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Abstract
The feedrate scheduling of non-uniform rational B-spline (NURBS) interpolation plays a crucial role in achieving efficient 
and high-precision machining. In order to generate highly smooth and efficient feedrate profiles for the interpolation process, 
this study proposes a novel feedrate scheduling algorithm which is a modification of the S-shaped acceleration and decel-
eration planning algorithm. The proposed algorithm utilizes quartic polynomials to construct the jerk function, effectively 
addressing jerk mutation and inefficiency issues inherent in conventional S-shaped models. Additionally, a sub-curve merging 
rule is established to reduce the number of sub-curves and minimize short, frequent acceleration and deceleration, thereby 
enhancing stability during the machining process. Simulations and experiments conducted on butterfly curves demonstrate 
the effectiveness of the proposed algorithm. Compared to the trigonometric function-based S-shaped acceleration and decel-
eration planning algorithm, the proposed algorithm achieves an 8.38% improvement in efficiency and a 7.14% reduction 
in average tracking error. These results highlight the potential of the proposed feedrate scheduling algorithm to provide an 
efficient and high-precision solution for NURBS curve interpolation.
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1  Introduction

With the continuous advancement of automation manu-
facturing technology, high-precision and high-efficiency 
curve processing has become increasingly important. In 
conventional linear interpolation and circular arc interpola-
tion methods, the frequent changes in motion direction and 
significant fluctuations in feedrate result in limited machin-
ing efficiency and precision. Non-uniform rational B-spline 
(NURBS) curve interpolation technology, characterized by 
parametrization, smoothness, and high degrees of freedom, 
is considered an effective approach for achieving high-
precision and high-efficiency machining [1]. Furthermore, 
NURBS interpolation technology exhibits exceptional flex-
ibility and compatibility, allowing for seamless integration 
with various computer-aided design/computer-aided manu-
facturing (CAD/CAM) systems and machining equipment. 
This technology can satisfy the processing requirements of 

different devices and systems [2]. In practical applications, 
devising an appropriate feedrate profile for the NURBS 
interpolation process, also known as feedrate scheduling, 
has become crucial to ensure highly efficient and precise 
interpolation for machine tools or robots.

Feedrate scheduling, also known as feedrate profiling, 
is a technique used to adjust the feedrate of machine tools 
or robotic arms based on the curvature of the interpolated 
curve. Its objective is to ensure optimal efficiency, smooth-
ness, and precision of motion. Traditional methods like uni-
form feedrate interpolation and uniform increment interpola-
tion often overlook curvature, leading to significant chord 
errors at breakpoints and regions with high curvature [3–5]. 
Chord error, referring to the distance between the interpo-
lated curve and the parametric curve, serves as a fundamen-
tal consideration in feedrate scheduling and exhibits a posi-
tive correlation with feedrate and curvature [6].

Variable-feedrate interpolation is an effective approach 
to balancing efficiency and precision. It involves limiting 
the feedrate based on the chord error during the machin-
ing process. Two notable methods, the adaptive feedrate 
method proposed by Yeh et al. and the curvature-based fee-
drate method proposed by Xu et al., explore the relationships 
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among chord error, curvature, and feedrate [7, 8]. These 
methods enable variable feedrate machining and substan-
tially reduce chord errors.

However, these methods may fall short when applied to 
NURBS curves of high curvature and complexity, due to 
inadequate consideration for feedrate variations. Such an 
oversight can result in excessive and abrupt acceleration and 
jerk, which might exceed the machine tool’s capabilities. 
Consequently, this can detrimentally affect the stability of 
the machining process and compromise the quality of the 
end product [9]. Additionally, maintaining a constant low 
feedrate in curvature-sensitive areas can effectively limit 
chord errors. However, it may also affect the feedrate in adja-
cent regions with lower curvature [10, 11]. Thus, a careful 
balance must be struck to ensure optimal feedrate profiles 
that minimize chord errors while considering the machine’s 
capabilities and the complexity of the NURBS curves being 
interpolated [12].

Traditional point control algorithms, notably the trap-
ezoidal and exponential models, are known for their effi-
ciency. However, their acceleration transitions tend to be 
abrupt, leading to considerable vibrations and shocks [13, 
14]. These issues can compromise the machining process 
and pose obstacles in achieving precise control.

To address these issues, various methodologies employ-
ing polynomial equations have been proposed to construct 
feedrate profiles. Specifically, Leng and Liu et al. have uti-
lized cubic polynomials for this purpose. While their meth-
ods ensure a linear jerk variation, it nevertheless results in 
flexible impacts on machine tools due to abrupt jerk changes 
in specific regions [15, 16]. Li et al. utilize a quartic polyno-
mial to construct feedrate profiles, with jerk represented as 
a quadratic function of time, ensuring jerk continuity [17]. 
However, the methods proposed by Leng, Liu, and Li do 
not maintain maximum acceleration and jerk, resulting in 
lower efficiency.

At present, the most mature and effective feedrate sched-
uling algorithm is the S-shaped ACC/DEC planning algo-
rithm, which has proven successful in avoiding sudden 
changes in feedrate and acceleration while maintaining 
high efficiency. A complete S-shaped ACC/DEC planning 
comprises seven phases: acc-acceleration phase, uniform 
acceleration phase, dec-acceleration phase, uniform feedrate 
phase, acc-deceleration phase, uniform deceleration phase, 
and dec-deceleration phase [18–21]. By following these 
phases, S-shaped ACC/DEC planning algorithms generate 
smooth and continuous feedrate profiles in an S shape, while 
ensuring continuous trapezoidal acceleration profiles and 
adherence to equipment requirements regarding feedrate, 
acceleration, and jerk.

However, it should be noted that in these feedrate sched-
uling algorithms, jerk remains discontinuous and subject to 
sudden changes. Discontinuous jerk can result in flexible 

vibrations that may negatively impact machining quality and 
reduce the lifespan of mechanical components. Thus, despite 
the advantages of S-shaped ACC/DEC planning algorithms 
in terms of feedrate and acceleration, the issue of discontinu-
ous jerk remains a concern.

