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Abstract
The existing technologies for the manufacture of composite materials using carbon fiber threads are analyzed in the article,
on the basis of which 4 main technologies can be distinguished. One of the technologies based on the required characteristics
of products was chosen, for which its own algorithmic support solving the following tasks was proposed: calculating the
parameters of equidistant geodesic curves using the example of an elliptic paraboloid; correction of the obtained Cartesian
coordinates of the trajectory points, taking into account the actual position and orientation of the mandrel surface relative to
the robot; calculation of the values of robot’s angular axes corresponding to the given position and orientation of the robot’s
executive link. The performance of the proposed algorithms was verified in full-scale tests using the KUKAKR6 R900 robot.
Tests showed the operability of the developed algorithms for calculating the trajectories of the laying out of carbon fiber
products with their subsequent transformation into a sequence of values of the robot’s rotary axes.

Keywords Robotic fiber placement · Fiber placement path · Geodesic trajectory · Control theory and applications ·
Control system of robots · Inverse kinematics

1 Relevance of automated fiber laying
technology

The complexity of products obtained from composite mate-
rials is constantly growing, and at the same time, the
complexity of the technologies for their production is grow-
ing, in this regard, a person is unable to provide these
technologies with the required quality indicators. Industrial
robots come to the rescue, performing elementary opera-
tions with high accuracy and repeatability (within 0.1 mm).
Conventionally automatedmethods for producing composite
materials from carbon fiber can be divided into 4 main tech-
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nologies: (1) Robotic laying out of a product made of carbon
fiber sheets on a mandrel with subsequent compaction with
rollers; (2) Printing on 3D printers with embedded carbon
fiber filaments; (3) Robotic non-rimmed volumetric laying
of products with carbon fiber thread or tape; (4) Robotic lay-
ing out of products with carbon fiber thread or tape on a
mandrel with subsequent sealing.

In accordance with the first technology [1] one or more
robots lay out pieces of carbon fabric on a pre-prepared man-
drel. Another robot densifies the fabric on the mandrel using
rollers. Another robot heats tissue with a gas burner.

The second technology involves the use of an extruder
with the ability to feed carbon fiber filament inside a molten
plastic one. For this technology, the presence of a robotic arm
is not necessary.

In the article [2], the authors show the benefits of localized
flat heat treatment (LITA),which,when being combinedwith
a robotic arm, provides a promisingway tomake lightweight,
high-performance continuous fiber-reinforced thermosetting
composites with great design flexibility.

The article [3] show that additive manufacturing (AM), or
3D printing, can be used to make polymer, ceramic, metal,
and composite parts with complex geometries using opti-
mized print settings. Fused deposition modeling (FDM) is
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an extrusion-based 3D printing technology most commonly
used to print thermoplastic and fiber composite materials.
This method is widely used due to its ease of implementa-
tion and low cost and allows the production of parts with both
short and continuous fibers. Continuous Carbon Fiber (CCF)
is extremely lightweight, tough, and durable, and when used
as a reinforcing material, it finds a wide variety of engineer-
ing applications. The authors demonstrate research results
that combine a short carbon thermoplastic material with CCF
to form a continuous carbon fiber-reinforced thermoplastic
composite (CCFRTC) using the FDM3D printing technique.

The third technology involves the creation of products
using a spatial interlacing of threads, the ends of which are
attached to a frame, and parts of the threads between the
ends can be interlaced with each other. This technology can
be used, for example, in the production of large elements of
prefabricated architectural structures [4], the authors of the
article note high strength characteristics of such structures
with a low mass, due to the accurate calculation of each ele-
ment and a differentiated winding scheme for each element.

In the article [5], the authors investigate a heterogeneous
system of several robots for spatial winding of filamentary
materials. The system is based on the interaction of a six-axis
robotic arm and a tuned 2+2 axis CNC gantry system. The
heterogeneous interaction of several robots makes it possi-
ble to implement a spatial winding strategy: a new method
of sequential spatial arrangement of fibers based on direct
fixation of thread-thread connections, achieved by winding
one thread onto another. This strategy allows the creation of
lightweight, irregular fibrous spatial framework structures.
The new material system was investigated through physical
models and digital simulations prior to deployment using
the proposed robot manufacturing process. An adaptable
frame design has been developed, that allows parts of var-
ious geometries to be produced within a single frame. By
introducing a multi-stage curing process that integrates with
an adaptable frame, it is possible to iteratively produce con-
tinuous large-scale spatial frame structures. This makes the
scale of the structure independent of the robot’sworking area.
Using the capabilities of two interacting machines, the sys-
tem allows you to neutralize some of their limitations.

The fourth technology is some kind of combination of the
three previously discussed. It is performed on a rigidmandrel
with subsequent compaction, similar to the first technology,
while the product is formed from a single thread or tape of a
fixed width (similar to a 3D printer and without a corrugation
technology).

