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Abstract
Machining is a versatile field in the manufacturing industry. In milling operations, tool wear is considered the most critical
factor affecting the surface quality of the milled piece. Furthermore, the gradual tool wear impacts the milling process,
leading to significant downtime, which has serious financial consequences. Unavoidably, a sustainable and reliable condition
monitoring system must be developed to reduce the risk of downtime and enhance production quality. The deployment of
prognostic and health management (PHM) solutions is becoming increasingly important. It is regarded as one of the main
levers for monitoring tool wear status. In this paper, a novel methodology is proposed for extracting pertinent health indicators
(HIs) that reflect the degradation behavior of a set of milling cutters and estimating their remaining useful lives (RULs). First,
a new time-frequency signal-analysis approach, titled empirical wavelet packet decomposition (EWPD), is proposed to
scrutinize the data collected via multi-sensor acquisition. This technique provides a new segmentation of the signal’s Fourier
spectrum, distributed on levels, to investigate a broader variety of frequency bands and enhance the traditional segmentation
structure’s performance. Second, a new health indicator is designed based on an innovative selection of the time-domain
features computed for each frequency band over each level. Finally, the long short-term memory (LSTM) network is used to
estimate the RUL of each cutter. A comparison between the suggested processing method and the wavelet packet transform
(WPT) is made to support the hypothesis regarding the effectiveness of the proposed technique. Experimental outcomes seem
to be satisfying.
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1 Introduction

Nowadays, manufacturing industries are undergoing tremen-
dous evolution and ongoing technological growth, with the
primary goal of ensuring the reliability ofmanufacturing sys-
tems. In this regard, monitoring tool conditions has turned
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into an important task in the field of metal cutting. Although
cutting tools account for less than 4% of the total machin-
ing cost [1], their failure can result in a machine breakdown
of 10 to 40% [2], which increases the overall cost of down-
time. Under high temperatures and stress, cutting tools are
subjected to severe frictional processes with the working
piece. This leads to a critical condition called tool wear,
which gradually affects the surface quality of the machined
piece until either the milling machine or the workpiece is
damaged. An effective prognostic and health management
(PHM) system for tool health monitoring is, then, essen-
tial to enable informed actions aimed at enhancing cutting
tool utilization and preventing catastrophic situations result-
ing from tool failure. Elattar et al. [3] classified prognostic
methods into threemain categories: physics-based, statistical
reliability-based, and data-driven-based techniques. Physical
model-basedmethods rely onmodeling the system dynamics
model that reflects its behavior and incorporates the degra-
dation process. However, even if these methods are the most
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well-known in terms of precision and accuracy, the complex-
ity of real-world industrial systems makes the conversion of
the physical behavior into an analytical representation highly
challenging [4]. Statistical reliability-based approaches, as
the name implies, rely on statistical models, such as Weibull
and Poisson distributions. They are solely based on historical
life-cycle data, which includes the failure rate of a list of com-
ponents belonging to the same category and specifications as
the monitored part. Even though these techniques are sim-
ple to implement, they have a major restriction in that they
require a large amount of historical data [5], making them
inaccurate for newlymanufactured components. Data-driven
methods are the most widely used and developed prognostic
category, owing to their ease of deployment, which does not
require an analytical representation of the system’s behav-
ior. PHM-data-driven prognostic process is realized in three
major steps [4]:

• Data acquisition
• Data processing
• Model learning and RUL prediction

In the data acquisition step, the acquisition system records
the numerical data provided by sensors or transducers.
Different types of sensors can be used depending on the
critical component to be monitored, where, in the milling
process, sensor selection is driven by the condition that
can be related to tool wear, such as vibrations, cutting
forces, acoustic emissions, and power consumption of the
spindle [6]. The obtained data is processed, in the next step,
to extract critical features with which the degradation level of
the cutting tools is estimated and the wear state is evaluated.

Undoubtedly, this is the most challenging step regardless
of the type of monitoring sensor. For instance, the vibration
and acoustic emission data may contain structural and bear-
ing vibration information. So, the data becomes complex,
non-linear, and usually overwhelmed by noise [5].

It is reported, in related works [7, 8], that features can be
extracted from time, frequency, and time-frequency domain
analysis. Features derived, independently, from the time
or/and frequency domains capture specific signal content
while potentially losing information about the status of cut-
ting tool degradation due to the non-stationarity of real
signals and the sensitivity to the experimental conditions
affecting milling cutters [9].