To enhance the smoothness of feedrate and acceleration 
profiles, researchers have proposed jerk-continuous methods 
for NURBS interpolation. Two main approaches have been 
employed. The first approach involves adding phases to the 
jerk variation process to ensure jerk continuity. The sec-
ond approach utilizes trigonometric functions to construct 
smooth and continuous jerk functions. These methods aim 
to mitigate the issues associated with discontinuous jerk and 
further improve the stability and precision of the feedrate 
scheduling process.

Ji et al. have introduced a constant rate of jerk change dur-
ing the jerk variation phases to ensure jerk continuity [22]. 
Ni et al. have used trigonometric functions to control the 
jerk variation process, resulting in a smooth and continuous 
jerk profile [23]. However, these methods involve a complete 
acceleration-deceleration process containing 15 phases and 
seven variables, significantly increasing the computational 
complexity in feedrate scheduling.

Nie et al. have employed a sine function to construct jerk 
functions, while Kombarov and Sun et al. have used a dou-
ble sine function for the same purpose [24–26]. Hu et al. 
employed cosine functions for the same purpose [27]. The 
multi-order invertibility of trigonometric functions ensures 
that the acceleration and feedrate functions derived from 
using trigonometric functions to construct jerk profiles will 
remain continuously invertible, thereby supporting stable 
processing. However, incorporating trigonometric functions 
in real-time interpolation can present challenges.

The direct and precise calculation of trigonometric func-
tions is impractical, prompting the adoption of approxima-
tion methods that balance accuracy with computational 
efficiency. To realize this equilibrium, techniques including 
iterative methods, Taylor series expansions, polynomial fit-
ting, table look-up methods, and CORDIC algorithms are 
applied in trigonometric function computations. Addition-
ally, mirroring the constraints in Li et al.’s method, jerk pro-
files constructed using trigonometric functions encounter 
difficulties in preserving their maximum values. This limita-
tion can potentially lead to diminished machining efficiency.

Although various feedrate scheduling algorithms have 
been developed, achieving smooth and continuous jerk pro-
files with high efficiency and simple calculations remains 
a challenge. Effective feedrate scheduling algorithms must 
take into account various constraints, such as limiting chord 
errors to achieve high-precision machining, ensuring smooth 
and continuous feedrate-acceleration-jerk curves for vibra-
tion reduction, enhancing feedrate curves to boost machining 
efficiency, and avoiding complex calculations to improve 
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scheduling efficiency and meet the requirements of real-time 
interpolation.

In addition, the existing NURBS interpolation feedrate 
scheduling algorithms have limitations in the sub-curve 
splitting strategy. Current S-shaped acceleration and decel-
eration planning algorithms can only handle curves with 
at most one acceleration and one deceleration. As a result, 
feedrate scheduling for NURBS curve interpolation requires 
splitting the curve into multiple sub-curves. Critical points 
with high curvature are typically chosen as the basis for 
curve segmentation. However, this strategy may result in an 
excessive number of sub-curves for complex curves, leading 
to frequent acceleration and deceleration during machining. 
This can negatively impact the accuracy of the machining 
process.

To address these challenges, this study introduces a novel 
feedrate scheduling algorithm for NURBS curve interpo-
lation. The algorithm utilizes quartic polynomials to con-
struct jerk profiles, enabling the generation of smooth and 
continuous feedrate, acceleration, and jerk profiles during 
the machining process. Additionally, a sub-curve adaptive 
merging strategy is proposed to reduce the number of sub-
curves in the feedrate scheduling. This strategy aims to mini-
mize the frequency of acceleration and deceleration, thereby 
improving both machining efficiency and quality.

2 � Feedrate scheduling algorithm

2.1 � The proposed jerk function

The S-shaped ACC/DEC planning algorithm based on trigo-
nometric functions has the potential to generate smooth and 
continuous jerk-acceleration-feedrate profiles. However, due 
to the complex calculations required and the low machining 
efficiency, this approach may face challenges in achieving 
high-precision and high-efficiency machining.

Figure 1a illustrates the jerk profile of the acc-acceler-
ation phase generated by the trigonometric function. To 

avoid complex trigonometric operations and improve effi-
ciency, this study adopts quartic polynomials to construct 
a superior jerk profile.

As illustrated in Fig. 1a, a superior jerk profile should 
include the following characteristics:

(a)	 Jerk is 0 when t = 0;
(b)	 Jerk reaches the limit when t = T/2;
(c)	 Jerk is 0 when t = T.

The expression for the jerk constructed with a quartic 
polynomial can be expressed as:

Based on the above-mentioned characteristics, the param-
eters a, b, and c can be represented by d. The variation of 
the jerk profile with d is illustrated in Fig. 1b. As depicted 
in Fig. 1b, the jerk change rate increases with d, indicat-
ing higher machine responsiveness and efficiency. When 
the value of d exceeds 4, the jerk profiles constructed using 
quartic polynomials outperform the jerk profile generated 
using the trigonometric function. Nonetheless, an exces-
sively large d may result in an M-shaped jerk profile that 
exceeds the jerk limit, which is not acceptable. To prevent 
the occurrence of the M-shaped profile, the second-order 
derivative of jerk should not be greater than zero. Satisfy-
ing the above conditions, the optimal value of d is 8, and 
the corresponding expression for jerk is obtained as follows:

The segmental jerk expression constructed by quartic 
polynomials can be obtained based on the symmetry of 
the S-shaped ACC/DEC planning algorithm, as shown in 
Eq. (3).

T h e  p ro p o s e d  S - s h a p e d  AC C / D E C  p l a n -
ning algorithm provides smooth and continuous 

(1)J(t) = Jmax
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T4
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b

T3
t3 +
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T2
t2 +
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T
t
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t
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Fig. 1   Jerk profile constructed 
by trigonometric function and 
quartic polynomials
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jerk-acceleration-feedrate-displacement profiles, as dem-
onstrated in Fig. 2. Within a single jerk cycle, the jerk 
exceeds 90% of the maximum allowable jerk for more than 
56% of the time, compared to 29% in the trigonometric-
based jerk, indicating a high level of support for efficient 
machining.

2.2 � Feedrate scheduling

Figure 2 contains the complete seven phases in the S-shaped 
ACC/DEC. However, effective feedrate scheduling for a 
curve requires the identification of these motion phases 
within the actual movement and the determination of the 
duration of each phase. This is contingent upon the length 
of the curve ( S ), as well as its initial and terminal feedrates 
(vs and ve).