The authors of the article [6] demonstrate in their arti-
cle the possibilities of robotic laying out of complex carbon
fiber products. And they show the advantages of the tech-
nology compared to manual winding in terms of process
control, repeatability, and production time. In this paper,
the main attention is paid to a family of parts, the shape

of which can be obtained as a result of the movement of a
complete section along a closed non-automatically intersect-
ing three-dimensional curve. The authors demonstrate the
possibility of obtaining structural homogeneity and unifor-
mity of fiber distribution throughout the entire volume of the
product.

The authors of the article [7] note thewidespread adoption
of robotic automatic fiber placement (RAFP) technology in
the production of both large expensive aircraft structures and
inexpensive parts. At the same time, it is said about reducing
the number of rejects, including in the production of parts
with precise contours. The authors demonstrate the potential
for optimizing product structural performance by planning
yarn paths, such as increasing maximum buckling load and
minimizing stress concentrations. At the same time, RAFP
introduces inadvertent manufacturing defects, which can
include overlaps and gaps and they lead to non-uniform thick-
ness of the structural panels. The authors consider adjustable
fiber paths to maximize flexural loads in RAFP panels with
explicit consideration of manufacturing defects. A new fiber
path modeling method is presented that can explicitly sim-
ulate each stacking stroke, including production artifacts in
the width of the section, allowable curvature of the bundle,
and control of unintentional production deviations that can
lead to gaps and overlaps. To obtain optimal solutions, a sur-
rogate modeling method based on machine learning is used
in combination with a genetic algorithm.

In the article [8], the authors discuss the issue of calculat-
ing the trajectory of the working body of an industrial robot
in the production of composites. At the same time, a mandrel
attached to the flange of the robot is pulled through a station-
ary head, which feeds several strands of carbon fiber. The
orientation and placement of the carbon fiber strands depend
on the trajectory of the robot. A model for the passage of
a polyurethane mandrel through a head for feeding carbon
fiber is described in the article. To calculate the trajectory
of the working body of the robot and determine the desired
passage of the mandrel, matrix calculations are used. The
required matrices of rotation and displacement of the local
coordinate systemof theworking body of the robot relative to
the base system are gradually calculated, and then the Euler
rotation angles corresponding to the transformation matrices
are determined.

In the article [9], the authors investigate geodetic wind-
ing by an industrial robot with six degrees of freedom. The
change in parameters caused by the shape of the envelope,
the length of the hanging thread, and the geodesic winding is
considered, and the resulting effect on the kinetic stability of
the robot elbowwinding is analyzed. An experiment with the
rotation of a dry fiber from a composite elbow shows that the
developedwinding trajectory of the composite elbow can sta-
bilize the structure of thewindings; in addition, yarn slippage,
overhead, and other problems develop. The robot’s move-
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ment is smooth. The required space of the rotation path of
the robot’s elbow corresponds to the simulation workspace.

The authors of [10] investigate the challenges of using
multiple Autonomous Industrial Robots (AIR) instead of one
AIR to stack carbon fiber on a rigid mandrel. These problems
include the optimal division and distribution of work among
robots on all layers, as well as the execution of coordinated
movement planning, taking into account the requirements
and constraints of the layout workflow. To address these
issues, this article proposes a two-step approach. The first
step looks at several tasks to optimally allocate surface areas
for eachAIR, and the second step focuses on creating coordi-
nated routes for theAIR.At each stage, mathematical models
are developed with several unique challenges and constraints
associated with collocating fibers with multiple AIRs. Nev-
ertheless, the operation of AIRs at a sufficient distance from
each other is discussed in the article, as a result, their working
areas practically do not intersect, which greatly simplifies the
task of avoiding collisions.

In the article [11], the results of creating an adaptive sys-
tem based on an industrial robotic arm are presented. The
authors solve two main problems: first, each fiber requires
compaction with a certain force, depending on the material
used; secondly, the use of offline programming of the robot
path results in poor belt placement accuracy. The proposed
approach to solving the problem of accuracy and production
constraints is an interactive production scheme based on the
circuits of exteroceptive sensors. This article shows an inter-
active manufacturing approach based on a servo amplifier
to control the compaction force and visual servo control to
control the lateral position of the belt in order to improve the
accuracy of fiber placement and then the quality of themanu-
factured parts. Unfortunately, the authors do not demonstrate
the operation of their system on curved surfaces.

However, during the RFP process, a number of charac-
teristic defects may arise [Review of image segmentation
techniques for layup defect detection in the Automated Fiber
Placement process]: wrinkles (or folds), tape twisting, gaps,
overlays, inclusion of foreign materials. Identifying and rec-
ognizing defects can take up to 50% of the production time.
Moreover, the accuracy of quality control is highly dependent
on the qualifications of the inspector.

Due to the complexity and variety of existing carbon fiber
stacking technologies, the availability of commercial CAM
toolpath programming systems is also very limited.

Coriolis Composites Technologies offers a hardware and
software complex that includes an industrial robot with an
actuator of its own production, as well as software for mod-
eling the automated laying of a composite tape CADFiber
and CATFiber.

