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Abstract
Freeform surfaces are widely present in the core components of advanced equipment such as aerospace and shipbuilding, and
their high-level manufacturing is a key indicator of the national manufacturing industry. Industrial robots offer a promising
solution for freeform surface milling due to their high flexibility and large workspace advantages. However, maintaining
stability in milling force and ensuring robot stiffness are crucial factors affecting the quality of surface machining. In this
work, we propose a method for constant load toolpath planning and stiffness-based robot posture optimization in freeform
surface milling. Firstly, we combine the conformal mapping algorithm and variable radius trochoidal trajectory to develop a
toolpath planning method with constant cutting load, based on the material removal rate simulation according to the Dexel
model. Moreover, we introduce an evaluation index for robot stiffness matching, considering the prediction of MRR. To
optimize the sequence of posture changes under robot motion constraints, we employ the dynamic A* algorithm. This ensures
that the robotmaintains optimal stiffness performance throughout themachining process. Simulations and experimental studies
validate the effectiveness and practicality of our proposed approach. These studies demonstrate that our method successfully
maintains milling force stability and enhances robot stiffness, enabling more efficient freeform surface machining.

Keywords Robotic milling · Stiffness optimization · Constant load toolpath planning · Freeform surface

1 Introduction

Complex components find wide application in the core
parts of advanced equipment across various fields such as
aerospace, shipbuilding, and new energy. The level of their
manufacturing represents a significant measure of a nation’s
industrial development [1]. As a crucial element in intel-
ligent manufacturing [2], industrial robots offer numerous
advantages, including a large workspace, exceptional pro-
cessing flexibility, and the ability to adapt quickly to different
scenarios. Moreover, in comparison to CNC machine tools,
industrial robots possess greater degrees of freedom and can
be enhanced with positioners, mobile bases, and other com-
ponents. This high processing flexibility renders them highly
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promising formanufacturing complex components. Bymeet-
ing the quality requirements of the machining process, robot
machining can effectively reduce costs and improve effi-
ciency [3, 4].

However, the weak stiffness of industrial robots makes
them more susceptible to changes in cutting force dur-
ing milling [5]. When the cutting force becomes unsta-
ble or excessively high, it compromises the stability of
robot milling, leading to a decline in machining quality
and potentially causing damage to the workpiece or tool
[6]. Consequently, in robot milling, operators typically opt
for relatively safe and conservative machining parameters.
However, this approach hampers machining efficiency and
impedes the widespread adoption of robots in manufactur-
ing [7]. Erkorkmaz [8] has pointed out and demonstrated
that by effectively controlling cutting forces, mechanical loss
and energy consumption can be reduced while improving
machining efficiency. Furthermore,Wang [9] has highlighted
the significance of controlling grinding forces in robot grind-
ing of thin-walled parts. This control effectively reduces
the amplitude of workpiece vibration, ultimately minimiz-
ing machining errors. Therefore, optimizing robot stiffness
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and ensuring load stability in the machining toolpath are cru-
cial for maintaining the performance and stability of robot
milling operations.

Existing research on milling force optimization primar-
ily focuses on feed rate optimization and machining toolpath
optimization. Erdim [10] developed an approximately linear
relationship model between feed rate and cutting force based
on a tool engagement model. They then offline optimized the
feed rate with the objective of maintaining a constant cutting
force. Huang [11] measured actual cutting forces through
pre-experiments and subsequently optimized the feed rate
offline, avoiding the need for complex cutting force simula-
tions and experimental coefficient calibration. Ridwan [12]
proposed a control method to optimize cutting forces dur-
ing the machining process using fuzzy adaptive control. By
monitoring changes in cutting force, the feed rate can be
automatically adjusted. This method increases the feed rate
when the cutting force is small, enabling higher machin-
ing efficiency while maintaining a stable material removal
rate. Wang [13] presented a feed rate optimization method
for side milling that maintains a constant peak cutting force.
The method calculates the instantaneous undeformed cutting
thickness based on the least square principle, establishes a
cutting force model, and quickly determines the optimal feed
rate while keeping the peak cutting force constant. However,
when milling complex surfaces, the feed rate optimization
method places higher demands on the response speed and
motion performance of the robot controller. Additionally, the
frequently changing feed rate can lead to frequent accelera-
tion and deceleration of the robot joints, reducing the stability
of the machining process. Therefore, in robot machining,
optimizing the toolpath is highly significant for controlling
cutting forces.

Wu [14] employed the corner looping tool path to gradu-
ally removematerials in the corner area during cavitymilling,
effectively limiting the cutting force to an acceptable level.
However, sudden changes in cutting force still occur in the
non-corner areas. Kim [15] utilized the pixelmethod to simu-
late the material removal rate (MRR) and inserted additional
arc toolpaths in regions with excessive MRR. This method
successfully maintained the stability of the cutting force in
planemilling. Rahman [16] proposed amilling toolpath plan-
ning method for critical machining regions that consists of
smoothly connected linear segments andmulti-segment arcs.
This approach guarantees a stable MRR at a constant speed
for the machine tool. Ma [17] stated that reducing fluctua-
tions in cutting force during milling can enhance machining
quality. They proposed a path planning method that ensures
uniform cutting amounts by considering the geometric fea-
tures of curved surface parts.Wang [18] noted that trochoidal
trajectories effectively stabilize cutting forces in milling and
possess advantages in terms of smoothness and continu-
ity. Building upon the benefits of trochoidal toolpaths, Luo

[19] presented a toolpath planning method for the four-axis
blade disk machining. These studies illustrate that a suitable
toolpath planning approach can effectively stabilize cutting
forces and enhance machining quality. However, existing
constant milling load research primarily focuses on cav-
ity machining, with limited emphasis on freeform surface
machining. Additionally, current toolpath planning methods
target CNC machine tools and do not consider the challenge
of further reducing machining quality under constraints of
stiffness and smoothness in robot machining. Moreover, the
weak stiffness of robots severely constrains feasibility in
robot surface milling due to the instability of cutting forces.