Figure 3 depicts feedrate scheduling process flow and the 
feedrate, acceleration, and jerk profiles for various cases. 
The motions are classified into eleven modes based on S, vs 
and ve. The motion phases inherent to each mode are pre-
sented in Table 1. Herein, the symbol “√” unequivocally 
confirms the existence of a phase, “×” definitively negates 
the presence of a phase, whereas “o” denotes the phase’s 

(3)J(t) =

⎧
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existence as indeterminable. Please refer to Table 1 for addi-
tional insights.

Drawing on the depiction of motion phases in Fig. 3 and 
Table 1, the subsequent sections offer a detailed descrip-
tion of the method for determining the included movement 
phases and the corresponding durations, base on S, vs and ve.

1)	 Step 1: Determine whether the machine’s maximum fee-
drate limit (Vmax) can be reached.

•	 Assumption A: Vmax can be reached. The duration of each 
motion phase can be obtained from Eqs. (4) to (5). It 
should be noted that in the S-shaped ACC/DEC, T3 = T1, 
and T7 = T5. At the same time, the minimum displace-
ment required to reach the maximum feedrate limit Vmax 
can be calculated by Eq. (8).

(4)T1 =

⎧⎪⎨⎪⎩

5Amax

4Jmax

Vmax ≥ vs +
5A2

max

4Jmax�
5(Vmax−vs)

4Jmax

Vmax < vs +
5A2

max

4Jmax

(5)T2 =

⎧⎪⎨⎪⎩

Vmax−vs−
5A2max

4Jmax

Amax

Vmax ≥ vs +
5A2

max

4Jmax

0 Vmax < vs +
5A2

max

4Jmax

Fig. 2   The proposed jerk-continuous ACC/DEC profile

Fig. 3   Feedrate scheduling flow
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The feedrate scheduling can be divided into two cases 
based on S and S1.

a.	 S ≥ S1 (M1): Vmax can be reached and there exists a uni-
form feedrate phase; the corresponding duration (T4) is 
given as following:

b.	 S < S1: Vmax can not be reached, and there is no uni-
form feedrate phase, T4 = 0. Accordingly, Vmax cannot 
be used to calculate the duration of each phase, and the 
maximum achievable feedrate and the duration of each 
phase need to be recalculated. The discussion can be 
divided into two cases based on vs and ve. When ve > vs, 
the overall acceleration process is presented; otherwise, 
the deceleration process is presented. However, the fee-
drate scheduling algorithms are almost identical for both 
cases, so only ve > vs is presented.

When ve > vs, the acceleration phase is necessarily 
included, and it is uncertain whether the deceleration 
phase is included.

(6)T5 =

⎧⎪⎨⎪⎩

5Amax

4Jmax
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5A2

max

4Jmax�
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(8)
S1 =

1

2

((
Vmax + vs

)(
2T1 + T2

)
+
(
ve + Vmax

)(
2T5 + T6

))

(9)T4 =
S − S1

Vmax

2)	 Step 2: Determine whether S is sufficient for achieving 
acceleration.

•	 Assumption B: S is sufficient for achieving acceleration 
and there is no deceleration phase. T1 and T2 are planned 
as follows:

The corresponding accelerated phase displacement can 
be derived as:

The feedrate scheduling can be divided into three cases 
based on S and S2.

a.	 S = S2 (M2): S is sufficient for achieving acceleration, 
and there is no deceleration phase. The obtained T1 and 
T2 can be adopted.

b.	 S < S2 (M3): S is insufficient for achieving acceleration, 
and the feedrate scheduling cannot be implemented with 
the constructed S-shaped ACC/DEC algorithm.

c.	 S > S2: The deceleration phase is included, and T1 and 
T2 need to be recalculated.

(10)T1 =
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4Jmax
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(12)S2 =
1

2

(
vs + ve

)(
2T1 + T2

)

Table 1   Motion phases included 
in different motion modes

Motion modes Motion phases

Acc-Acc Uniform Acc Dec-Acc Uniform 
feedrate

Acc-Dec Uniform Dec Dec-Dec

M1 √ √ √ √ √ √ √
ACC​ M2 √ o √ × × × ×

M3 - - - - - - -
M4 √ √ √ × √ o √
M5 √ √ √ × √ × √
M6 √ × √ × √ × √

DEC M7 × × × × √ o √
M8 - - - - - - -
M9 √ o √ × √ √ √
M10 √ × √ × √ √ √
M11 √ × √ × √ × √
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Case c is still uncertain and can be divided again based 
on whether the maximum deceleration can be achieved.

3)	 Step 3: Determine whether the maximum deceleration 
can be achieved.

•	 Assumption C: The maximum deceleration can be 
obtained, but there is no uniform deceleration phase. 
The maximum feedrate (vf) that can be achieved is as 
follows:

The uniform acceleration phase is necessarily present. 
The duration of each phase can be obtained by Eq. (14).

The corresponding displacement is calculated by Eq. 
(15).

Based on S and S3, the feedrate scheduling can be 
divided into two cases.

a.	 S ≥ S3 (M4): The maximum deceleration can be reached 
and a uniform deceleration phase may occur, and the 
duration of each phase needs to be calculated. The uni-
form acceleration phase necessarily exists when there 
is a uniform deceleration phase. The maximum feedrate 
that can be achieved is undetermined and needs to be 
calculated. Suppose the maximum feedrate is vf, Eq. (16) 
can be obtained.

The maximum feedrate vf, T1, T2, T5, and T6 can be 
obtained by solving Eqs. (15) and (16). The solution of vf 
can be solved by Newton’s iterative or dichotomous method, 
and in this study, the dichotomous method is used to solve vf.

b.	 S < S3: The maximum deceleration cannot be reached, 
and the feedrate profile needs to be rescheduled. 

(13)vf = ve +
5A2

max

4Jmax

(14)
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Whether the maximum acceleration can be achieved 
needs to be determined.

4)	 Step 4: Determine whether the maximum acceleration 
can be achieved.

•	 Assumption D: The maximum acceleration can be reached, 
but there is no uniform acceleration phase. The duration of 
each phase can be calculated by Eq. (17).

And the corresponding displacement is calculated by Eq. 
(18).