Siemens offers its FiberSim open-architecture software
product for the development of carbon composite products
with the ability to determine the mechanical properties of

these products and control robotic manipulators. At the same
time, the software product can be used to implement the con-
cept of digital twins.

The quality of the laying, as well as the properties of
the future product, depend on many factors (the quality of
the feedstock and its composition, the modes of heat treat-
ment, the degree of compaction, the reinforcement scheme,
the shape and quality of the mandrel, etc.). It is not always
possible to take into account all these factors and technolo-
gies in one software product, therefore the presented products
are not able to fully satisfy all the requirements. In this arti-
cle, the authors propose their methods for solving several
important problems of automated laying out of composite
products with carbon fiber on a rigid mandrel using robotic
manipulators, namely:

– Generation of laying trajectories along geodetic lines on
the surface of a rigid mandrel (the surface of an elliptical
paraboloid is considered);

– Correction of the generated geodetic trajectories, taking
into account the actual position and orientation of the
mandrel relative to the robot;

– Solution of the problem of inverse kinematics for the
robotic arm in order to control the position of the robot in
the process of laying carbon fiber based on the proposed
method of vectors.

2 Automated synthesis of the stacking
trajectory based on geodesic curves

Various lines generated on the base surface of the mandrel
can be used as stacking paths. One of these options is the
use of a flat template parallel to the XY plane (red lines in
Fig. 1), in which the stacking scheme in the first layer is a set
of parallel straight lines located along one of the coordinate
axes (alongX)with an equal pitch. The lines of the flat pattern
are projected along the Z-axis onto the parabolic surface of
the 3Dmodel, resulting in the trajectories of laying the carbon
fiber (green lines). In the second layer, the lines are located
perpendicular to the previous layer (along Y) and are also
projected onto the mandrel surface. If necessary, you can
generate several such layers, alternating the direction of the
lines (see Fig. 1a).

Another option for laying is along the curved axes of a
parabolic surface. The direction of the lines of one layer is
radial (Fig. 2a), and the direction of the second layer is in
the form of circular arcs with centers lying on the axis of the
parabolic surface (Fig. 2b).

Each of these methods has disadvantages. Due to the pro-
jection of a flat template onto a curved surface (Fig. 1), the
lines are distorted, as a result, the step between adjacent
lines becomes uneven and depends on the angle between
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Fig. 1 The trajectory of the
calculation based on the
projection of a flat template onto
a parabolic surface

the tangent plane and the horizontal plane of the template
(the smaller the angle, the less is the distortion), and the laid
tape. As a result of these distortions, carbon fiber has mul-
tidirectional stress states, which can lead to laying defects
in the form of folds, bends, and slippage of the tape. At the
same time, the scheme of the first layer shown in Fig. 2a has
an additional disadvantage in the form of uneven packing
density in the area closer to the center of the paraboloid and
on its periphery.

In order to minimize the number of defects in the form
of folds, creases, overlaps, and slippage of the thread during
laying and to ensure uniform tension inside a thin-walled
power shell product with a minimum mass, reinforcement
(layout) should be used along geodesic curves.

For a number of surfaces, given parametrically, the equa-
tions of geodesic curves can be determined explicitly by
solving the system of Euler-Lagrange equations [12]. Con-
sider the solution to the problem for an elliptic paraboloid
given parametrically:

X(u(t), v(t)) = [
a · u(t) · cos(v(t)); a · u(t) · sin(v(t)); u2(t)

]

u − c2 = u(1 + 4c2) · sin2(v − 2c · ln
[
k (2

√
u − c2 + √

4u + 1)
]
)

(1)

This problem was solved for an elliptical paraboloid with
a = 1 [12], and does not allow to arbitrarily specify a sur-
face point through which a geodesic curve would pass (for
example, on paraboloid sector boundary) see Fig. 3. The
numerical method for determining geodesics is preferable
since it allows you to obtain a universal method for solving
any smooth surfaces.

In the article [12], a numerical method for calculating
geodesics on parametric surfaces is proposed, which reduces
to the formation of a system of ordinary differential equa-
tions and their numerical solution. where, u = u (t), v = v
(t) are parametric functions that determine coordinates on a
smooth surface. For a paraboloid:

u is the radius of a circle on a paraboloid with a center
lying on the axis of rotation;

v is the angle of rotation on the paraboloid, measured in
the xy plane from the ox axis;

a is the coefficient that determines the curvature of the
parabolic surface.
In the article [13], it is shown that the system of differential
equations describing geodesic curves on parametric surfaces

Fig. 2 Trajectory of calculation
based on curvilinear coordinates
parabolic surface
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Fig. 3 Using an analytical solution for calculating geodesics

has the form

u′′ +
∂E(u,v)

∂u

2E(u, v)
u′2 +

∂E(u,v)
∂v

E(u, v)
u′v′ −

∂G(u,v)
∂u

2E(u, v)
v′2 = 0

v′′ −
∂E(u,v)