Time-frequency analysis is becoming a research hotspot
since the used techniques, such as Hilbert-Huang transform
(HHT), wavelet transform (WT), wavelet packet transform
WPT, and empirical wavelet transform (EWT), can extract
the dynamic health condition of milling cutters [10]. Numer-
ous work has been carried out for this purpose. Benkedjouh
et al. [9] combined continuous wavelet transform (CWT)
with blind source separation (BSS) to estimate the remain-

ing useful life (RUL) of the cutting tools. The CWTwas used
to separate the signals into coefficients for taking a certain
scale of wavelet coefficients for BSS. The energy of the seg-
regated signals is computed to produce the health indicator.
Liao et al. [11] worked on monitoring tool wear conditions,
proposing a hybrid hiddenMarkovmodel (HHMM) based on
CWT. To begin, an internal dynamic hidden Markov model
(HMM) is created to capture the WT’s dynamic dependency
at various frequencies with instantaneous time resolution.
After that, an external HMM for continuous monitoring is
built, which aggregates the WT dependencies and portrays
the dynamic worsening of the tool wear state in long term.
Shen et al. [12] implemented a strategy for spindle power
signal-based online tool condition monitoring, in which a
system dedicated to the signal acquisition is constructed, and
then, Hilbert-Huang transform (HHT) is applied to extract
suitable features that indicate the tool condition. Segregeto
et al. [13] employed WPT and machine learning paradigms
to estimate tool wear in the turning of Inconel 718. TheWPT
was applied to vibration, cutting force, and acoustic emis-
sion signals to extract appropriate features. The correlation
coefficient method is then used to select the most relevant
features, and finally, a machine learning model based on an
artificial neural network was employed to estimate the flank
wear.

Despite the high capabilities, of the aforementionedmeth-
ods, for signal decomposition, each has its limitation. HHT
lacks from mathematical basis. WPT or CWT restricts the
extraction of the HIs from a set of frequency bands con-
structed from a prescribed subdivision scheme of the Fourier
axis. By contrast, EWT provides a self-adaptive decompo-
sition of this axis concerning the frequency content of the
analyzed signals. However, the contact of the cutting tool
with the workpiece will certainly excite the machine struc-
ture, creating structural resonant frequencies that will be
added to those of the electric motor components. These fre-
quencies are known to have high energy. In this context, as the
EWT first detects the local maxima, in the spectrum, to con-
struct filters, the aforementioned frequencies, and the noise
will greatly influence the results. Thus, isolating a frequency
band in which the cutting tool wear is manifesting is tedious.

With the aim of developing a richer filter bank, a new
segmentation model of the Fourier axis is proposed in this
paper, denoted as the empirical wavelet packet decompo-
sition (EWPD), to obtain comprehensive frequency band
information, overcoming the traditional segmentation struc-
ture issues [14, 15]. Besides, a new health indicator is
constructed to represent the degradation state of a collec-
tion of CNC milling cutters that rely on a clever selection
of the time-domain features from the proposed filter bank.
Ultimately, RUL estimation is performed based on the con-
structed HIs.
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For prognostic andmodel learning, extensive surveys have
been devoted to developing an accurate predictive model
capable of indicating the RUL of the monitored component.
Prognostic uses a variety of machine learning (ML) algo-
rithms, namely artificial neural networks (ANN), support
vector machine (SVM), support vector regression (SVR),
fuzzy logic (FL), and deep learning (DL) techniques [4, 5,
16]. Due to their outstanding performance, deep learning
DLmethods, including gated recurrent unit (GRU), convolu-
tional neural network (CNN), and long short-term memory
(LSTM) network, have lately become the most advanced
techniques. In a study evaluated by Zhao et al. [16], who
reviewed the recent research on machine health monitoring
using deep learning models, in which they employed a vari-
ety of ML and DL techniques for monitoring cutting tool
wear conditions, they acknowledged that, even though DL
approaches can automatically learn from raw data, the lack of
data samples, the complexity of the operational environment,
and the presence of noise in data necessitate feature extrac-
tion prior to a deep learning model. Aghazadeh et al. [17]
introduced a methodology for tool condition monitoring that
uses WPT for the processing stage. Later, spectral subtrac-
tion is carried out to remove the noise, and then several health
indicators are generated. Finally, CNN is used to predict the
tool wear state. Zhou et al.’s [18] research focused on pre-
dicting a tool’s remaining useful life under variant working
conditions. First, relevantwear characteristicswere extracted
from the data using HHT. Next, the working conditions and
the features were combined to create an input matrix, which
captured the spatiotemporal relationship under variouswork-
ing conditions. Finally, the input matrix was loaded into
an LSTM predictive model to predict the tool’s remaining
useful life. Wu et al. [19] introduced a tool wear predic-
tion model that employs a two-step approach: singular value
decomposition (SVD) for feature extraction and bidirectional
long short-termmemory (Bi-LSTM) for time series analysis.
SVD was used initially to reduce the noise in the raw signal,
thereby shortening the input signal length for the Bi-LSTM
network and simplifying its complexity. The processed data
was then fed into the Bi-LSTM network to capture time
series variations across current and previous sampling peri-
ods in order to predict tool wear. Shah et al. [20] worked on
tool wear prediction in face milling using a singular genera-
tive adversarial network (SinGAN) and an LSTM network.
Firstly, theMorlets wavelets were used to construct the scalo-
gram from the acoustic emissions and vibration signals.Next,
the appropriate wavelet functions were defined using the rel-
ative wavelet energy (RWE). To extract the feature vector,
SinGAN was employed to generate more scalograms, and
then image quality parameterswere extracted to construct the