The stiffness of a robot is influenced by its structure and
will vary based on the robot’s position and posture within
its workspace [20, 21]. Previous research has shown that
the robot’s posture and cutting force direction are crucial
factors in determining its stiffness [22, 23]. Complex sur-
face machining can lead to interference, singularity, and
abrupt changes in posture due to significant variations in
the tool axis vector and robot posture during the machin-
ing process. Therefore, there is a challenge in optimizing
the redundant degrees of freedom (DOF) in robot milling to
improve machining quality while ensuring non-interference,
non-singularity, and smooth joint motion. This challenge
holds significant application value. To address this chal-
lenge, researchers have proposed various approaches. Xiong
[24] developed an evaluation index considering the complete
deformation matrix and optimized the robot posture while
transplanting themilling toolpath used by afive-axismachine
tool into the robot to enhance its stiffness. Bu [25] proposed
an optimized stiffness ellipsoidmodel to analyze the distribu-
tion of robot stiffness in space. They then optimized the robot
posture when the robot followed a fixed drilling toolpath to
improve stiffness performance. Chen [26] introduced a stiff-
ness index that considers the cutting force and the normal
vector direction of the machining position to guide toolpath
planning and posture optimization in robot milling. Lin [27,
28] highlighted that the robot’s stiffness changes with its
end position. They optimized the assembly position and ori-
entation of the robot’s end effector during the machining
process by combining the main body stiffness index, kine-
matics performance index, and deformation evaluation index
to enhance robot stiffness in machining. However, the exist-
ing stiffness indicators do not account for the adaptability
of stiffness to the current processing conditions, making it
challenging to maximize the robot’s stiffness performance in
real-time situations.

In robot milling of freeform surfaces, ensuring the sta-
bility of milling force and the robot stiffness are crucial for
achieving high-quality surfacemachining. This study aims to
address the requirements of constant load and high stiffness
milling byproposing a toolpath planningmethodbasedon the
Dexel model for freeform surface milling MRR simulation.
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Fig. 1 The overall framework of the method in this work

This method combines the conformal mapping algorithm
with a variable radius trochoidal trajectory. Additionally,
a stiffness MRR matching evaluation index is introduced,
which, when combined with the dynamic A* algorithm,
enables the calculation of the optimal sequence of robot pos-
ture changes undermotion constraints. The primary objective
is to optimize stiffnessmatching. Furthermore, through simu-
lation and experimentation, the effectiveness of cutting force
optimization and the improvement in machining quality in
robot milling of freeform surfaces are demonstrated and ver-
ified. The overall framework of the method in this article is
shown in Fig. 1.

2 Toolpath planningmethod with constant
load

In this work, we propose a constant load milling toolpath plan-
ning method based onMRR simulation. Firstly, we calculate
the change in MRR when the milling tool follows a specific
toolpath using theDexelmodel. Then, we apply the threshold
segmentation algorithm to extract the critical region where
theMRRexceeds a predefined threshold. Next, taking advan-
tage of the stability of cutting force provided by the variable
radius trochoid toolpath and utilizing the conformal mapping
algorithm, we generate a constant load milling toolpath for
free-form surfaces. This method aims to ensure consistent
and stable milling forces throughout the machining process.

2.1 Dexel-basedMRR calculationmethod

Park [29] found a positive correlation between MRR and
cutting force under fixed machining parameters, which can
be derived from the relationship between MRR and spin-
dle power. Thus, MRR is commonly used as an efficient
evaluation index for cutting load. To address the challenge
of optimizing toolpaths during the planning stage, which
often involves significant computation time and resources,

this study proposes an MRR prediction method for free-
form surface milling based on the Dexel model. Compared
to solid models, the Dexel model (depth pixel) simplifies
three-dimensional Boolean operations into one-dimensional
Boolean operations during simulation. This model exhibits
characteristics such as compact storage space, fast operation
speed, and high efficiency. As illustrated in Fig. 2, leveraging
the advantages of theDexelmodel, this study converts the cal-
culation ofMRR in the milling process into one-dimensional
Boolean operations of the Dexel model, considering the
workpiece and tool at each cutting location.

In this method, the mesh model of the workpiece and tool
is converted into a Dexel model. As depicted in Fig. 2(a),
the mesh model is initially projected onto the XOY plane to
determine the boundingbox size (Xmin, Xmax,Ymin,Ymax)and
discretize it into a grid with a side length of slx and sly .
Then, a ray parallel to the z-axis is cast at the intersection
of each grid to obtain the intersection set with the mesh
model, including the tool and workpiece. Line segments are
generated based on the Z values, and each line segment is
associated with the intersecting grid to uniquely represent
the Dexel model within the tool or workpiece. As shown in
Fig. 2(b), to perform the one-dimensional Boolean opera-
tion between the workpiece Dexel model and the tool Dexel
model, it is crucial to align both models within the same dis-
crete grid. Additionally, given that the workpiece is generally
larger than the tool in milling, this method employs the dis-
crete grid of the workpiece as the reference grid to construct
the Dexel model for both the workpiece and tool.