Based on S and S4, the feedrate scheduling can be divided 
into two cases.

a.	 S ≥ S4 (M5): The maximum acceleration can be reached 
and a uniform acceleration phase may occur, and the 
duration of each phase needs to be calculated. The maxi-
mum feedrate that can be achieved is undetermined and 
needs to be calculated. Suppose that the maximum fee-
drate is vf, Eq. (19) can be obtained.

The maximum feedrate vf, T1, T2, and T5 can be obtained by 
solving Eqs. (19) and (15).

b.	 S < S4 (M6): The maximum acceleration and the maxi-
mum deceleration can not be reached and the duration 
of each phase needs to be rescheduled. Suppose that the 
maximum feedrate is vf, Eq. (20) can be obtained.
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The maximum feedrate vf, T1, T2, and T5 can be obtained 
by solving Eqs. (20) and (15).

Employing the same methodology, the identification of 
motion modes M7 through M11 can be accomplished. How-
ever, given the insufficient length of the curves in M3 and 
M8 to achieve acceleration or deceleration, adjustments to 
the initial or final feedrate are necessitated for the computa-
tion of each phase’s duration.

2.3 � Adjustment of ve and vs

For M3, adjusting the feedrate within the specified dis-
placement distance can be accomplished by increasing vs or 
decreasing ve. However, for NURBS curve feedrate sched-
uling, increasing the feedrate is less desirable, as it may 
compromise the machining quality. Therefore, it is advis-
able to suitably reduce ve for M3, and correspondingly, to 
decrease vs for M8. The feedrate adjustment process for M8 
mirrors that for M3; hence, only the adjustment of ve in M3 
is presented.

•	 Assumption E: The maximum acceleration can be 
reached, but there is no uniform acceleration phase. The 
original ve is discarded, and the new end feedrate limit is 
noted as ve, c. Equation (21) needs to be satisfied.

Based on S and S21, the feedrate limit correction can be 
divided into two cases.

a.	 S < S21: The maximum acceleration cannot be reached, 
and T1 needs to be recalculated. Assuming that the cor-
rected end feedrate limit is ve, c, Eq. (22) is obtained.

Solving for Eq. (22) gives the corresponding T1, T2, and 
ve, c, and then ve needs to be replaced by ve, c.

(20)

⎧
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T1 =

�
5(vf−vs)
4Jmax

T2 = 0

T5 =

�
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4Jmax

T6 = 0

(21)
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T2 = 0
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5A2
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S21 = T1
�
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�

(22)

⎧⎪⎨⎪⎩
T1 =

�
5(ve,c−vs)

4Jmax

S = T1
�
vs + ve,c

�

b.	 S ≥ S21: The maximum acceleration can be reached, 
and T1 and T2 need to be recalculated. Assuming that 
the corrected end feedrate limit is ve, c, Eq. (23) can be 
obtained.

Solving for Eq. (23) gives the corresponding T1, T2, and 
ve, c, and then ve needs to be replaced by ve, c.

3 � Feedrate scheduling of NURBS 
interpolation

3.1 � Limitations of interpolation feedrate

3.1.1 � Chord error

Machining accuracy stands as a principal constraint on 
the interpolation feedrate of a NURBS curve. Within the 
NURBS curve interpolation procedure, two predominant 
categories of deviations can be identified: radial error and 
chord error. The former is defined as the orthogonal distance 
between the interpolation point and the parameter curve, 
primarily attributed to the rounding inaccuracies of comput-
ing systems. However, given the evolution of high-precision 
processors, radial error has largely been mitigated and no 
longer presents a significant concern in modern applications.

The chord error, which signifies the Hausdorff distance 
between the actual and theoretical machining paths, is the 
main factor that affects machining accuracy. Nevertheless, 
accurately calculating the Hausdorff distance presents con-
siderable challenges, rendering the circular arc approxi-
mation method a currently more widespread approach for 
estimating the chord height error.

Figure 4 demonstrates the computation of the chord 
error utilizing the circular arc approximation method [8]. 
Herein, the machining curve within one interpolation cycle 
is approximated as an arc with a radius ρi. ρi corresponds to 
the radius of curvature of the curve at parameter ui, which 
can be calculated by Eq. (24).
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at the parameter u and Ts is the interpolation period. The 
chord error δi of the NURBS curve can be approximated 
by the chord error corresponding to the chord of length viTs 
on the arc, which can be expressed by Eq. (25).

As delineated by Eq. (25), a larger feedrate vi yields 
a significant chord error for a fixed interpolation period. 
Given a constraint on the maximum chord error δmax, the 
feedrate’s upper limit at the interpolation point C(ui) can 
be articulated by Eq. (26).

3.1.2 � Dynamic performance of equipment

In addition to considering chord error, the limitation of the 
maximum feedrate, normal acceleration, and jerk of the 
machine should also be taken into account during NURBS 
curve interpolation.

(25)�i = �i −

√
�2
i
−

(
viTs

2

)2

(26)Fc = vi,lim � =
2

Ts

√
�2
i
−
(
�i − �max

)2

With the maximum normal acceleration limited Ac, max, 
the maximum feedrate at the parameter ui can be expressed 
by Eq. (27) [28].

In addition to changes in feedrate magnitude and direc-
tion, the centripetal acceleration also changes during 
NURBS curve processing, causing changes in jerk. Jerk 
also needs to be limited.

With the limitation of maximum jerk to Jmax, the maxi-
mum feedrate under the jerk limit can be expressed using 
Eq. (28) [28].

In addition, it is crucial to ensure that the feedrate dur-
ing machining does not exceed the predetermined maximum 
feedrate limit, denoted as Vmax.

In summary, the maximum feedrate achievable at the 
parameter ui on the NURBS curve, while considering the 
limitations of chord error and machine dynamics can be 
expressed using Eq. (29).

The feedrate limit curve ui-Flim can be constructed by 
calculating the maximum feedrate corresponding to any 
parameter ui based on Eq. (29). The feedrate limit curve is 
an important basis for subsequent curve splitting and fee-
drate scheduling.
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3.2 � Splitting of sub‑curves

The feedrate limit curves in NURBS curves often contain 
multiple feedrate minima, indicating that the machining 
process involves multiple acceleration and deceleration 
phases. However, the S-type Acc/Dec planning algorithm 
is typically designed for motions with a maximum of one 
acceleration and one deceleration phase. To enable feedrate 
scheduling for NURBS curves, a common approach is to 
split the curve into multiple sub-curves at the minima of the 
feedrate limit curve. Subsequently, feedrate scheduling can 
be performed individually for each sub-curve.