vector. Finally, the extracted feature vector was used to train
the LSTMmodel to predict tool wear. Different LSTMmod-
elswere used for the sake of comparison: vanilla, stacked, and
Bi-LSTM.

Long short-term memory (LSTM) networks have gained
popularity as a powerful deep learning architecture for
handling sequential data in several industrial engineering
applications [21–23]. This algorithm is adopted in this work
as a prediction model to estimate the RUL of each cutter,
where the extracted HIs are provided to the LSTM network
as inputs. Experimental results show unequivocally the effi-
cacy of the proposed approach.

The remainder of this essay is organized as follows: Sect. 2
provides anoverviewof theEWTtheory alongwith a descrip-
tion of the proposed EWPD, Sect. 3 summarizes the long
short-term memory network principal, Sect. 4 introduces the
2010PHM data set, Sect. 5 describes the proposed procedure
and discusses the acquired results, and finally, Sect. 6 brings
this work to a close.

2 Empirical wavelet packet
decomposition EWPD

This section presents the developedEWPDmethod.Here, the
raw signal spectrum is segmented based on a new segmen-
tation model to acquire a series of demodulation frequency
bands using the theory of EWT.

2.1 Empirical wavelet transform

In 2013, a fully adaptive signal-analysis approach called
empirical wavelet transform (EWT) has been introduced
by Jerome Gilles [24], within the context of non-stationary
signal decomposition. The main objective of this method
is to decompose a signal into several modes to extract
the most useful information that the signal contains. These
modes represent the amplitude modulation-frequency mod-
ulation (AM-FM) components obtained traditionally after
filtering the signal with an adaptive wavelet filter bank.
Traditionally, the wavelet group is built by dividing the
signal’s Fourier spectrum [0, π] into N continuous seg-
ments by identifying local maxima and then taking support
boundaries ωn at the intermediate points between sub-
sequent maxima. An example of the filters is shown in
Fig. 1 [25].

�n = [
ωn−1, ωn

]
denotes each segment, which clearly

demonstrates that UN
n=1 �n = [0, π]. A transition phase Tn

with a width of 2τn is centered around each ωn in the Fourier
axis (Fig. 1 (blue dotted areas)).
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Fig. 1 Empirical wavelet filter bank [25]

The empirical wavelet scaling function and the empirical
wavelets are defined as low-pass and band-pass filters by
Eqs. 1 and 2 [26], respectively.

φ̂n (ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 i f |ω| ≤ ωn − τn

cos

[
π

2
β

(
1

2τn
(ω − ωn + τn)

)]
i f ωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise

(1)

ψ̂n (ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i f ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos

[
π

2
β

(
1

2τn+1
(ω − ωn+1 + τn+1)

)]
i f ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin

[
π

2
β

(
1

2τn
(ω − ωn + τn )

)]
i f ωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise

(2)

To ensure that the aforementioned functions form a tight
frame, the right choice of τn is important. The simplest way
to choose this parameter is to make it proportional to ωn :
τn = γωn where 0 < γ < 1.

β(x) is an arbitrary function defined as follows [26]:

β (x) =

⎧
⎪⎨

⎪⎩

0 i f x ≤ 0

β (x) + β (1 − x) = 1 ∀x ∈ [0, 1]

1 i f x ≥ 1

(3)

The most commonly used function that satisfies these
properties is given by the following:

β (x) = x4
(
35 − 84x + 70x2 − 20x3

)
(4)

Equations 5 and 6 define the approximation and detail
coefficients that are obtained from the inner product of the
processed signal with the scaling and empirical wavelet
functions.