The flow chart for MRR calculation based on the Dexel
model is presented in Fig. 2. Initially, following the Dexel
model calculation method mentioned earlier, the Dexel
model of the workpiece is established. Subsequently, the
toolpath is interpolated to determine discrete cutter location
(CL) points with a certain calculation accuracy. The Dexel
model of the tool is computed at each discrete CL point.
Next, a Boolean operation is carried out on the Dexel models
of the tool and workpiece, allowing for the calculation of the
instantaneous MRR. Simultaneously, the Dexel model of the
workpiece is updated.
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Fig. 2 Calculation process of the Dexel model

The CL point contains position coordinate information
(x, y, z) and tool axis direction information (α, β, γ ) during
surface milling. If the distance between the two CL points
is close enough and the angle is small enough, the MRR
between these two CL points can be regarded as the instan-
taneous MRR corresponding to each CL point.

If the distance DistPt ,Pt+1 between two adjacentCLpoints
Pt (xt , yt , zt , αt , βt , γt ) and Pt+1 (xt+1, yt+1, zt+1, αt+1, βt+1, γt+1)

is greater than the maximum distance allowable value maxα

or the included angle AnglePt ,Pt+1 isgreater thanthemaximum
angle allowable value , n-segment linear interpolation subdi-
vision is required. The newCL points Pi (xi , yi , zi , αi , βi , γi )

after interpolation can be expressed as:

Pi = Pt +
∣
∣Pt+1 − Pt

∣
∣

n
· i (1)

where i represents the i-th point in the interpolation, n =
max{ DistPt ,Pt+1

maxd
,
AnglePt ,Pt+1

maxα
}.

After interpolation, the tool Dexel model under the work-
piece projection grid is constructed at each CL point. The
Booleandifferenceoperation is carriedout to obtain themate-
rial removal volume. As shown on the right side of Fig. 3,
Boolean operations at the grid are mainly divided into the
following situations:

(1) The tool and workpiece are not cut, and the workpiece
Dexel is not updated;

(2) Cutting occurs between the tool and the rear section of
the workpiece, and the workpiece Dexel is up-dated to
{dtmax , d

w
max } ;

(3) Cutting occurs between the tool and the middle section
of the workpiece, and the workpiece Dexel is updated
to {dw

min, d
t
min} and {dtmax , d

w
max };

(4) Cutting occurs between the tool and the front section of
the workpiece, and the workpiece Dexel is updated to
{dw

min, d
t
min};

(5) Cutting occurs between the tool and the whole section
of the workpiece, and the corresponding Dexel of work-
piece is deleted;

(6) Same as case 1. The calculation formula is as follows:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ld = 0, dtmin < dtmax < dw
min < dw

max
ld = dtmax − dw

min, d
t
min < dw

min < dtmax < dw
max

ld = dtmax − dtmin, d
w
min < dtmin < dtmax < dw

max
ld = dtmin − dw

min, dw
min < dtmin < dw

max < dtmax
ld = dw

max − dw
min, d

t
min < dw

min < dw
max < dtmax

ld = 0, dtmin < dtmax < dw
min < dw

max

(2)
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Fig. 3 MRR calculation flow
chart based on Dexel model

wheredw
min andd

t
min respectively represent the near end value

of the Dexel segment of the workpiece and the tool in the
Z direction, dw

max and dtmax represent the far end value, ld
indicates the length of the cutting. In addition, assuming es is
the error of approximating the surfacewith dexel units, which
is related to the accuracy requirement of MRR simulation,
the mesh partition accuracy of the workpiece Wwork can be
determined based on the minimum curvature radius Rs of the
surface.

Wwork =
√

4es Rs − 2e2s (3)

Assuming the radius of the tool is Rt , the partition accuracy
of the tool’s mesh is determined by

Wtool = 2Rt − 2
√

R2
t − e2s (4)

Then, the cutting volume of theworkpiece can be obtained
by the intersecting dexel length:

�V = slx · sly ·
∑

ld (5)

The cutting time can be obtained by the feed speed v f and
the distance between two CL points �s :

t = �s

v f
(6)

Then, the MRR of the i-th CL point can be calculated by
the following formula:

MRRi = �V

t
= slx · sly · ld · v f

�s
(7)

where �V represents the material removal volume.

2.2 Toolpath planningmethod for constant milling
load

In this section, we propose a constant load toolpath planning
method for complex free-form surfacemilling, building upon
the previous constant load toolpath planning method in cav-
ity milling [30]. This method is derived from the traditional
contour parallel toolpath approach and incorporates a radius-
varying trochoidal (RVTR) trajectory with constant cutting
depth for processing the critical machining region. By imple-
menting this method, we ensure that the cutting load remains
within the prescribed limit, even when the MRR suddenly
increases, therebymaintaining a high level ofmachining effi-
ciency.

