60175 19.64984 3.573604 10.64103 7.270508 0.042653 525349
A4 16.35896 18.42414 11.85256 1.091731 1.336173
B1 24.01546 14.88423 20.06996 25.73376 2.932953
C1 17.02904 16.6494 3.181429 17.82859 5.367433

Low-carbon wire 
rod for wire draw-
ing

Subsidiary enter-
prise

Wholesaler Objective function 
one

Objective function 
two1 2 5 6 8

A3 15.87702 23.64218 13.03183 4.412499 13.60859 0.042372 528484
A4 2.437004 24.22821 17.32952 0.564323 15.78537
B1 5.377366 23.94698 14.88124 17.15507 18.35251
C1 3.124545 11.53321 2.308774 6.893165 21.93423
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gc
�

(
c1, c4

)
= 0.830 , gc

�

(
c1, c5

)
= 0.806 , gc�

(
c2, c3

)
= 0.732 , 

gc
�

(
c2, c4

)
= 0.788 , gc

�

(
c2, c5

)
= 0.760 , gc�

(
c3, c4

)
= 0.809 , 

gc
�

(
c3, c5

)
= 0.783 , gc

�

(
c4, c5

)
= 0.806 , gc�

(
c1, c2, c3

)
= 0.891 , 

gc
�

(
c1, c2, c4

)
= 0.904 , gc

�

(
c1, c2, c5

)
= 0.904 , gc

�

(
c1, c3, c4

)
= 0.915 , 

gc
�

(
c1, c3, c5

)
= 0.915 , gc

�

(
c2, c3, c4

)
= 0.891 , gc

�

(
c2, c3, c5

)
= 0.891

,gc
�

(
c2, c4, c5

)
= 0.904 , gc

�

(
c3, c4, c5

)
= 0.915,gc

�

(
c1, c2, c3, c4

)
= 0.9651

,gc
�

(
c1, c2, c4, c5

)
= 0.971 ,  gc

�

(
c1, c3, c4, c5

)
= 0.9762  , 

gc
�

(
c2, c3, c4, c5

)
= 0.9651,gc

�

(
c1, c2, c3, c4, c5

)
= 1.

Repeat the above steps, using Eq.  22 to obtain the 
fuzzy measure of λ-Shapley and using Eqs.  30–31 
to identify that (1,0,0) and (0,1,0) are the largest and 
smallest intuitionistic fuzzy numbers. The positive 
ideal value �+ and negative ideal value �− of the five 
evaluation indexes 

{
c1, c2, c3, c4, c5

}
 are denoted as fol-

lows: �+ = ((1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0)) , 
�− = ((0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0))

Wholesaler1 Wholesaler2 Wholesaler3 Wholesaler4 Wholesaler5 Wholesaler6 Wholesaler7 Wholesaler8 Wholesaler9 Wholesaler10

: Cold-rolled high-strength steel plates with phosphorus production capacity 

: Seamless steel pipes production capacity

: Galvanized steel coils production capacity

: Low-carbon wire rod for drawing production capacity

: Enterprise

: Subsidiary

: Wholesaler

: Cold-rolled high-strength steel plates with phosphorus distribution path

: Seamless steel pipes distribution path

: Galvanized steel coils distribution path

: Low-carbon wire rod for drawing distribution path

2030 cold rolling mill 2050 hot rolling mill

1580 hot rolling mill
Pipe jacking 

machine Φ140 continuous pipe 
rolling machine1550 cold rolling mill

1870 hot dip galvanizing unitHigh speed wire 
rod rolling mill

Finely rolled pole column

Talent 
resource 1

Talent resource 4

Talent resource 5
Talent resource 6

Talent resource 7
Information system 3

Information system4

Information system 6 Information system 8

A1 A2 A3 A4 B1 B2 C1 C2 C3

: Talent resource 
scheduling path

: Equipment 
scheduling path

: Information system 
scheduling path

Fig. 10   System transportation path diagram after scheduling

A1

C1

A2

B1
A4

C2

C3
A3

B2
: Subsidiary

: Wholesaler

: Warehouse

: Demand point

A52030 cold 
rolling mill

Pipe jacking machine

Φ140 continuous pipe rolling machine

1580 hot rolling mill

2050 hot rolling mill

1550 cold rolling mill1870 hot dip 
galvanizing unit

High speed wire 
rod rolling mill

Finely rolled 
pole column

Talent resource 6

Talent 
resource 4

Talent resource 5

Talent resource 1

Talent 
resource 7

Information system 6

Information 
system 3

Information 
system 4

Information 
system 8

: Talent resource 
scheduling path

: Equipment 
scheduling path

: Information system 
scheduling path

Fig. 11   Planar distribution of manufacturing resources after scheduling
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The weighted positive separation measure, the weighted 
negative separation measure, and the sticking progress 
coefficient are calculated by using Eqs. 32–34. The 
results are shown in Table 9.
Because U−