Wε
f (0, t) = 〈 f , φ1〉 =

∫
f (τ ) φ1 (τ − t)dτ (5)

Wε
f (n, t) = 〈 f , ψn〉 =

∫
f (τ ) ψn (τ − t)dτ

=
(
f̂ (ω) ψ̂n (ω)

)∨ (6)

By inverting the EWT, the signal is reconstructed as fol-
lows:

f (t) = Wε
f (0, t) ∗ φ1 (t) +

N∑

n=1

W ε
f (n, t) ∗ ψn (t) (7)

Equation7 shows that the input signal is decomposed into
empirical modes, fk , which are given by the following:

f0 (t) = Wε
f (0, t) ∗ φ1 (t) (8)

fk (t) = W ε
f (k, t) ∗ ψk (t) (9)

2.2 Empirical wavelet packet decomposition

Conventional segmentation models like binary tree [14] and
1/3binary tree proposedbyAntoni [15], shown inFig. 2 a and
b respectively, have an insufficient segmentation accuracy.
Many frequencybands, particularly those around the red lines
in the prior figures, cannot be explored due to subdivision
constraints. Consequently, the signal characteristics are not
fully considered. To overcome this shortcoming, we propose
the EWPD that provides a new segmentation model of the
Fourier axis. This is represented in Fig. 2c.

The EWPD can be explained through the following steps:

1. Introduce the two parameters, the scale h, and the initial
boundary values IBV. h ∈ N

+ controls the number of
wavelet filters constructed byEqs. 1 and 2 using the I BV ,
given in Eq.10, to fix the limit of each segment ωn .

I BV j
h =

(
j

h + 1

)
π

(
Ls

2π

)
(10)
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Fig. 2 Binary tree structure (a), 1/3 binary tree structure (b), and EWPD structure (c)

where j is the boundary index. It is given as j =
[1, 2, 3, ..., h], and Ls is the signal length.
It is worth noting that for a given scale value, let us
take h = 10, a set of I BV is calculated for every
j ∈ (1, 2, .., 10)

2. Adapt the initial set of boundaries to the analyzed sig-
nal by computing some neighborhood, as [I BV j

h −
ε, I BV j

h + ε]. The objective behind this action is to pre-
serve the information contained in the signal, i.e., by
avoiding amplitude attenuation of harmonics in cases
where the computed I BV matches with their frequen-
cies. The neighborhood is chosen to be 20 times the
frequency step, defined as 20 ∗ Ls

Fs
, where Fs is the sam-

pling frequency.
3. Detect the global minima in each neighborhood as

min(FFT ( f (I BV j
h − ε, I BV j

h + ε))), where f is the
processed signal. Then, redefine the boundary ωn at the
corresponding frequency.

The segmentation prescribed in the above steps is illus-
trated in Fig. 3.

4. Build the wavelet filter bank based on the new Fourier
segments. This operation is capable of extracting a pre-
defined number of modes f kh (t) from the signal f (t) in
each level, and thus,

f (t) =
Nm∑

k=1

f kh (t) (11)

k represents the mode reference, and Nm is the total num-
ber of modes in each level, where Nm = h + 1.

3 Long short-termmemory network

Researchers have been exploring deep learning DL tech-
niques recently, owing to their superior performance and

Level 1

Level 2

The enlarged section

2

Local 

minima

Fig. 3 EWPD segmentation for level 1 and level 2
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Fig. 4 Shematic of the LSTM network [28]

efficiency in a variety of fields. Recurrent neural network
(RNN) is one of the deep learning techniques that is specifi-
cally designed for addressing sequential problems, where the
primary objective is to memorize long-term dependencies.
However, throughout long time series, RNNs fail to achieve
their main goal due to the vanishing or exploding gradient
problem. The RNN-LSTM network [27] was developed to
overcome this problem. Unlike classic RNNs, the LSTMunit
is fitted with a cell and a gating system as illustrated in Fig. 4
[28], which control the information flow (cell state, output),
enabling the network to learn from large sequences of data.
The gating unit has three gates: the forget gate, the input gate,
and the output gate.