To begin with, the contour parallel toolpath for the
freeform surface is generated, and the CL points sequence
CLlist = {cl1, cl2, ..., cln} is obtained through uniform dis-
cretization. The MRR of surface milling is then calculated
using the method described in Section 2.1. As depicted in
Fig. 4, the MRR remains stable when the machining tool-
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Fig. 4 Traditional milling
toolpath and corresponding
critical region

path is a straight line (P1-P2). However, when the toolpath
becomes a curve (P3-P4), theMRRfluctuates with the curva-
ture. In extreme cases, such as at a corner (P5-P6), the MRR
experiences a sudden increase. To address this issue and
ensure a consistent MRR throughout the machining process,
this study extends the previous work’s critical machining
region extraction algorithm to accommodate freeform sur-
face milling.

Then, the MRR threshold calculation method based on
OTSU is used to extract the set of CL points exceeding
the set MRR value, as shown on the right side of Fig. 4.
Assuming a threshold value (Mthr is used to dichotomize
the cutter locations in CLlist into two classes, including the
critical machining region, CLinc{∪cli , (Mthr ≤ MRR(i) ≤
Mmax } , and the class of the common machining region,

CLcom{∪cli , 0 ≤ MRR(i) ≤ (Mthr } . The MRR thresh-
old calculation satisfies the following formula:

σ 2
B((Mthr ) = ρinc((Mthr )[μinc((Mthr ) − μlist ]2

+ρcom((Mthr )[μcom((Mthr ) − μlist ]2 (8)

where μinc(Mthr ) , μcom((Mthr ) and μlist represented the
average MRR corresponding to CLinc , CLcom and CLlist

respectively, and ρinc((Mthr ) and ρcom((Mthr ) are the prob-
ability of occurrence of each part. When σ 2

B((Mthr ) is the
largest, the difference between the critical region and the
common region is the largest, that is, the segmentation effect
is the best, and then the (Mthr is determined.

As depicted in Fig. 5, the critical region can be divided
into three situations: the corner area, the innermost area, and

Fig. 5 Insert RVTR toolpath in
different critical machining
regions
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the connection area. In the corner area, the central axis is
generated for the region composed of the ring and its sub-
ring. The portionwithin the critical region is then extracted as
the guide line for the RVTR toolpath. In the innermost area,
the ring corresponding to the critical region is used as the
center axis for contour generation and as the guide line for
the RVTR toolpath. In the connection area, the connecting
straight line is offset to serve as the guide line for the RVTR
toolpath. The RVTR toolpath can be calculated based on the
movement of the instantaneous center point O(θ) along the
guide line.
{

Xc(θ) = O(θ)x + R(θ) · sin θ

Yc(θ) = O(θ)y + R(θ) · cos θ
(9)

where θ is the rotation angle of the trochoidal path around
the center point, R(θ) is the instantaneous radius of the tro-
choidal path:

R(θ) = (R1 − Rt )(1 − θ

2π
) + (R2 − Rt )(1 − θ

2π
) (10)

where R1 , R2 are the starting and ending center points of
a single trochoidal cycle, respectively; Rt is the tool radius.
In addition, the step of the variable radius cycloid is vari-
able every cycle, and the step of each cycle is determined
according to the principle of constant cutting depth.

Traditional toolpath planning methods for freeform sur-
faces involve performing operations directly in 3D space using
cross-section methods, projection methods, or geodesic-
based methods. However, these methods face the following
challenges: (1) Complex 3D geometric operations require
high computational power, and (2) controlling the modes
and parameters of tool paths in 3D space can be difficult.

To address these challenges, this work introduces a mesh
parameterization method based on conformal mapping to
enhance the performance of toolpath planning for freeform
surfaces [31]. The detailed process of toolpath planning
is illustrated in Fig. 6. First, the 3D mesh model of the
freeform surface is mapped to a 2D mesh model using con-
formal mapping. Then, by calculating the MRR of the 3D
mesh at the corresponding positions, the RVTR trajectory
is inserted into the contour parallel trajectory within the 2D
mesh model. Finally, toolpath planning for the freeform sur-
face is achieved through parametric inverse mapping. By
utilizing this method, the complexity of toolpath generation
can be significantly reduced. Additionally, based on process
requirements, it can be extended to incorporate various tra-
jectory strategies in 2D space, such as spiral paths and fractal
curve paths.

3 Robot stiffness matching and optimization

While the proposed machining toolpath in Section 2 ensures
stable cutting forces, it may involve frequent changes in the
feed direction and the direction of the cutting force. Previ-
ously, robot stiffness indicators were typically designed to
address a specific force direction. However, given the fre-
quent changes in force direction, there is a need for a new
stiffness evaluation index and optimization method. There
are two key issues to address: (1) Enhancing robot stiffness in
regionswith highMaterial RemovalRate (MRR). This can be
achieved by leveraging theMRRpredictionmethodproposed
earlier. (2)Utilizing robot redundancy to achieve higher over-
all stiffness by dynamically adjusting robot posture changes

Fig. 6 Case of toolpath
planning method for constant
milling load
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over time. To enhance the performance of robot surface
milling, this paper introduces a robot stiffness evaluation
index that takes MRR matching into account. Addition-
ally, the dynamic A* algorithm is employed to optimize the
sequence of robot posture changes. This approach aims to
improve robot surface milling performance by effectively
managing stiffness and adapting to varying force directions.