3
> U−

4
> U−

1
> U−

2
 , the ranking result of the 

2050 hot strip mill of the corresponding four subsidiaries 
is as follows: a3 > a4 > a1 > a2 , so the optimal supplier 
is B2. Repeat the above steps to obtain the primary selec-
tion of equipment resources and the scheduling execution 
scheme of human resources and information systems.
Step 7: After the initial sorting results of equipment 
resources, further discussion is still needed, because the 
purpose of resource allocation is to improve the produc-
tion capacity of enterprises, and the capacity increase 
brought by equipment resource scheduling can be directly 
quantified and analyzed. Therefore, we establish an opti-
mization model to establish the final equipment resource 
scheduling scheme. Combined with Eqs.  1–12 and 
Eqs. 35–39, the model is established and solved by the 
NSGA-II-MOPSO algorithm. The corresponding solu-
tions of the four products are as follows (Fig. 9):
The digital twin system uploads various solution results 
to manufacturing resource demand enterprises. After 
comparative analysis, it can be concluded that A4 as 
the location for manufacturing demand enterprises will 
achieve greater benefits and robust performance. The final 
scheduling scheme and location scheme are determined, 
and the results are shown in Table 10.
The corresponding transportation path diagram and man-
ufacturing resource scheduling path diagram are shown 
in Fig. 10 and Fig. 11 respectively:
The corresponding site selection location is A4, and the 
production planning scheme and manufacturing resource 
scheduling scheme can also be derived from it. Through 
the above steps and models, a site selection model sup-
ported by digital twin technology is constructed and the 
problem is solved by a smart collaborative system, and a 
concrete implementation plan is obtained.

6 � Conclusion

The application of digital twin technology in process design is 
not yet widespread. Using digital twin technology in manufac-
turing process planning to quickly mine and learn from timely 
collected data will reveal more advantages and disadvantages. 
The digital twin technology represents the progress of digiti-
zation, which is being applied in more and more fields, such 
as smart manufacturing [38], smart cities [39], and health-
care [40]. The future requires the development of common 
digital twin design development platforms and tools [6]. In 
the traditional manufacturing process, manufacturing enter-
prises face many problems from the lack of manufacturing 

resources to solve the manufacturing needs. In the process of 
site selection, some manufacturing enterprises have difficulty 
in choosing the most suitable site to achieve manufacturing 
production and the cost required for manufacturing is large 
according to their own manufacturing resources. The devel-
opment of collaborative manufacturing concept has solved 
this problem by helping manufacturing enterprises to achieve 
capacity improvement through inter-enterprise manufactur-
ing resource leasing, and solving the problem of insufficient 
capacity caused by bottleneck processes will reasonably 
improve the resource shortage problem of manufacturing 
enterprises and significantly reduce the site selection cost of 
enterprises. Combined with the funnel model proposed in 
this paper, it will help manufacturing enterprises to find out 
the bottleneck processes more quickly and easily and com-
bine with the circular scheduling system of manufacturing 
resources to achieve the maximum capacity of enterprises. 
We propose to combine AIFGSCg� operator to achieve a more 
scientific scheduling decision for some difficult to quantify 
metrics to help manufacturing enterprises realize the collabo-
rative scheduling process of multiple manufacturing resources 
to avoid the problem of resource mismatch after scheduling. 
Combined with the results of the case study, we found that the 
combination of digital twin technology can greatly help the 
collaborative manufacturing enterprises to simulate the sched-
uling process of manufacturing resources and make the best 
resource scheduling decision. We believe that future research 
on manufacturing resource allocation by combining digital 
twin technology in the collaborative manufacturing process 
can start from several aspects:

•	 Scheduling of manufacturing resources. The manage-
ment of dynamic manufacturing resources is more com-
plex than the management of enterprise independent 
resources. This means that manufacturing enterprises 
cooperate with each other, share diverse manufacturing 
resources, and achieve greater manufacturing value. In 
this process, the selection of data and information, the 
use of manufacturing resources, and the changing mar-
ket demand will require manufacturing systems to make 
faster and more responsive decisions.

•	 Due to the volatility of customer demand, the scheduling 
of dynamic manufacturing resources is difficult to control 
accurately. The platform needs to adjust the scheduling 
process of dynamic manufacturing resources in a timely 
manner according to the fluctuation of manufacturing 
enterprises’ demand in order to maximize the revenue.

•	 New data storage and processing technologies will help 
manufacturing enterprises to be more flexible to respond 
to market demands [41]. Collaborative manufacturing 
enterprises can make quick decision responses among 
themselves based on timely data information to avoid 
unnecessary waste of manufacturing resources.
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