Based on the input xt and the previous cell’s hidden state
ht−1, the forget gate refreshes the memory cell by altering
the weight of the self-loop cell state in the following way:

ft = σ(W f xt + U f ht−1 + b f ) (12)

As depicted in the equation below, the input gate is in
charge of commanding the information intended for the
memory cell:

it = σ(Wi xt + Ui ht−1 + bi ) (13)

The output gate determines the weight of the LSTM cell
output:

ot = σ(Woxt + Uoht−1 + bo) (14)

The input activation vector updates theweight of themem-
ory cell as follows:

c̃t = tanh(Wcxt + Ucht−1 + bc) (15)

Finally, the cell state of the LSTMunit is updated as estab-
lished in Eq.16, then the unit output is given by Eq. 17:

ct = ft ct−1 + it c̃t (16)

ht = ot tanh(ct ) (17)

where W and U are the input and recurrent weight matri-
ces for the gating unit and the cell respectively. b denotes
the biased vectors of each gate and the cell as well. ft , it ,
and ot represent the forget, input, and output gates activation
vectors. ct , c̃t , and ht indicate the internal cell state which
is the long-term state [29], the cell update, and the current
output which is the short-term state [29], respectively. σ and
tanh are the sigmoid and the tangent hyperbolic activation
functions.

The LSTM network’s previously described gating archi-
tecture provided it with strong learning potential for sequen-
tial problems, making the model adaptable for processing,
forecasting, predicting, and classifying time series data.

4 Experimental setup

This section includes a presentation of the dataset used in
this study as well as the experimental configuration for the
proposed method.

4.1 Dataset details

The high-speed CNCmilling machine platform used to eval-
uate the effectiveness of the proposed method is illustrated
in Fig. 5 [30]. The data is presented on the “prognostic data
challenge 2010” database [31]. In this experiment, a 3-mm
ball nose tungsten carbide end mill (stainless steel, HRC52)
[32] with three flutes was tested. Table 1 lists the cutting
parameters.

The database is constructed using three sensor types. A
Kistler quartz three-axis dynamometer was mounted in the
machining table, to measure the forces induced by the cut-
ting tool in X , Y , and Z directions. Three Kistler piezo
accelerometers were installed in the workpiece to get the
three-axis vibrations generated by the milling process. Last,
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Fig. 5 Dataset collection process for the 2010PHM data challenge [30]

a Kistler acoustic emission (AE) sensor was fixed as well
in the working piece, to get the high-frequency stress wave,
which represents the surface movement of the working piece
in themachining process [32]. Besides, the actual tool’s flank
wears were measured, offline, using a microscope after each
cut cycle. This information serves as a benchmark to evaluate
the predicted RUL. For more details, please refer to [31].

4.2 Experimental configuration

Six identical cutters, whose characteristics are mentioned
previously, submitted to invariant milling conditions were
employed in the experiment. The data set collected is divided
into six records (given as C1 to C6), each of which contains
315 files, indicating the cut cycles for each cutting tool. Each
of these data acquisition files is in the (.csv) format and con-
tains seven channels. Each channel represents a time series
related to a single sensor acquisition for over 200 thousand
acquisition points (different lengths for each cut). Table 2
defines the channels.

As regards the real cutting tool wear measured by the
Microscope, they are available on the experiment platform
[31] for only three of the six cutters used throughout the
milling processwhich areC1,C4, andC6. Subsequently, only
their corresponding recordings were considered for analysis.
Indeed, the wear value is given for each flute after finish-
ing each surface. As the quality of the machined surface

is important, the maximum wear across the flutes is deter-
mined as thewear limit one could safely achieve for any flute.
Figure6 displays the wear after each cut of C1’s flutes, with
the maximum wear highlighted.

5 Methodology, results, and discussion

This section outlines the strategy employed for determining
the cutting tool’s degradation behavior and remaining useful
life. It gives, also, a discussion of the obtained results.

Figure7 illustrates the flowchart of the proposed method,
serving as a visual guide for discussing the subsequent steps:
feature extraction, feature evaluation, selection, and RUL
estimation.

5.1 Feature extraction

Ourmethod’s primary purpose is tomonitor the cutting tool’s
degradation in terms of flank wear. To do that properly, the
data acquisition stage is the first focus, as it is crucial in the
execution of the monitoring. Therefore, the data measured
by the three sensor types was first considered and processed
by the EWPD. For each cutter, i.e., C1, C4, and C6, the mea-
sured signals are decomposed into several modes for a total
of 29 levels. An example of the decomposition is presented
in Fig. 8. Although the level number is user-defined, it is rec-

Table 1 Operating conditions

Spindle speed of cutter Feed rate Radial depth of cut Axial depth of cut Sampling frequency

10,400 rpm 1555mm/min 0.125 mm 0.2 mm 50 kHz/channel
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Table 2 Organization of the data acquisition file

Channel Channel1 Channel2 Channel3 Channel4 Channel5 Channel6 Channel7

Sensor Force(N) Force(N) Force(N) Vibration (g) Vibration (g) Vibration (g) AE-RMS (V)

in X -axis in Y -axis in Z -axis in X -axis in Y -axis in Z -axis

Note: X , Y , and Z represent the axis of the first, second, and third dimensions in the space, respectively

ommended to set it proportional to the sampling frequency.
The higher it is, the more a higher level number can be cho-
sen. In this way, incomplete information coming from the
very narrow-band filters is abandoned.