3.1 Kinematics and redundancy of robotic surface
machining

Figure 7 shows the roboticmilling system in this work, includ-
ing a KUKA industrial robot, an electrospindle, a milling
tool, a worktable, and a workpiece. The robot base coordi-
nate system {B} is set at the center of the robot base and is the
world coordinate system. The robot end coordinate system
{E} is charged at the center of the robot end flange. In addi-
tion, the electro-spindle and milling tool are mounted on the
flange at the robot’s end through a fixture. The tool coordi-
nate system {T} used for milling is defined at the tool center
point, and it will be defined differently depending on the type
of milling tool. The workpiece coordinate system {W} is
determined at the origin of the workpiece model and should be
fixed at an easily calibrated position. Generally speaking, the
five-axis milling toolpath is defined in the workpiece coordi-
nate system, including the tool position (CL) pointCLw , and
the corresponding tool axis direction Dw . The tool location
point CLb and the tool axis direction vector Db in the world
coordinate system can be calculated by

CLb = T(xw, yw, zw)M(αw, βw, γw)CLw (11)

Db = M(αw, βw, γw)Dw (12)

whereT(xw, yw, zw) is the standard translation matrix along
the vector (xw, yw, zw) ; M(αw, βw, γw) is the rotation
matrix for Euler angles of (αw, βw, γw) . And

M(αw, βw, γw) = Rz(γw)Ry(βw)Rx (αw) (13)

where Rx (αw) is the rotation matrix of angle αw around the
x-axis; Ry(βw) and Rz(γw) are defined similarly. As shown

in Fig. 7, the position and the direction of the tool axis of the
CL point in the five-axis machining are fixed, but to deter-
mine the CL point coordinate system {CLi}, the angle of
the redundant degrees of freedom of the robot is still miss-
ing. This redundancy is rotated around the tool axis vector,
which corresponds to the rotation angle γt of the redundancy
of the robot. When the tool feeds along the machining tool-
path, the {T} and the {CLi} remain coincident. According
to the parameters of the electric spindle and the tool, the
transformation relationship B

ET between the tool coordinate
systemand the robot end coordinate systemcanbedetermined,
and the {E} can be determined. Then, the robot posture can be
calculated through the robot’s inverse kinematics (IK) algo-
rithm. Therefore, the robot pose at the determined CL point can
be expressed as a function f pos(γt ) of the redundancy angle γt .

3.2 The evaluation index of robot stiffness

Due to its insufficient rigidity, when the robot is subjected to a
large cutting force during the milling process, obvious defor-
mation errors will occur, resulting in a decrease in machining
accuracy. For industrial robots, the force deformation error
of the robot is mainly affected by the torsional stiffness of the
gearbox and each joint drive shaft [32]. In robotic milling,
the robot generally maintains good operability [33], so the
most commonly used robot stiffness modeling method is the
conventional stiffness model presented by [34]:

K = J−TKθJ−1 (14)

C = K−1 = JK−1
θ JT (15)

where J is the Jacobian matrix of the robot. C is the compli-
ance matrix [35], which is the inverse of the stiffness matrix.
By dividing the 66 matrix C into four 33 sub-matrices, Eq.
(13) could be written as

[

δtran
δrot

]

=
[

Ctran Ccou

CT
cou Crot

]

·
[

F f

Mt

]

(16)

Fig. 7 Coordinate system of
robot milling system
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where δtran and δrot represent the translational deformation
of the EE and the rotational deformation of the EE, respec-
tively. F f is the force, while Mt is the torque applied to the
EE. Ctran , Crot and Ccou represent the force-translational
compliance sub-matrix, torque-rotational compliance sub-
matrix, and coupling compliance sub-matrix, respectively.
In the author’s previous work [23], the joint stiffness matrix
of the robot KUKA KR210 R2700 used in this paper has
been identified, which is represented by a diagonal matrix,
Kθ = diag(1.892, 2.887, 3.242, 0.101, 0.138, 0.128) (109

Nmm/rad). In addition, the compliance coefficient of the
robot in the surface normal direction (CCN) cn is proposed.

cn = eTn Ctranen (17)

where en represent the surface normal direction. In this
evaluation index, only the influence of Ctran is considered.
However, since the end effector is not coaxial with the robot
end, and the force arm is long, the resulting torsion error of
the robot end will cause a significant deformation of the CC
point. The error of CL point caused by the EE error consists
of two parts, which can be obtained by

εcl = δtran + (−v̂t )δrot (18)

where vt = [vt x , vt y, vt z]T represents the relative position
vector between the robot flange and the robot EE in the end
frame {E}, which is invariant during the machining process.
v̂t is a skew-symmetric matrix deter-mined by the three com-
ponents of vt i.e.

v̂t =
⎡

⎣

0 −vt z vt y
vt z 0 −vt x

−vt y vt x 0

⎤

⎦ (19)

Thus,the compliance coefficient and the stiffness index of
the robot in the surface normal direction is corrected as

cn
′ = eTn (Ctran − v̂tCT

cou)en = eTn Ctcen (20)

Sn = 1

cn ′ = 1

eTn Ctcen
(21)

To evaluate the compatibility of the robot stiffness at the cur-
rent machining position with the MRR, a stiffness matching
index for surface milling is proposed:

Smatch = Sn
MRRi

(22)

3.3 Optimization algorithm for robot posture

It can be seen from Section 3.2 that the stiffness evaluation
index is a function of the robot posture, and at the determined
CC point, it is a function Sn(γt ) of the redundant angle γt .