Most of the current studies have been conducted to split 
the NURBS curve into several sub-curves by finding the 
critical points, such as the maximum curvature points or 
the breakpoints. According to Eq. (29), it can be found that 
the maximum curvature points usually correspond to the 
minimum feedrate limit points. Therefore, in this study, the Fig. 4   Calculation of chord error
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minimum feedrate points are considered the critical points 
and used as the basis for curve splitting.

The sub-curve splitting process can be illustrated more 
clearly using the trident curve depicted in Fig. 5a. Fig. 5b 
displays the curvature curve, and Fig. 5c presents the fee-
drate limit curve of the trident curve. The feedrate limit 
curve in Fig. 5c identifies seven minima, marked as points 
A–G in Fig. 5a. These points represent critical points or 
curvature-sensitive points since they correspond to regions 
of high curvature where the feedrate limits are relatively 
small. In the sub-curve splitting process, the trident curve 
will be divided into six sub-curves based on these seven 
critical points, and feedrate scheduling is performed for each 
sub-curve separately.

The feedrate scheduling of the sub-curve was based on 
the initial feedrate limit vs, the terminal feedrate limit ve, and 
the length S of the sub-curve. vs and ve can be obtained from 
the feedrate limit curves; the arc length can be calculated 
with the adaptive quadrature method based on the Simpson 
rule [29, 30].

3.3 � Merging of sub‑curves

After obtaining the initial feedrate, terminal feedrate, and 
curve length of each sub-curve, feedrate scheduling for 
NURBS curves can be achieved by sequentially applying 
the algorithm described in Section 2 for each sub-curve. 
Most of the feedrate scheduling algorithms conclude at this 
stage. However, when the curve curvature is complex, there 
may be more sub-curves, resulting in frequent acceleration 
and deceleration.

In this study, an adaptive sub-curve merging strategy is 
employed to minimize the number of sub-curves and avoid 
sharp acceleration and deceleration phases. A secondary 
scheduling strategy is utilized in the feedrate scheduling pro-
cess. In the first feedrate scheduling, feedrate scheduling is 
performed for each sub-curve to identify the sub-curves that 

can be merged. After the merging of sub-curves, a second 
feedrate scheduling is performed on the merged sub-curves, 
which have fewer sub-curves.

The merging of sub-curves can be divided into two types 
depending on the set sub-curve merging conditions.

3.3.1 � The first type of sub‑curve merging

The first type of sub-curve merging is conditioned by the 
fact that the feedrates at the interface of the two adjacent 
sub-curves have been corrected. This type of sub-curve 
merging typically simplifies the feedrate, acceleration, and 
jerk curves, improving machining efficiency and machining 
stability.

Figure 6 illustrates a schematic diagram of the first type 
of sub-curve merging. In this diagram, the feedrate limit 
curve is represented by Flim, the feedrate curve without curve 
merging are denoted as Fs1 and Fs2, and the feedrate curve 
after sub-curve merging is represented by Fs12.

Fig. 5   Sub-curve splitting of the 
trident curve

Fig. 6   Schematic diagram of the first type of sub-curve merging
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To aid in the description, let us designate the sub-curve 
located between parameters ui and uj as Ci, j, and the feedrate 
limit at parameter ui as Flim, i. The length of C2, 3 in Fig. 6 
is not sufficient to support the feedrate decrease from Flim, 2 
to Flim, 3. Therefore, Flim, 2 needs to be reduced during the 
feedrate scheduling process. When these two sub-curves are 
processed separately, the resulting feedrate curves are called 
Fs1 and Fs2, respectively. In this case, when machining the 
curve within the parameters u1 and u3, it becomes necessary 
to undergo one acceleration and two decelerations. Addi-
tionally, both the acceleration and deceleration at u2 need to 
be reduced to zero, which can negatively impact machining 
efficiency.

Given that the feedrate limit Flim, 2 at the interface 
between C1, 2 and C2, 3 is adjusted, C1, 2 and C2, 3 can be 
merged into a single curve, C1, 3. This merging process offers 
the advantage of requiring only one feedrate scheduling and 
disregarding the feedrate limit at u2. The resulting merged 
feedrate profile is denoted as Fs12, which eliminates the need 
for reducing acceleration and jerk to zero at u2. From Fig. 6, 
it is evident that Fs12 is consistently greater than both Fs1 and 
Fs2 at every position, indicating that machining with Fs12 
will be more efficient. Furthermore, the smoother feedrate 
profile of Fs12 facilitates more stable machining.

Figure 7 provides a comparison of the feedrate, accel-
eration, and jerk profiles before and after the merging of 
sub-curves in the time domain. It is evident that after the 

sub-curves are merged, there is a reduction in machining 
time and an improvement in machining efficiency. Addi-
tionally, the feedrate, acceleration, and jerk curves exhibit 
simpler patterns after the merging process.

3.3.2 � The second type of sub‑curve merging

The conditions for the merging of the second type of sub-
curves can be divided into three cases, as illustrated in 
Fig. 8:

a)	 As illustrated in Fig. 8a, the merging of two sub-curves 
is feasible when vf − vs ≥ k(vf − ve) and S23 ≥ kS12. Here, 
the parameter k is customizable and its magnitude deter-
mines the level of requirement for sub-curve merging. A 
larger value of k signifies a higher demand for sub-curve 
merging.

b)	 As illustrated in Fig. 8b, the merging of two sub-curves 
is feasible when vf − ve ≥ k(vf − vs) and S12 ≥ kS23.

c)	 As illustrated in Fig. 8c, the merging of two sub-curves 
is feasible when vf − vs ≥ k(vf − ve) and vf − ve ≥ k(vf − vs).

Nevertheless, as depicted in Fig. 8, the feedrate profile 
resulting from sub-curve merging exceeds the feedrate limit 
curve in certain regions, which is unacceptable. Therefore, 
it becomes necessary to adjust the maximum feedrate, accel-
eration, and jerk to ensure that the scheduled feedrate can 

Fig. 7   Feedrate, acceleration, and jerk profiles in the time domain for the first type of sub-curve merging

Fig. 8   Schematic diagram of the second type of sub-curve merging
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satisfy both the chord error and the dynamic performance 
requirements of the equipment.