Following the decomposition, the focus shifts to fea-
ture extraction, aimed at acquiring valuable and meaningful
information about the cutter’s degradation. In this paper, a
new feature extraction scheme is developed and detailed in
Algorithm 1.

The foundational aspects of the algorithm rely on sta-
tistical measures, commonly called time-domain features
(TDFs), calculated for each mode along the 29 levels.
Certainly, using all TDFs may seem impractical for use.
Therefore, only root mean square, standard deviation, and
variance are chosen whose equations are given in Table 3. In
short, starting from the premise that monotonic HIs reflect
more of the cutting tool degradation and especially help the
deep learning model learn quickly and efficiently. The com-
puted features, from the empirical modes, for each cutting
cycle, are stacked in a vector, defined as TF i , from which
we proceed to a clever selection of features of interest. This
is achieved by simply tracking the minimum value in the
vector TFi that is just slightly greater than that in the vector
TFi−1. Figure9 presents the processing results of the acoustic
emission, vibration, and force signals. Figure9 a–c depicts
the RMS-EWPD-derived features. The STD-EWPD-derived
features are represented in Fig. 9 d–f, while the VAR-EWPD-

Algorithm 1 Feature extraction.
Require: Ns : Number of signals

Nl : Number of levels
Ensure: Health Indicator (HI)
1: for i ← 1 to Ns do
2: Initialize the temporal feature vector: TFi

3: for h ← 1 to Nl do
4: for j ← 1 to h do
5: Get ω j

h � as indicated in Section 2.2
6: end for
7: Filter the signal fi using EWT filter bank
8: Precise the number of modes as: Nm ⇐ h + 1
9: for k ← 1 to Nm do
10: Calculate temporal feature: Ak

h
11: Concatenate the result as [TFi , Ak

h] : TFi

12: end for
13: end for
14: if i ⇐ 1 then
15: H I (i) ⇐ min(TFi )

16: else
17: Try: H I (i) ⇐ min(T Fi (TFi > TFi−1))

18: Except: H I (i) ⇐ max(TFi )

19: end if
20: end for

derived features are drawn in Fig. 9 g–i. It can be seen that
the resulting HIs show no random fluctuations and mislead-
ing trends. They exhibit a monotonically increasing behavior
throughout the cutting tools’ lifetime that is easy to model
by LSTM for RUL estimation.

Fig. 6 Wear across cutter 1’s flutes (a). Maximum wear across cutter 1’s flutes (b)
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Fig. 7 Flowchart of the proposed method

5.2 Feature evaluation and selection

When creating a predictive model, it is necessary to reduce
the number of input variables, which helps lower the model-
ing’s computing cost and boosts the model’s performance.
Thus, this step is intended to evaluate the obtained fea-
tures and quantify their performance, to select the most
appropriate sensor results that provide the best presenta-
tion of the cutter’s degradation. To do so, Coble J. B.
[33] has proposed fundamental metrics defining an ideal
prognostic parameter, such as monotonicity M and trend-
ability T . The following equations [34] formalize these

metrics:

M=mean

(∣∣
∣∣
positive (diff(yi ))−negative (diff (yi ))

n − 1

∣∣∣
∣

)

(18)

Where, i = 1, 2, 3, ..., n. n is the length of the indicator y.

T = min
(∣∣corrcoef

(
yi , y j

)∣∣) (19)

where i, j = 1, 2, 3, ...,m. m is the total number of moni-
tored systems.
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Fig. 8 Empirical wavelet packet decomposition process

The term “monotonicity” refers to the indicator’s primary
positive or negative trend [34]. This metric is considered one
of the most precise measures for assessing the efficacy of
the health indicator since the cutting tool’s degradation is
related to wear progression, an irreversible phenomenon. A
suitable condition indicator typically has a monotonic trend
as a system gets closer to failure [35].

Trendability is defined as the degree to which a population
of systems’ parameters have the same underlying shape and
can be characterized by the same functional form [35].

Table 3 Time-domain features

Time-domain feature Equation

Root mean square (RMS)
√

1
N

∑N
i=1 x

2
i

Standard deviation (SD)
√

1
N

∑N
i=1(xi − xi )2

Variance (VAR) 1
N

∑N
i=1(xi − xi )2

Each of these measures would have a value ranging from
0 to 1, with 1 representing an optimal score on that statistic
and 0 denoting that the condition indicator is inappropriate
for the depiction of the component degradation [35].