Previous methods for optimizing robot stiffness have
either focused on an overall optimal redundant angle for all
CC points or performed point-by-point optimization with
constraints. However, these approaches have limitations.
Fixed redundant angles may not maintain high stiffness, and
starting from the posture with optimum stiffness may not
guarantee optimal stiffness at each CC point due to kinemat-
ics constraints. This study proposes a method to optimize the
redundant angle in a time series, considering collision, robot
position/velocity, and singularity constraints. The goal is to
achieve optimal stiffness by finding a suitable sequence of
redundant angles that satisfies operational constraints while
maximizing stiffness.

The constraints are constructed as follows:

a) Collision-free constraint

Collision avoidance of robots usually uses the bounding box
method to solve quickly. Suppose that each robot link is
constructed as an oriented bounding box Ai j , the work-
bench and parts in the positioner construct oriented bounding
box a respectively Ap and Aw . Given the attitude combi-
nation, the total number of bounding box intersections is
mall(Rp,Rt ,Rr ) , determine whether the current attitude
combination is feasible by judging the intersection:

mall =
∑n

i=1
m(Ai j , Ap) + m(Ai j , Aw) = 0 (23)

where m(·) is the number of intersections of two bounding
boxes, n represents the number of knife contacts, j=1,2,. . . ,6
is the number of connecting rods.

b) Constraint of Manipulability

To improve the flexibility of the robot and avoid singularity,
themanipulability index proposed in [36] is used here, which
requires that the joints of the robot need tomeet the following
constraints:

{

κmax = max(κ1, κ2, ..., κn) ≤ κ0
κi = ‖J(θi )‖ × ∥

∥J−1(θi )
∥
∥

(24)

where κ0 is the threshold value of the robotic manipulability.
The robot joint coordinates are obtained by inverse kinemat-
ics solution according to the coordinates of the CL point in
the world coordinate system:

θi = f −1
ik (cliw) (25)

c) Constraint of the Robot Joint

Robot kinematics constraints will limit the range of posture
changes, whichmay lead to a situationwhere the desired pos-
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ture cannot be reached. Therefore, in the process of posture
optimization, the position constraints of robot joints should
be considered

θi ∈ (θmin, θmax) (26)

where θi = [θi1, θi2, θi3, θi4, θi5, θi6]T represents the robot
posture corresponding to the i-th CC point, that is, the
joint angle. The rotation range of each joint of the robot
(θmin, θmax) can be obtained through official technical doc-
uments. Robot joints are also constrained by rotation speed:

|θi − θi−1| ≤ ω�t (27)

Themaximumrotation speedof each jointω = [θ̇1, θ̇2, θ̇3,
θ̇4, θ̇5, θ̇6]T can be obtained through official technical docu-
ments. �t is the interval time between two adjacent discrete
CCpoint,which can be calculated according to the feed speed
and the distance between two points.

The optimization of the sequence of high-stiffness robot
postures revolves around constructing a weighted directed
graph data structure, denoted as G(V,E), for the candidate
postures of the CC points as shown in Fig. 8. Each column
represents a CC point, and the corresponding candidate point
is a possible redundant angle. To improve the optimization
effect, virtual start and end points are introduced, avoiding
the impact of fixed start and end points. The weight between
two vertices represents the reciprocal of the stiffness index of
the robot at the latter candidate point. The alternative points
must adhere to the constraints of collision-free, singularity-
free, and robot joint limits. If a candidate point fails to meet
the collision-free or singularity-free constraints, it is deleted.
Similarly, if the joint change between two candidate points

Fig. 8 Graph structure for robot posture optimization

exceeds the robot’s speed constraint, they are not connected
and the weight between them is considered infinite.

To obtain the optimal sequence of redundant angle
changes for a robot with maximum stiffness while consid-
ering multiple constraints, this study utilizes the dynamic
A* algorithm [37] on the graph data structure described ear-
lier. The dynamic A* algorithm efficiently searches for the
shortest path between the virtual start and end points, result-
ing in the robot posture sequence with the highest average
stiffness. This algorithm only calculates the weights of nec-
essary nodes during the path finding process, significantly
reducing computation time. The specific details of the A*
algorithm will not be discussed here, but its core lies in set-
ting appropriate heuristic functions [38]. Figure 9 provides
a schematic representation of the simulation effect of robot
posture optimization.

4 Experiment

In this work, the milling platform is constructed based on
the KR210 industrial robot and a workpiece positioner with
a dual rotary axis, as shown in Fig. 10. The spindle mounted
in the robot is ELTE TMA6 17/4 HSK-F63, and its maxi-
mum speed can reach 18000 rpm. In general, it is helpful
to tilt the spindle axis concerning the last axis of the robot
to avoid singularity. The material of the workpiece is 6061
aluminum alloy. The robot has been calibrated in advance
according to the Ref. [39], reducing the influence of robot
positioning ac-curacyon the experiment.As shown inFig. 10,
the laser tracker used for calibration in this work is API
Radian. Besides, an API active target is used to measure the
robot’s translational deformation and rotational deformation
at one time. The force measuring system uses a quartz four-
component dynamometer, Kistler 9257A, which can sample
the cutting forces at a frequency of 2 kHz. In addition, opti-
cal 3D surface profiler of CHOTEST was used for surface
quality detection, with a morphology repeatability accuracy
of 0.1nm.