For the second type of sub-curve merging depicted in 
Fig. 8a and b, three strategies can be employed to ensure 
that the scheduled feedrate remains within the feedrate limit. 
These strategies include reducing the maximum accelera-
tion, reducing the maximum jerk, or reducing both the maxi-
mum acceleration and jerk. After conducting a comparison, 
it has been determined that reducing both the maximum 
acceleration and jerk simultaneously has the least impact 
on machining efficiency in the majority of cases. As a result, 
the strategy of simultaneously reducing the maximum accel-
eration and jerk is adopted in this study.

The specific implementation involves utilizing the 
dichotomous method in feedrate scheduling to iteratively 
approximate the most suitable values for Amax and Jmax. 
In this process, if the resulting combined feedrate pro-
file exceeds the feedrate limit, lowering Amax and Jmax, 

otherwise, raising Amax and Jmax. The corrected feedrate 
profiles can be observed in Fig. 9a and b.

For the first type of curve merging shown in Fig. 7, as 
well as for the feedrate scheduling of a single sub-curve, 
there is a possibility that the resulting feedrate profile may 
exceed the feedrate limit. When the above situation occurs, 
it is also necessary to utilize the dichotomy method to 
reduce Amax and Jmaxto ensure that the feedrate is within 
the allowable range.

In the case of the second type of sub-curve merging 
illustrated in Fig. 8c, reducing the maximum feedrate Vmax 
has the least impact on the machining efficiency. In this 
case, it is necessary to correct Vmax to v2. The resulting 
corrected feedrate profile, Fs12, is depicted in Fig. 9c.

As shown in Fig. 9, when the second type of curve merg-
ing is applied and Vmax or Amax and Jmax are reduced, the 
resulting feedrate profile Fs12 may exhibit lower efficiency 
compared to the feedrate profiles Fs1 and Fs2 without curve 

Fig. 9   Adjusted feedrate profiles for the second type of sub-curve merging

Fig. 10   Feedrate, acceleration, and jerk profiles in time domain for the second type of sub-curve merging
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merging. The level of efficiency reduction is also influ-
enced by the parameter k. A larger value of k indicates a 
higher requirement for sub-curve merging and corresponds 
to a smaller reduction in efficiency for the merged feedrate 
profile.

Fig. 10 displays the acceleration and jerk curves after 
merging the sub-curves in the time domain. Upon compari-
son, it becomes apparent that the second type of sub-curve 
merging reduces the machining efficiency. However, it 
also simplifies the resulting feedrate, acceleration, and jerk 
curves, which in turn enhances the stability of the machin-
ing process. Therefore, it can be concluded that the second 
type of sub-curve merging achieves a more stable machin-
ing process by sacrificing some of the machining efficiency.

Once the merging of the sub-curves is finalized, the fee-
drate scheduling of the merged sub-curves is re-executed 

individually to generate superior feedrate, acceleration, and 
jerk profiles. Following this, the process of NURBS curve 
interpolation can be finalized by employing the interpolation 
point calculation method proposed by Xu et al [31].

4 � Simulation and experimental results

4.1 � Simulation and experimental environment

For the case study, the butterfly-shaped curve is chosen as it 
is widely recognized as a representative example of NURBS 
curves. Fig. 11a shows the butterfly curve, and Fig. 11b dis-
plays the curvature of the butterfly curve.

Figure 12 shows the experimental platform employed in 
this study, which is a high-precision laser machining plat-
form. The X-axis and Y-axis of the platform are constructed 
using two high-performance linear motors, securely mounted 
on a vibration-suppressed marble platform. The controller 
employed is an Omron PMAC (CK3M), equipped with a 1 
GHz CPU, 2 GB DDR2, and 1 GB built-in flash memory. 
This controller possesses excellent development capabili-
ties, facilitating the implementation of feedrate schedul-
ing algorithms. Due to the restricted size and weight of the 
experimental platform, higher feedrates and accelerations 
tend to induce more noticeable vibrations and equipment 
noise. Consequently, both the maximum machining feedrate 
and acceleration are constrained in both the simulation and 

Fig. 11   Butterfly curve and its curvature

Fig. 12   Experimental platform

Table 2   Test parameters of the interpolators used for the simulations

Parameters Symbols Units

Interpolator period T 1 ms
Chord error tolerance δ 0.001 mm
Maximum feedrate vf 100 mm/s
Maximum centripetal acceleration acmax 1000 mm/s2

Maximum tangential acceleration atmax 1000 mm/s2

Maximum jerk Jmax 10,000 mm/s3
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experimentation phases. Certain parameters relevant to this 
experiment are outlined in Table 2.

For simulation and visualization of results, the feedrate 
scheduling algorithm and interpolation algorithm were 
implemented in MATLAB 2018b. In the experimental setup, 
the Power PMAC IDE was utilized to process the discrete 
interpolation points and interpolation feedrates, which were 
calculated in MATLAB, and convert them into a machining 
program compatible with the PMAC system. This program 
was then employed to drive the X-axis and Y-axis during 
the experiment.

For simulation and visualization of results, the feedrate 
scheduling algorithm and interpolation algorithm were 
implemented in MATLAB 2018b. In the experimental setup, 
the Power PMAC IDE was utilized to process the discrete 
interpolation points and interpolation feedrates, which were 
calculated in MATLAB, and convert them into a machining 
program compatible with the PMAC system. This program 
was then employed to drive the X-axis and Y-axis during 
the experiment.

4.2 � Results of feedrate scheduling

Figure 13 illustrates the feedrate limit curves of the butterfly 
curve, obtained based on the parameters specified in Table 2. 
In this context, Fc, Fa, and Fj represent the feedrate limita-
tions related chord error, tangential acceleration, and jerk, 
respectively. Flim represents the final feedrate limit curve 
that accounts for the combined effect of these limitations. 
Analysis of Fig. 13 indicates that jerk is the primary factor 
limiting the feedrate. This limitation is primarily attributed 
to the intricate curvature of the butterfly curve and the rela-
tively small maximum jerk setup.

Figure  14 presents the results of curve splitting. In 
Fig. 14a, the curve is split into 32 sub-curves by utilizing 
curvature-sensitive points. However, by the adaptive merg-
ing of sub-curves proposed in this study, the number of sub-
curves was reduced to 20, as depicted in Fig. 14b. Addition-
ally, Fig. 14c presents the curve cut points at the parameter 
domain for both cases.