The results in Tables 4, 5, and 6 reveal that all the extracted
degradation indicators exhibit a fully monotonic trend (M =
1), making them appropriate for representing the degrada-
tion phenomenon. Besides that, trendability results clearly
illustrate that acoustic-emissions-sensor-derived features are
more trendable in all cases, indicating that they are better cor-
related with the progression of the flank wear. Consequently,
acoustic emissions sensor-based results are selected to be
employed for the remainder of this work.

Next, for comparison purposes, the same data was pro-
cessed by the WPT method, and naturally, the resulting
modes are analyzed with the same statistical measures. The
WPT-derived features, represented in Fig. 10, exhibit spuri-
ous fluctuations. The trends are very difficult to model, so
poor RUL estimates are expected. The average values of
monotonicity and trendability for both methods’ health indi-
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Fig. 9 RMS-EWPD features derived from acoustic emission, vibration, and force sensors (a–c), SD-EWPD features (d–f), and VAR-EWPD
features (g–i)

cators are shown in Table 7. Pearson’s correlation coefficient
(r) between the actual wear and HIs is also applied to each
method to indicate themost correlated featureswith toolwear
that are not inflated by other cutting circumstances. The aver-
age value of Pearson’s correlation is presented in Table 7. The
results show that, regardless of cutting parameters, the rec-
ommended features have the strongest correlation with wear
conditions.

Table 4 RMS-EWPD features fitness

Sensor C1 C4 C6
M T M T M T

Acoustic emission 1 0.9894 1 0.9754 1 0.9808

Vibration 1 0.9836 1 0.9732 1 0.9810

Force 1 0.8564 1 0.9156 1 0.9294

Table 5 SD-EWPD features fitness

Sensor C1 C4 C6
M T M T M T

Acoustic emission 1 0.9842 1 0.9614 1 0.9739

Vibration 1 0.9701 1 0.9654 1 0.9729

Force 1 0.8283 1 0.8991 1 0.9276

Table 6 VAR-EWPD features fitness

Sensor C1 C4 C6
M T M T M T

Acoustic emission 1 0.9862 1 0.9282 1 0.9560

Vibration 1 0.8959 1 0.8909 1 0.9254

Force 1 0.6525 1 0.7436 1 0.7965
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Fig. 10 RMS-WPT-derived features (a), SD-WPT-derived features (b), and VAR-WPT-derived features (c)

5.3 Remaining useful life estimation

As the RUL estimation is the major target in this paper, this
section is intended to explain the adopted strategy to deter-
mine the cutting tools RULs using the LSTM network.

Many studies claim to do prognostics by feeding directly
the raw data, usually with a high dimension, into the deep
learning model. But working with such data is difficult
because it can be computationally expensive. In contrast, fea-
ture extractionmay help to reduce the complexity of the data,
eliminate irrelevant and redundant information, andmake the
model focus on the most important information that can con-
tribute to a better RUL prediction.

As shown in Fig. 11, RUL estimation can be summarized
in two main steps:

• Preparing input data for regression using LSTM
• Building the LSTM network

Concerning the input data, six combinationswere explored
to validate the model’s performance and ensure its ability to
generalize to different data distributions. They are explained
in Table 8. Before training, three HIs for each cutter, i.e.,
RMS-EWPD, SD-EWPD, and VAR-EWPD-derived indica-
tors, are stacked into an input matrix of the shape of (315,
3). These data are normalized with the min-max scaler, i.e.,
they are transformed so that they lie in the range [0, 1]. Nor-
malizing data is a pre-processing step that is commonly used
in deep learning. It helps improve the model’s convergence

Table 7 Performance comparison metrics for WPT-derived features
and EWPD-derived features

Method Average value
M T r

WPT-derived features 0.6826 0.9446 0.9133

EWPD-derived features 1 0.9706 0.9731

during training, reduces the risk of overfitting, and improves
the model’s generalization ability. In the case of large data,
it helps to ensure that the model is not biased towards any
particular feature and can learn the relationships between the
features and the target more efficiently [36]. The min-max
scaler is given in Eq.20:

H I scaled = HI − min (HI)

max (HI) − min (HI)
(20)

The LSTMarchitecture is designed to receive input data in
a three-dimensional shape, i.e., the number of samples, time
steps, and features [37]. So that the network can analyze the
input data in the proper sequence and identify patterns in the
data.