4.1 Validation of theMRR simulationmethod

In order to demonstrate the effectiveness of the proposed
MRR simulation method, a cutting experiment was con-
ducted to compare the predictedMRRand the cutting force in
robotic milling. A ball end milling cutter with a 6mm radius
was used in the following cases. The feed speed was set to 1
mm/s, and the spindle speed was set to 9000 rpm.

In Case 1, the radial depth of cut (RDC) remained at 3mm,
while the axial depth of cut (ADC) gradually increased from
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Fig. 9 The change of robot
posture before and after
optimization

3mm to 8mm. Figure 11(a, b) illustrates the MRR simula-
tion and actual cutting force. It can be observed that the trend
of the MRR is consistent with the change in cutting force,
and variations in ADC result in proportional changes in the
cutting force. In Case 2, the ADC remained at 3mm while
the RDC varied from 3mm to 6mm and then back to 3mm.
The MRR simulation and actual cutting force are shown in
Fig. 11(c, d).When the cutting depth suddenly changes, there
is significant fluctuation in the cutting force due to the uneven
MRR. The change in RDC caused by the alteration in cut-
ting force is not entirely proportional due to the influence of
the tool shape, but it can be considered to have a strong lin-
ear relationship. In Case 3, the linear toolpath was processed
three times at feed speeds of 1mm/s, 1.5mm/s, and 2mm/s
with a constant depth of cut. As depicted in Fig. 11(e, f),
when the speed remains constant, the cutting force remains
stable, but an increase in speed leads to a non-proportional
increase in cutting force. In Case 4, a contour parallel tool-
path was employed to machine a surface, and the MRR and
cutting force were tested, as shown in Fig. 11(g, h). The line
spacing of the machining toolpath was set to 1.5mm, and the
axial cutting depth was set to 2mm. The axial direction of the

tool was always perpendicular to the clamping plane. This
case did not consider the robot’s redundancy angle changes,
and its angle remained fixed as a collision-free angle. It can
be observed that theMRR fluctuates widely and changes fre-
quently. The maximum MRR value reached 14.09 (mm3/s).
In this case, since themachining toolpathwas processed from
inside to outside, the innermost ring (C1 region in the figure)
experienced full-edge cutting, resulting in the highest MRR.
Conversely, the outermost ring (C3 region in the figure) had
a relatively lower MRR due to less remaining material. The
remaining areas (C2) accounted for themajority of the cutting
time, and the MRR varied regularly as the toolpath transi-
tioned from the common region to the critical region. It can
be observed that there are obvious corresponding relation-
ships between the C1-3 regions.

4.2 Validation of the stiffness optimization results

To verify the effectiveness of the robot stiffness optimization
method in Section 3.3 for the entire surface, simulation con-
trast experiments are conducted in this section. The toolpath
shown in Fig. 4 is used in surface milling. The robot postures

Fig. 10 Robot milling system,
including the industrial robot,
laser tracker, and milling force
measurement system
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Fig. 11 Experimental data of robot milling cases

before optimization are determined according the default set-
ting of the robot offline programming software, that is, the
principle of keeping the redundant angle fixing. In addition,
the direction of the tool axis is consistent with the normal
direction of the surface in this method.

Figure 12 shows the distribution of robot stiffness as a
function of robot posture and machining point motion. It
can be seen that the stiffness matching index exhibits certain
periodic characteristics as the machining points change, and
gradually shortens. The reason is that the machining tool-
path is a spiral motion from the outer ring to the inner ring,
and the toolpath gradually becomes shorter. Among them,

some small dark blue areas appear in the figure, which are
caused by the constraint effect on this position and the inabil-
ity to calculate the stiffness value. Before posture change
sequence optimization, the rotation angle remains constant
at 0 degrees, and at this point, the minimum stiffness match-
ing index reaches 130.2 (N · s/mm4), while the average
value is 372.5 (N · s/mm4). The maximum range of stiffness
matching index that can be theoretically achieved is from
387.9(N · s/mm4) to 835.6(N · s/mm4), with an average
of 566.2 (N · s/mm4). The green line indicates the change
of robot posture along CC points after using redundant
angle optimization. After posture change sequence optimiza-
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Fig. 12 The change of robot
stiffness along CC points

tion, the stiffness matching index value is range from 386.4
to 823.5 (N · s/mm4), while the average value is 532.3
(N · s/mm4). It can be observed that due to the constraints of
robot motion, there is a minor difference between the opti-
mized stiffness index and the maximum value that can be
theoretically achieved. However, the optimization is consid-
ered effective as the values are very close.

4.3 Experimental validations of the optimization
results

In this case, the constant milling load toolpath is used to carry
out robot machining experiments on the same workpiece
as in Section 4.1. First, according to the MRR simulation
and threshold segmentation algorithm, the critical machining
region of theworkpiece is identified, and the optimal segmen-

tation threshold is obtained as (Mthr=8.03 (mm3/s) . Then,
based on the RVTR toolpath planning method, the trajectory
fusion is carried out in the part of the contour parallel tool-
path where the MRR exceeds the threshold (Mthr to obtain
the constant loadmilling toolpath, as shown in Fig. 13(a). It is
worth noting that the force direction of the positionwhere the
trochoid toolpath is added changes quickly and periodically.
Therefore, in the process of optimizing the robot posture at
this time, the trochoid toolpath is considered as a whole in
this work, and the posture optimization is not carried out
internally. The posture change effect at this time is basically
consistent with that without the trochoid toolpath added in
Fig. 12.