∂v

2G(u, v)
u′2 +

∂G(u,v)
∂u

G(u, v)
u′v′ +

∂G(u,v)
∂v

2G(u, v)
v′2 = 0 (2)

where the functions E(u,v), F(u,v), G(u,v),

E(u, v) = ∂X(u, v)

∂u
· ∂X(u, v)

∂u

F(u, v) = ∂X(u, v)

∂u
· ∂X(u, v)

∂v

G(u, v) = ∂X(u, v)

∂v
· ∂X(u, v)

∂v
(3)

The partial derivatives of the vector function X(u,v) are
defined by the following formulas:

∂X(u, v)

∂u
= [a · cos(v); a · sin(v); 2u(t)]

∂X(u, v)

∂v
= [−a · u · sin(v); a · u · cos(v); 0] (4)

then the functions E(u,v), F(u,v), G(u,v) are:

E(u, v) = a2 + 4u2

F(u, v) = 0

G(u, v) = a2 · u2 (5)

Finally, the system of differential equations defining
geodesic lines for an elliptic paraboloid has the form:

u′′ − u · v′2 + 4u3 · v′2 + 4u · u′2

a2 + 4u2
= 0

v′′ + 2u′ · v′

u
= 0 (6)

To solve the above-described system, it is required to set
the following initial conditions:

u(0) = C1

v(0) = C2

u′(0) = C3

v′(0) = C4 (7)

where C1, C2 - curvilinear coordinates of the starting point
of the geodetic; C3, C4 - initial radial and derivative of the
geodesic. A variety of initial conditions define the family of
geodesics (Fig. 4). To exclude defects in the laying of the fiber
tape in the layer, such as: folds; uneven product thickness,
gaps; it is proposed to search for such a set of geodesic curves,
the minimum distance between the points of which is a given
constant, in other words, the curves are equidistant.

It is proposed to solve the problem in the optimization set-
ting. The optimization parameters are the initial parameters
of the system of differential equations described above. The
objective function is:

f = ∣
∣dmax − dmin

∣∣ + ∣∣dmax − dt
∣∣ (8)

Fig. 4 A set of geodesic lines
on an elliptical paraboloid
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Fig. 5 Components of the
objective function on a parabolic
surface

where dmax , dmin are the maximum and minimum distance
between adjacent geodesic curves, dt is the specified distance
between the geodesics (the width of the composite tape, see
Fig. 5).

The optimal coverage of the surface by the tape is obtained
as a result of the implementation of the iterative algorithm:
the position of the edge of the first tape (initial conditions in
the solution of the system of differential equations) and its
width are set; the optimization problem is solved to determine
the parameters of the adjacent tape; the process continues
until it goes beyond the surface boundary (Fig. 6). The pseudo
code is presented below:

Begin CalcGeodesicLines

Input a, umin, ustep, umax, vmax //
range of curves parameters
Input spnt //first curve u, v, u‘, v‘
parameters
Input x0 //second curve u, v, u‘, v‘
initial condition for second curve
Input targetd //distance between curves

for u_curr { umin,umax

//find params for second geodesic line
[x1, y1, z1, u1,v1, spnt1] ←fminsearch
(fParaboloid(Z,spnt),x0)

spnt ← spnt1;
x0 ← spnt1;
x0(1) ← u_curr;
// correction of initial condition for
second geodesic line

// calc normal of elliptic paraboloid
nx←2*a*u1ˆ2*(2*sin(0.5*v1)ˆ2 - 1)/sqrt
(aˆ4*u1ˆ2 + 4*aˆ2*u1ˆ4)
ny←-2*a*u1ˆ2*sin(v1)/sqrt

(aˆ4*u1ˆ2 + 4*aˆ2*u1ˆ4)
nz←aˆ2*u1/sqrt
(aˆ4*u1ˆ2 + 4*aˆ2*u1ˆ4)

Output x1, y1, z1, -nx, -ny, -nz to
NC // output for NC programm

next ustep

End CalcGeodesicLines

Begin fParaboloid(Z, Z0)
// solve differentials equations for
first geodesic line
[u, v]←RK4(paraboloid,
[Z0(1), Z0(2), 0, Z0(4)])

x←a*u*cos(v);
y←a*u*sin(v);
z←uˆ2;

// solve differentials equations for
second geodesic line
[u1, v1] ←RK4(paraboloid,
[Z(1), Z(2), 0, Z(4)]);

x1←a*u1*cos(v1);
y1←a*u1*sin(v1);
z1←u1ˆ2;

// geodesic lines spline interpolation
curve←fit([x, y, z], ’smoothingspline’)
curve1←fit([x1,y1,z1],
’smoothingspline’)
// calculation of maximum and
minimum distance
// between two geodesic lines
[maxd, mind ]←GetMaxMinDistance
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Fig. 6 Algorithm for
calculating a family of
equidistant geodesics based on
the optimization algorithm

(curve, curve1)
return← abs(maxd-mind) + abs
(maxd- targetd);