Figure 15 displays the results of feedrate scheduling 
before and after curve merging. In this case, a total of 10 
regions were merged, with areas labeled 4 and 7 representing 

Fig. 13   Feedrate limits of butterfly curve

Fig. 14   Splitting and merging 
of sub-curves

Fig. 15   Scheduled feedrate profiles
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Type II curve merges, while the remaining regions corre-
spond to Type I curve merges. Regions 5 and 6 were merged 
with three adjacent sub-curves. By examining Fig. 15, it is 
evident that the merged curves exhibit improved smooth-
ness and overall performance compared to their original 
counterparts.

The usage of a higher parameter k is the main reason 
for the reduction in Type II sub-curve mergers. Lowering 
the value of k helps alleviate the limitations associated with 
Type II sub-curve mergers, resulting in a decrease in the 
number of sub-curves and the frequency of accelerations and 
decelerations. However, it is important to note that reduc-
ing the value of k also leads to a decrease in machining 
efficiency. For this study, the value of k was set to 10 to bal-
ance the reduction in sub-curve mergers and the associated 
machining efficiency.

Figure 16 presents the feedrate, acceleration, and jerk 
profiles generated by the proposed feedrate scheduling algo-
rithm in the time domain. Due to the curvature of the curve 
and the maximum feedrate limitation, the maximum accel-
eration is not reached throughout the machining process. 

Moreover, certain regions, labeled 1, 2, 5, 6, 9, and 10 in 
Fig. 15, experience limitations on the maximum jerk. These 
regions share a common characteristic: the scheduled fee-
drate may locally exceed the feedrate limit without con-
straining the maximum jerk.

Figure 17 illustrates the decomposition of displacement, 
feedrate, and acceleration on the X-axis and Y-axis. It is 
worth noting that the decomposed feedrates and accelera-
tions do not demonstrate S-shaped variations. This is primar-
ily attributed to the fixed processing direction at each point 
along the curve, which establishes a correlation between the 
feedrates of the X-axis and Y-axis at each point. It is imprac-
tical to independently schedule the feedrates of the axes and 
ensure that all final feedrates exhibit an S-shape. Hence, in 
most current studies, including the present one, the syn-
thesized feedrates of the X and Y axes are scheduled. As 
NURBS curves inherently possess smooth and continuous 
characteristics, the decomposed feedrates and accelerations 
on the X and Y axes will also exhibit smooth and continuous 
behavior.

Fig. 16   Scheduled feedrate, acceleration, and jerk profiles in time domain

Fig. 17   Scheduled displacements, feedrates, and accelerations in the X and Y axes
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4.3 � Analysis of feedrate scheduling

Figures  18a and b show the feedrate profiles obtained 
using the proposed feedrate scheduling algorithm in both 
the parameter and time domains for the specified butterfly 
curves, respectively. The method proposed in this study is 

labeled as QP. For comparison, the curvature-based feedrate 
method (CBF) [7] and the S-shaped acceleration/decelera-
tion planning algorithm with trigonometrically constructed 
jerk (TF) [32] are also reproduced. The obtained fee-
drate profiles from all three algorithms are compared and 
evaluated.

From the feedrate profile in the parameter domain, it 
is evident that the CBF maintains a high feedrate in most 
regions. However, the feedrate profile of CBF is complex 
and not smooth. On the other hand, QP demonstrates better 
efficiency compared to TF. This is primarily due to QP’s 
ability to maintain high levels of jerk and its sub-curve adap-
tive merging strategy. Furthermore, the feedrate profile of 
QP is the simplest and smoothest among the three methods.

Quantitatively analyzing the feedrate profiles in the time 
domain further compares the efficiency of the three meth-
ods. CBF exhibits the highest efficiency, followed by QP. 
The efficiency of QP is 8.38% higher than that of TF. The 
feedrate profile of QP already has a good balance between 
efficiency and stability. It is challenging to significantly 
improve the feedrate profile given the constraints of feedrate 
limit, maximum acceleration, and jerk. Therefore, the 8.38% 
efficiency improvement achieved in this study can be con-
sidered significant.

The stability of the machining process is greatly influ-
enced by the changes in acceleration, as it can cause shocks. 
A smoother and more continuous acceleration profile leads 
to a more stable machining process. Fig. 19 illustrates the 
acceleration and jerk profiles obtained using the three fee-
drate scheduling methods. Due to the lack of consideration 
for the dynamic performance of the machine, the accelera-
tion and jerk profiles of CBF are noticeably less smooth 
and continuous. Moreover, many areas exceed the maximum 

Fig. 18   Comparison of feedrate profiles in parameter and time 
domains

Fig. 19   Comparison of acceleration and jerk profiles in time domain
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limit, which is detrimental to the stability of the machining 
process. On the other hand, both TF and QP yield smooth 
and continuous acceleration and jerk profiles that comply 
with the equipment limits. This contributes to a more stable 
machining process.

Figure 20 provides a visual comparison of the accel-
eration profiles between TF and QP within the parameter 
domain. QP demonstrates a more robust acceleration profile 
than TF in most regions. Furthermore, in the areas marked 
by boxes in this figure, the QP acceleration profile appears 
simpler, while the TF acceleration profile exhibits repeated 
accelerations and decelerations. In high-speed machining, 
the occurrence of repeated accelerations and decelerations 
within a short period can potentially destabilize the machine, 
leading to increased vibration and reduced machining qual-
ity. Hence, the smoother acceleration profile offered by QP is 
advantageous in maintaining stability and improving overall 
machining performance.

Spectral analysis of acceleration curves can provide a 
quantitative assessment of acceleration stability. The main 
frequency of an acceleration curve with constant accelera-
tion is 0 Hz, while the main frequency of an acceleration 
curve with a period of π is 0.3183 Hz. In general, a smaller 
main frequency indicates a relatively more stable accelera-
tion curve.

Figure 21 displays the results of spectral analysis for the 
three acceleration curves. The main frequency of CBF is as 

high as 22.2 Hz, indicating frequent changes in acceleration 
during the machining process and an unstable machining 
process. On the other hand, the main frequencies of TF and 
QP are 5.3 Hz and 3.6 Hz, respectively. This suggests that 
the acceleration of QP is the most stable during the machin-
ing process, as it exhibits a lower main frequency.