According to the MRR simulation method, the MRR
change of the constant load milling toolpath is obtained, as
shown in Fig. 13(b). With the constant load toolpath, the

Fig. 13 Experiment result: (a) MRR variation of the constant load
toolpath; (b) Force variation of the contour parallel toolpath; (c) Force
variation of the constant load toolpath;(d) Constant load milling tool-

path of a freeform surface;(e) Surface quality at sampling points of the
contour parallel toolpath; (f) Surface quality at sampling points of the
constant load toolpath
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Table 1 Cutting parameters for surface milling

Method Feed rate (mm/s) Spindle speed (rpm) Depth of cut (mm) Line spacing(mm)

Contour parallel 1 9000 2 1.5

Constant load 2 9000 2 1.5

MRR is well controlled, the average MRR is reduced to
6.03 (mm3/s), and the maximum MRR is reduced to 9.71
(mm3/s), which is 31.09% lower than the contour parallel
toolpath. In addition, the C1 region avoids full edge cutting,
and by controlling the radial cutting depth of the RVTR tool-
path, its MRR is consistent with that of the C2 region.

In the actual cutting experiments, the process parameters
such as tool radius, line spacing, and axial cutting depth were
set the same as in Section 4.1. However, when the feed speed
of the contour parallel toolpath and the constant load tool-
path are the same, the constant load toolpath consumes more
time.Hence, this experiment compares the changes in cutting
forces between the twomethods by adjusting the speed of the
contour parallel toolpath to ensure that the total processing
time is the same for bothmethods. The cutting parameters are
shown in Table 1. However, since the constant load toolpath
and the contour parallel toolpath exhibit inconsistent cut-
ting forces and feed time, it becomes difficult to intuitively
compare their advantages and disadvantages. Therefore, in
this experiment, the feed speed of the constant load toolpath
is adjusted to match the total processing time of the con-
tour parallel toolpath, and then the changes in cutting forces
are compared. In actual processing, there are several fac-
tors that affect the processing time, including robot posture,
robot joint velocity, and the connection formbetween twoCL
points, among others. Therefore, there may be slight differ-
ences in the actual processing time. As depicted in Fig. 13(c),
it shows the distribution of the robot’s surface milling force,
which was measured using a dynamometer. The maximum
cutting force is 51.94N, and the average cutting force is 11.90
N. It should be noted that the average value of the cutting
force is relatively small due to the presence ofCCpointswith-
out cutting. As presented in Table 2 and Fig. 13(d), compared
with the previous optimization case, the peak value of the cut-
ting force is well controlled, and the fluctuation of the cutting
force is significantly reduced. In the optimized case, themax-
imum cutting force is 35.29 N, and the average cutting force

is 8.94 N, which is reduced by about 30%. It can be observed
that the constant load toolpath planning method proposed
in this study can decrease the maximum cutting force and
improve machining quality while ensuring machining effi-
ciency. Furthermore, if the maximum cutting force is taken
as the limit, themethod described in this study can be utilized
for surface milling with higher efficiency. The machined sur-
faces before and after the optimization are shown in Fig. 14.
Subsequently, we utilized a white light interferometer to
examine the machining quality before and after optimiza-
tion, as depicted in Fig. 13 (e, f). Due to the presence of
residual height in milling, it can impact the measurement
results of roughness. Hence, we conducted sampling mea-
surements on the valleys of the milling traces, taking a total
of 10 positions on the surface and averaging the values. As
can be observed, the surface texture is not as prominent as
before the optimization. This is due to the stable cutting force
and improved rigidity, which reduced the vibrations during
the robot machining process. The results revealed that after
optimization, the Ra decreased from 0.710μm to 0.263μm,
and the Rz decreased from 3.599μm to 1.833μm.

5 Conclusions

In robotic milling for freeform surfaces, cutting force and
robot stiffness are essential factors affecting machining qual-
ity. A stable cutting force can improve efficiency, prolong
tool life, and reduce vibration in robot surface milling. Addi-
tionally, enhancing robot stiffness can further improve its
ability to resist cutting forces and enhance surface milling
performance. This study proposes amethod for constant load
toolpath planning and stiffness-based robot posture optimiza-
tion in robot freeform surface milling.

To begin, a new calculation method for MRR in surface
milling is proposed based on the Dexel model. Subsequently,
a constant load toolpath planning method for freeform

Table 2 Cutting parameters for surface milling

Method Estimated time(s) Processing time(s) Maximum force(N) Average force (N)

Contour parallel 1888 1836 51.94 11.90

Constant load 1841 1831 35.29 8.94

Improvement (%) / / 32.06% 24.87%
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Fig. 14 Machined surfaces of
two optimization case

surfaces is introduced. This method combines the confor-
mal mapping algorithm, threshold segmentation algorithm,
and RVTR toolpath based on the MRR simulation of the
milling process. Furthermore, to further improve robot sur-
face milling performance, an optimization model of robot
stiffness matching, considering multiple constraints, is pro-
posed. The model searches for the optimal sequence of robot
posture changes using the dynamic A* algorithm. Simula-
tion and experimental results demonstrate that the proposed
method can improve robot stiffness, lower cutting loadwithin
the same processing time, and enhance surface processing
quality.
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