End fParaboloid

Begin paraboloid(t,x,a)
// system of first order differential

Fig. 7 Error in determining equidistant geodesic

123

2495The International Journal of Advanced Manufacturing Technology (2024) 130:2489–2504



Fig. 8 Optimal distribution of
geodesic lines on the surface of
an elliptical paraboloid

equations of geodesic lines
xp=zeros(4,1);
xp(1)=x(2);
xp(2)= x(1)*x(4)ˆ2 - (4*x(1)ˆ3*x(4)ˆ2 +
4*x(1)*x(2)ˆ2)/(aˆ2 + 4*x(1)ˆ2);
xp(3)=x(4);
xp(4)= - 2*x(2)*x(4) / x(1);
End

Numerical models implemented in the algorithm for cal-
culating equidistant geodesic curves have the following
parameters: integration step; the number of iterations of the
optimization process; the number of points into which the
spline is split (interpolating the geodesic), for the subsequent
calculation of the minimum distance; initial values of the
system of differential equations. With an arbitrary choice of
the listed parameters, the solution turns out to be unstable
(Fig. 7).

To obtain a cloud of trajectory points that provide the
required accuracy, the integration step of the system of dif-

Fig. 9 Maximum and minimum distance between adjacent geodetic
lines

ferential equations must be correlated with the speed of
the geodesic curve. The case of the optimal distribution of
geodesic lines on the surface of an elliptic paraboloid satis-
fying the initial conditions is shown in Fig. 8

The value of the maximum and minimum distances
between adjacent geodetic lines is shown in Fig. 9. At a
given tape width of 20mm and a maximum laying length of
250mm, there are no gaps between the tapes, and the overlap
is no more than 1.8 mm.

The velocity modulus of the obtained family of equidis-
tant geodesic curves changes linearly with distance from
the paraboloid axis (determination coefficient R2 = 0.99,
Fig. 10).

In this case, the angular component of the velocity also
obeys a linear law (Fig. 11).

On the basis of the developed numerical algorithms, the
fundamental possibility of calculating an elliptic paraboloid
by equidistant geodesic curves is shown in the figure.

3 Solution of the inverse kinematics problem
with limited degrees of freedom

Having determined the coordinates of geodesic lines on the
surface of an elliptical paraboloid, corresponding to the tra-

Fig. 10 Velocity module of the family of geodetsc
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Fig. 11 Graphs of changes in
radial and angular velocities of
geodesic

jectory of the actuator, it is necessary to solve the inverse
kinematics problem to find the values of all six axes of the
robotic arm, taking into account their maximum permissible
values.

In traditional six-link robots, the position and orientation
of the end-effector will be determined by the tool coordinate
system, which can be uniquely specified by 6 coordinates:
X, Y, Z - position and A, B, C - orientation angles in space
relative to the base of the part. In this case, we will assume
that the Z axis of the tool will be directed along the carbon
fiber coming out of the executive device.

The method of describing kinematics proposed in the arti-
cle [14] can be generalized in such a way that the arguments
are the angles of rotation of the drives, and the parameters
are the lengths of the links and the orientation of the axes
of the drives. Consider the problem being solved, using the
example of the KUKAKR6 R900 robot. The position shown
in Fig. 12 will be taken as the initial one.

Vectors describing the links of the robot and connecting
the axes of rotation Vectors for the KUKA KR6 R900 robot:

v01 = [0; 0; 0]

v12 = [25; 0; 400]

v23 = [0; 0; 455]

Fig. 12 Geometrical parameters of the KUKA KR6 robot

v34 = [0; 0; 35]

v45 = [420; 0; 0]

v56 = [80; 0; 0] (9)

and, accordingly, the directions of the rotation axes of the
robot links are as follows:

a1 = [0; 0; −1]

a2 = [0; 1; 0]

a3 = [0; 1; 0]

a4 = [−1; 0; 0]

a5 = [0; 1; 0]

a6 = [−1; 0; 0] (10)

in this case, the initial values of the rotation angles of the
robot links are as follows:

α1 = 0

α2 = −90◦

α3 = 90◦

Fig. 13 Position of the KUKA KR6 R900 robot for an arbitrary trajec-
tory
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Fig. 14 Normal operation of the
algorithm (a), hitting the
“ravine” (b) gradient methods
can be used to overcome “gully”
sections of functions

α4 = 0

α5 = 0

α6 = 0 (11)

The position and orientation of the working point of the tool
relative to the flange are described at the initial position of
the robot by the vector vt, and the vectors of the normal vn
and tangent vτ directions:

vt = [80; 0; 0]

vn = [−1; 0; 0]

vτ = [0; 0; 1] (12)

Using the function of the rotation matrix R = R(a, α)

through the angle α with respect to an arbitrary vector a, the
following sequence of calculations was obtained:

R(a, α) =
⎡

⎣
cos(α) + (1 − cos(α))(a0)2 (1 − cos(α))a0ta1 − sin(α)a2 (1 − cos(α))a0a2 + sin(α)a1