4.4 � Experimental results

The tracking error is a crucial metric for evaluating machin-
ing accuracy. In the experiment, the tracking error is deter-
mined by collecting the actual machining positions from 
the X-axis and Y-axis grating scales at a frequency of 8000 
Hz and comparing it with the commanded positions. The 
machining process is carried out based on the feedrate 
profile constructed using the proposed method. The result-
ing machining path profiles and tracking error profile are 
depicted in Fig. 22a and b, respectively.

Fig. 20   Comparison of acceleration profiles in the parameter domain

Fig. 21   Spectrograms of acceleration

Fig. 22   Tracking error of butterfly curve
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As shown in Fig. 22, it can be observed that the tracking 
error exhibits a significant correlation with the curvature 
of the machining area. Generally, high-curvature regions 
exhibit larger tracking errors, while low-curvature regions 
demonstrate lower tracking errors. However, it is noteworthy 
that the region of maximum tracking error does not precisely 
coincide with the region of maximum curvature. Instead, the 
tracking error reaches its peak after crossing the maximum 
curvature region.

Figure 23 illustrates the commanded machining curves, 
actual machining curves, and tracking errors of the X-axis 
and Y-axis. The tracking error of the X-axis remains within 
2 μm for most regions, and noticeable tracking errors only 
occur when there is a change in machining direction, with a 
maximum tracking error of 12 μm. The tracking error of the 
X-axis exhibits an oscillatory pattern.

In contrast, the tracking error of the Y-axis is more evi-
dent and accumulative. The tracking error of the Y-axis 
stays within 30 μm, with a maximum of 28 μm. The term 
“accumulative” implies that the tracking error of the Y-axis 
increases or decreases within a certain region. Additionally, 
the maximum tracking error in the Y-axis tends to occur 
after a change in machining direction with a certain delay, 
as depicted in the labeled area “a” in Fig. 23b. This phenom-
enon serves as the primary reason for the observed distribu-
tion of tracking errors in Fig. 22.

The significant difference in tracking errors between the 
X-axis and Y-axis can be attributed to the difference in load 
and inertia. In the experimental setup used in this study, 
the X-axis is mounted on the Y-axis. As a result, the Y-axis 
experiences a larger load and greater inertia compared to 
the X-axis. This disparity in dynamics leads to the inferior 
performance of the Y-axis in terms of tracking accuracy.

Figure 24 displays the scheduled feedrate profile, the 
actual feedrate profile, and the feedrate error. It is evident 
that the X-axis exhibits a larger feedrate error compared to 
the Y-axis. The tracking error of the X-axis remains nearly 
constant at ± 2 mm/s, while the Y-axis shows a smaller vari-
ation of ± 0.6 mm/s. One possible explanation for this dif-
ference is that the platform is driven in position mode. The 
X-axis, benefiting from its high performance characteristics, 
is capable of adjusting the feed rate more frequently in order 
to minimize tracking errors. In contrast, the Y-axis, due to 
its higher load and inertia, may not adjust the feedrate as 
frequently, leading to a smaller feedrate error compared to 
the X-axis.

Figure 25 presents a comparison of the tracking errors 
obtained from the three feedrate scheduling methods. The 
tracking error is primarily influenced by the machining posi-
tion, particularly when there is a change in the direction of 
motion of the Y-axis, resulting in a peak in tracking error. 
Consequently, the tracking errors obtained from the three 
feedrate scheduling methods exhibit similar patterns.

Additionally, the tracking error is also affected by the 
feedrate and acceleration. Generally, the tracking error 
increases with higher feedrates and accelerations. As a 
result, the CBF method yields the largest tracking error in 

Fig. 23   Tracking error of X-axis and Y-axis

Fig. 24   Feedrate errors
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most regions, with a mean tracking error of 17.8 μm and a 
maximum tracking error of 59.6 μm. One contributing fac-
tor to this large tracking error is the inability of the platform 
to achieve the scheduled acceleration and jerk. Moreover, 
the equipment displayed noticeable vibrations and abnormal 
noise during machining with the CBF-scheduled feedrate 
profiles, resulting in a significant tracking error.

The feedrate profiles scheduled using TF and QP result in 
smooth machining operations with no noticeable vibration 
or abnormal noise. The distribution of tracking errors for 
TF is extremely similar to that of QP, primarily due to the 
similarity in feedrate and acceleration profiles between the 
two methods. However, in regions where sub-curve merging 
is performed in QP, TF exhibits a more pronounced tracking 
error compared to QP. This can be attributed to the more 
frequent acceleration and deceleration experienced by TF 
in these regions, leading to unstable and even oscillatory 
feedrate profiles, thus increasing the tracking error.

The average tracking error for TF is 11.6 μm, with a 
maximum tracking error of 35.7 μm. The QP proposed in 
this study demonstrates the smallest tracking error, with an 
average tracking error of 10.8 μm. This is 39.89% lower 
than CBF and 7.14% lower than TF. The maximum tracking 
error for QP is 29 μm, which is 51.32% lower than CBF and 
18.72% lower than TF. These results highlight the superior 
performance of the QP method in terms of tracking accuracy.

5 � Conclusion

This study introduces an advanced S-shaped acceleration/
deceleration feedrate scheduling algorithm, specifically tai-
lored for efficient and high-precision machining of non-uni-
form rational B-spline curves. The algorithm employs quar-
tic polynomials to construct the jerk function, effectively 
resolving the issue of jerk discontinuity found in traditional 
S-shaped acceleration/deceleration feedrate scheduling algo-
rithms. This advancement significantly mitigates flexible 

vibrations during the machining process. Furthermore, the 
integration of a sub-curve merging strategy and a quadratic 
feedrate scheduling approach markedly diminishes frequent 
acceleration and deceleration in complex curve machining, 
thereby facilitating a more stable machining process. Com-
prehensive simulations and experiments demonstrate that 
the proposed algorithm outperforms conventional feedrate 
scheduling algorithms in terms of machining efficiency and 
accuracy. The study provides the potential to further improve 
the efficiency and accuracy of the non-uniform rational 
B-spline interpolation and supports its extension to more 
demanding application scenarios.
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