The normalized data are reshaped to three dimensions,
specifically (samples, time steps, features), tomatch the algo-
rithm’s requirements. As a result, the inputmatrix is reshaped
to 315, 3, and 1, where the number of rows in the original
input matrix is treated as the sample number, the number of
columns in the same matrix is treated as the number of time
steps, and they are stacked in one feature.

In the second step, the model is built, with comprehensive
architectural specifications provided in Table 9. The weights
of the cell update and the gating unit are adjusted in the train-
ing state using Adam optimizer [38]. For iteratively updating
network weights, this algorithm is employed as a substitute
to typical stochastic gradient descent such as AdaGrad and
RMSProp that keep all weight updates at the same learning
rate [39]. This internal optimization algorithm is known to
be reliable in the selection of hyperparameters [40].

A loss evaluation function is performed after each train-
ing epoch using root mean square error (RMSE). This error
function is typically reserved for regression prediction mod-
els [37], and it is defined as follows:

RMSE =
√√
√√ 1

K

K∑

i=1

(Ri − Pi )2 (21)
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Fig. 11 Diagram of RUL
prediction by LSTM
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where Ri and Pi are the real andpredictedvalues respectively.
The RMSE decreases over the training until obtaining the

best possible fitted results.
The predicted remaining useful lives of the cutters C1, C4,

and C6 by the LSTM network, trained by the proposed HIs,
together with the real RULs are represented in Fig. 12. It can
be seen that the predictions follow a similar pattern as ground
truths and have close correspondence. These results are con-
firmed by comparison with the RULs, estimated by LSTM
and trained with WPT-derived features. The accuracy (Acc)
(Eq.23) metric, the mean absolute error (MAE) (Eq.22), and
the root mean square error RMSE were used for error quan-
tification.

As shown in Table 10, for each cutter, both RMSE and
MAE values appear to be lower by using the proposed
methodology. Since lower values indicate a better fitting of
the ground truth, we can infer that the proposed method-
ology delivers the best results. The accuracy results confirm
ourmethod’s suitability for RULpredictionwith results close
to 1.

MAE = 1

K

K∑

i=1

|Ri − Pi | (22)

Table 8 Training and testing sets configuration

Testing set C1 C4 C6

Training set C4 C6 C1 C6 C1 C4

and

Acc = 1

K

K∑

i=1

exp

(
−|Ri − Pi |

Ri

)
(23)

where Ri and Pi are the real RUL and the predicted RUL
respectively.

6 Conclusion

In this paper, a signal processing approach was introduced,
complemented by artificial intelligence for tracking cutting
tools’ degradation and estimating their remaining useful
lives. The approach, termed empiricalwavelet packet decom-
position, provides a novel segmentation technique of the
signal’s Fourier spectrum, enabling a more comprehensive
exploration of frequency bands. Leveraging these segmented

Table 9 Model architecture details

Layer (type) Parameters

Input layer Input shape (315, 3)

LSTM 256 hidden units

Batch normalization momentum = 0.99, epsilon = 0.001

Activation function Relu

LSTM 64 hidden units

Batch normalization momentum = 0.99, epsilon = 0.001

Activation function Tanh

Dropout Dropout rate of 0.2

Dense 1 unit
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(a) Predicted RUL of C1. Training with : C4 (right), C6 (left)
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(b) Predicted RUL of C4. Training with : C1 (right), C6 (left)
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(c) Predicted RUL of C6. Training with : C4 (right), C1 (left)
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Fig. 12 RUL prediction of cutting tools

sub-bands, a novel and robust health indicator is constructed.
Furthermore, a widespread reference method called WPT
was used for comparison. The observations of this study can
be summarized as follows:

• The proposed EWPDexhibits superior segmentation per-
formance when compared to traditional binary trees and
1/3 binary tree structures, allowing for a more precise
highlighting of the signal’s unique characteristics and
properties.

• The proposed feature extraction scheme, designed to
exploit richer filter banks, yields features that consistently
exhibit a monotonically increasing trend throughout the
entire lifespan of the cutting tools.

• The acoustic-emissions-sensor-derived and selected fea-
tures were found to be better correlated with the pro-

gression of the cutting tool flank wear; thus, they are
considered the HIs.

• The LSTM network was used to learn the HIs and esti-
mate the RULs. The predicted RULs accurately follow
the ground truth patterns, proving the high performance
of the proposed method.

The developments in this paper show that a thorough focus
on feature extraction and selection is important to ensure
the construction of an effective health indicator that is easy
to model. While the proposed method exhibits promising
results, some limitations should be addressed, for example,
the decomposition level in EWPD needs to be adaptively
determined. Moreover, there is a need for conducting addi-
tional experiments across diverse datasets to validate its
generalization.
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