(1 − cos(α))a1a0 + sin(α)a2 cos(α) + (1 − cos(α))(a1)2 (1 − cos(α))a1a2 − sin(α)a0
(1 − cos(α))a2a0 − sin(α)a1 (1 − cos(α))a2a1 + sin(α)a0 cos(α) + (1 − cos(α))(a2)2

⎤

⎦ (13)

T = R(a1, α1) - rotation matrix about axis 1
r12= T·v12 - position of axis 2
a2= T·a2 - drive axis orientation 2

T = R(a2, α2) · T - rotation matrix about axis 2
r13= T·v23 + r12 - position of axis 3
a3 = T · a3 - drive axis orientation 3
T = R(a3, α3) · T - rotation matrix about axis 3
r14 = T · v34 + r13 - position of axis 4
a4 = T · a4 - drive axis orientation 4

T= R(a4, α4)·T - rotation matrix about axis 4
r15 = T · v45 + r14 - axis position 5
a5 = T · a5 - drive axis orientation 5

T = R(a5, α5) · T - rotation matrix about axis 5
r16 = T · v56 + r16 - axis position 6
a6 = T · a6 - orientation of axis 6

T = R(a6, α6) · T - rotation matrix about axis 6
rt = T ·vt +r16 - position of the working point of the tool
vn = T · vn - tool normal vector orientation
vτ = T · vτ - tool tangent vector orientation

By performing calculations sequentially, it is possible to
determine the positions of all robot links corresponding to
the rotation angles of its drives (Fig. 13). At the same time,
in comparison with the common method for describing the
kinematics of robotic manipulators (the Denavit-Hartenberg
method), the proposed method does not require the use of
multiple coordinate systems for each link of the robot, which
reduces the possibility of errors.

When solving the problem of direct and inverse kinemat-
ics, one should take into account the existing restrictions on
the values of the axial angles of the robot:

θi − θmaxi ≤ 0

θmini − θi ≤ 0 (14)

Therefore, the inverse kinematics problem can be consid-
ered as an optimization problemwith constraints.At the same
time, the objective function is the distance between the tool
and the current path point.

One of the simplest ways to impose restrictions in the form
of inequalities on variables is to solve the problem of mini-
mizing a function on a given segment, one of the symmetric
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Fig. 15 Overcoming the “ravine” of the function by the gradientmethod

methods (the method of dividing the segment in half, the
golden section method, the tangent method, etc.). To apply
the symmetric method for multi-parameter optimization, the
coordinate-wise descent method is used.

It is known that for a number of functions, the coordinate-
wise descent method does not even lead to a local minimum.
According to the theorem on the convergence of the method
of coordinate descent, for the convergence of the method
from a given initial approximation, inequalities correspond-
ing to the positive definiteness of the quadratic form must
be satisfied. So, for example, the initial approximation can
lead to a “ravine” point that is not a global minimum, but
hindering further search for a solution (Figs. 14 and 15).

In order to test the proposed algorithm for solving the
inverse kinematics problemwith constraints, a two-link plane
robotmanipulatorwith two degrees of freedom is considered.
The trajectory of the tool movement can be specified by a
parametric straight line or an arc, as an example, consider

them on a plane (Figs. 16 and 17):

p (t, x0, x1, y0, y1) =
⎡

⎣
(x1 − x0) t + x0
(y1 − y0) t + y0

0

⎤

⎦

p (t, x0, x1, y0, y1) =
⎡

⎣
2cos (tπ) − 1

2sin(tπ)

0

⎤

⎦ (15)

The use of the symmetric method does not allow the use
of a more stringent constraint, such as applying a tool in a
given area. To solve this problem, the task of conditional
optimization can be reduced to the problem of unconditional
optimization using Lagrange multipliers, but the number of
constraintswill increase the dimension of the systemof equa-
tions being solved.

In addition, it is necessary to ensure the fulfillment of the
Lagrange principle, according to which three conditions are
fulfilled at the point of the local minimum:

L ′
x (a, λ) = 0 - stationarity condition;

λ j (a) = 0 - complementary slackness condition;
λ0 ≥ 0 - the condition for the agreement of signs.
L ′

x (a, λ) - is the derivative of the Lagrange function with
respect to the variable x: a is the conditional extremum point;
λ is the vector of Lagrange multipliers.

In the analytical solution of the optimization problem
using the method of indefinite Lagrange multipliers, all pos-
sible solutions are analyzed and the fulfillment of the local
minimumconditions ismonitored.However,with an increase
in the number of degrees of freedom, and the numerical solu-
tion of systems of nonlinear algebraic equations, such an
analysis is difficult.

a)

b)

Fig. 16 Movement of a two-link robot-manipulator along a trajectory given by a straight line

123

2499The International Journal of Advanced Manufacturing Technology (2024) 130:2489–2504



a) b)

Fig. 17 Movement of a two-link robotic arm along a trajectory set by an arc

Thus, the numerical symmetric optimization method in
the context of the problem being solved is preferable, and it
was extended to calculate the rotation angles of a robot with
six degrees of freedom.

In Fig. 18, a model of a robot and a mandrel with a surface
for constructing the trajectories of the tape in the form of an
elliptical paraboloid is shown. The red lines correspond to the
trajectories of the actuator and were calculated as equidistant
geodesics, with a constant surface step. The blue lines are the
wrist paths that define the orientation of the tool normal to
the parabolic surface.

Fig. 18 Model of a rig with a stacking trajectory

4 Correction of geodesic lines taking into
account the basing error

It is impossible to repeat exactly the model of the entire sys-
tem “robot-tool-table” in reality, there is always an error in
the position and orientation of the stationary mandrel and the
working body of the robot relative to the original coordinate
system. For a rigid mandrel, with respect to the basic coor-
dinate system of the robot; for an executive element, with
respect to the mounting flange of the sixth axis of the robot.

Since inmost cases, the control program for the robot uses
the Cartesian Coordinates X, Y, Z and the orientation angles
A, B, C (FRAME format) tomove the tool relative to thework
coordinate system of the workpiece (fixture), it is enough to
simply measure the position and orientation of the fixture
relative to the base coordinate system of the robot. and the
tool relative to the flange of the robot. The obtained data are
entered into the robot control system and taken into account
when solving the inverse kinematics of the robot, while the
coordinates in the control program itself are not corrected
in any way and the robot independently finds values for all
six axes already taking into account the actually measured
errors.

However, the use of coordinates in the FRAME format
in the control program does not allow controlling the move-
ments of all moving elements of the robot and eliminating

Fig. 19 Points for determining the positioning error of the rig
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Table 1 Reference points
coordinates

Point Geometric point coordinates Point coordinates measured on the mandrel
number xMi yMi zMi x Ri yRi zRi

1 500 0 10 501.4 −0.9 49.48

2 875.46 141.85 45 875.15 140.15 81.01

3 875.46 −141.85 45 875.01 −143.27 77.49

4 875.46 0 45 875.08 −1.56 79.25

their collisions or predicting behavior when passing singu-
larity points, since, in this case, the solution of the inverse
kinematics problem will be performed by the mathematical
apparatus of the control system, which is closed to the user.

Therefore, in order to take this error into account when
specifying the coordinates of the points through the values of
the rotary axes of the robot, it is necessary to correct the coor-
dinates of the previously calculated points of the geodesic
lines, taking into account the measured actual position of the
technological equipment and the tool.

Correction of the trajectory of the control program is per-
formed by multiplying the coordinates of each point of the
trajectory by the transformation matrix:

⎛

⎜⎜
⎝

a1 b1 c1 dx
a2 b2 c2 dy
a3 b3 c3 dz
0 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

xMi
yMi
zMi
1

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

xCi
yCi
zCi
1

⎞

⎟⎟
⎠ (16)

where a1, a2, a3, b1, b2, b3, c1, c2, c3 are transformation
matrix parameters describing the spatial orientation of the
rig relative to the robot;

dx , dy , dz - parameters of the transformation matrix
describing the displacement between the coordinates of the
points of the geometric model and those measured in reality;

xMi , yMi , zMi - coordinates of points from the geometric
model;

xCi , yCi , zCi - corrected coordinates of points;
The parameters of the matrix are determined by solving

the systems of linear algebraic equations, which includes

the coordinates of the control points of the geometric model
(xMi , yMi , zMi ) and measured in reality (x Ri , yRi , zRi ).

⎛

⎜⎜
⎝

a1 b1 c1 dx
a2 b2 c2 dy
a3 b3 c3 dz
0 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

xMi
yMi
zMi
1

⎞

⎟⎟
⎠ −

⎛

⎜⎜
⎝

xCi
yCi
zCi
1

⎞

⎟⎟
⎠ = 0 (17)

To determine the 12 unknown transformation matrix, 12
equations are needed, and therefore the three-dimensional
coordinates of the four points. Three control points are shown
in Fig. 19, the coordinates of the fourth are given as the geo-
metric center of three control points (the values of the points
are presented in Table 1).

Taking into account the actual position and orientation
of the rig according to the measured control points, one can
proceed to the next stage—calculating the values of the rotary
axes of the robot corresponding to the Cartesian coordinates
of the geodesic line points.

5 Checking the developed algorithms on a
robot KUKA KR6 R900

The developed algorithms for constructing a group of
equidistant geodesic lines on a parabolic surface, and their
subsequent correction, taking into account the actual position
of the mandrel relative to the robot base, as well as determin-
ing the values of the rotary axes of the robot, were tested
on a KUKA KR6 R900 robot. To check these algorithms, a

Fig. 20 3D model and robot
KUKA KR6 R900 moving
along geodesic lines of a
parabolic surface
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Table 2 Coordinates of the first ten points of the first geodesic line

Point Actuating mechanism Hand joint
number X Y Z Trajectory deviation X Y Z Trajectory deviation

1 574.436 32.625 76.327 0.002 545.2842 44.8724 207.5712 0.002

2 574.873 31.602 76.5264 0.002 545.8789 43.47552 207.8409 0.002

3 575.307 30.5751 76.7129 0.002 546.4711 42.07297 208.095 0.002

4 575.745 29.5481 76.8903 0.002 547.0668 40.67156 208.3398 0.001

5 576.178 28.5212 77.0769 0.001 547.658 39.26847 208.5911 0.002

6 576.616 27.4943 77.2543 0.001 548.2537 37.86661 208.8329 0.001

7 577.054 26.4765 77.4209 0.001 548.8499 36.47384 209.0626 0

8 577.483 25.4455 77.5945 0.001 549.4366 35.06734 209.2978 0.001

9 577.93 24.4186 77.7537 0.003 550.0424 33.66371 209.5173 0.004

10 578.371 23.3916 77.9221 0.002 550.6405 32.26067 209.7456 0.002

marker was installed on the robot, for which the trajectories
ofmovement along the parabolic surface of themandrel were
programmed.

Figure20 shows a 3D model and a robot in the process of
moving along the trajectories of the calculation. The coor-
dinates of the first ten points of the actuator and the wrist
joint, as well as the actual deviations of these points from the
programmed values, are shown in Table 2.

Tables 2 and 3 show the values of the axial angles for the
same ten points of geodesic lines.

Figure21 shows a graph of changes in the values of the
angular axes of the robot when moving along the first three
geodesic curves of a parabolic surface. The graph clearly
shows three sections with a smooth change in the angular
axes, while each section ends with a transition to the begin-
ning of the next geodesic line. Due to the presence of an
algorithm for correcting the coordinates of points, taking into
account the actual position and orientation of the rig relative
to the robot, it is possible to obtain a drawing of all lines on
a parabolic surface (Fig. 22).

Table 3 Values of axial angles for the first ten points of geodesic lines

Point number A1 A2 A3 A4 A5

1 −5.75 −39.19 112.95 56.38 7.72

2 −5.56 −39.21 112.88 54.75 7.62

3 −5.38 −39.22 112.80 53.08 7.53

4 −5.19 −39.23 112.72 51.37 7.45

5 −5.01 −39.24 112.65 49.61 7.37

6 −4.83 −39.25 112.57 47.82 7.31

7 −4.64 −39.25 112.49 45.99 7.25

8 −4.46 −39.26 112.41 44.13 7.20

9 −4.28 −39.26 112.32 42.23 7.15

10 −4.09 −39.27 112.24 40.31 7.12

Also along the generated trajectories, a control program
was obtained on the bases of generated trajectories, which
were obtained on the basis of the flat patterns shown in Fig. 1,
inwhich, using the developed algorithms, the Cartesian coor-
dinates were corrected taking into account the actual position
and orientation of the mandrel and converted into the values
of the rotary axes of the robot. Figure23 shows the final pat-
tern on the mandrel surface, on which a trajectory defect is
observed closer to the left side, resulting from the reorienta-
tion of the fourth axis during movement along the line. This
reorientation can also be seen in the graph in Fig. 24, showing
the changes in the values of the rotary axes of the robot at
the start of the movement. Unfortunately, this defect arises
due to the non-optimal location of the tooling in the work-
ing space of the robot, therefore, for a given trajectory, it is
not possible to calculate the sequence of coordinates without
this reorientation. In the future, it is planned to modify the
program for calculating the trajectories to select the working
area, excluding the reorientation of the working mechanism
in the process of laying out.

Fig. 21 Values of the angular axes of the robot when passing the first
three geodesic curves
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Fig. 22 The result of drawing geodesic lines on a parabolic surface

Fig. 23 Drawing trajectories from the projections of a flat template
onto a parabolic surface

Fig. 24 Part of the values of the rotary axes of the robot when passing
along the projections straight lines on the surface of the paraboloid

Thus, it was experimentally possible to confirm the
performance of the complex of the proposed algorithms.
Additionally, it was possible to check the algorithms for cor-
recting and calculating the rotational coordinates of the robot
on the projection trajectory of flat templates.

6 Conclusion

Thus, a complex of algorithms for information support of
the technology of robotic automatic laying of carbon fiber
on a rigid mandrel was developed. A universal method is
presented for the numerical finding of equidistant geodesic
curves on curvilinear smooth surfaces according to given
parameters (initial curvilinear coordinates, orientation of
lines on the surface, and the distance between them). An
algorithm for correcting the obtained Cartesian coordinates
of the trajectory points was created, taking into account the
actual position and orientation of the mandrel relative to the
robot. The problem of inverse kinematics was solved taking
into account the maximum permissible values of all rotary
axes of the robot. The operability of the complex of algo-
rithms was experimentally confirmed using the KUKA KR6
R900 robot (the movement error was less than 5 microns).
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