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Abstract
Powder bed fusion is a method of additive manufacturing (AM) where parts are constructed by iteratively melting metal
cross-sections to build complex 3D structures. Defects often form during the printing process, where the dynamics of the
melt pool can directly contribute to the formation of porous defects in the final part. For instance, insufficient overlap of the
produced melt pools can result in unmelted regions of powder, while deep, unstable vapor depression cavities can lead to
spherical voids becoming trapped in the substrate. Therefore, in situ ofmonitoring themelt pool during themelting process can
telegraph the formation of defects and assist the creation of fully dense parts. Here, we augment data-driven-based monitoring
techniques to enable the 3D visualization of the melt pool underneath the surface, based on the melt pool surface temperature
and processing parameters. Specifically, a convolutional neural network (CNN) predicts the topography of the melt pool and
keyhole cavity, based on the surface temperature data near the laser focal point and the nominal operating conditions. The
data for the laser powder bed fusion process used to train the model is produced by full-field simulations of the meso-scale
melting process, with the CFD software FLOW-3D. Data augmentation techniques are implemented to ensure generalizable
performance in cases where the temperature data may be obscured and to ensure sharp, accurate predictions of the melt pool
boundaries.

Keywords Additive manufacturing · Laser powder bed fusion · Convolutional neural networks · Deep learning

1 Introduction

Laser powder bed fusion (L-PBF) is an emerging technology
within additive manufacturing (AM), enabling the construc-
tion of parts with complex geometries. During L-PBF, a heat
source is used to melt and fuse successive layers of metallic
powder. This process allows the user to fabricate parts that
would be difficult to manufacture with conventional methods
and also allows for rapid prototyping [1, 2].

One challenge preventing wider L-PBF adoption in high-
precision applications is the tendency for defects and residual
stresses to form during the melting process [3]. The melt
pool, formed by the instantaneous interaction of the laser
with the substrate, is a crucial determinant of the microstruc-
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tural features, stress distributions, and defect formation in
the printed part. Thus, dynamics of the melt pool and the
properties of the resulting porosity distribution have been
closely studied to establish relationships to the properties
of the manufactured component [4–7]. Additionally, during
high energy density melting, the substrate will vaporize and
exert pressure on the melt pool free surface, creating a vapor
cavity known as a keyhole. If this keyhole is unstable, the
vapor cavity can potentially collapse and trap gas bubbles in
the solidified product [8, 9]. Another defect that can occur
is lack-of-fusion, which occurs when the successive layers
of melt pools do not completely overlap, causing voids of
unmelted powder to remain in the final component [9, 10].

Tomitigate the occurrences of these defects, several meth-
ods for in situmonitoring of themelt pool have been proposed
[11–13]. For instance, X-ray synchrotron imaging allows the
user to visualize the melt pool cross-section with time scale
resolutions on the order of nanoseconds [14]. During X-ray
synchrotron imaging, the L-PBF process is recreated within
the path of an X-ray incident beam, which enables the user

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-12384-z&domain=pdf
http://orcid.org/0000-0002-2952-8576


3048 The International Journal of Advanced Manufacturing Technology (2023) 129:3047–3062

to examine melt pool depth and keyhole morphology dur-
ing the build process [8, 15, 16]. However, these methods
may require extensive modifications to existing machinery
to accommodate the X-ray technology [17]. Thermal cam-
eras have also been implemented to find the temperature of
the material on the powder bed, where large deviations in the
temperature field could indicate that a defect has formed [18,
19]. For instance, specialized high-resolution cameras, such
as recoater-based line cameras, can be used to physically
observe defects that are forming as the part is being made
[20]. These differing monitoring methods can be combined
to provide multimodal streams of information about the melt
pool dynamics [21].

These monitoring methods have enabled large amounts of
data from the melting process to be collected on an ongoing
basis. Therefore, data-driven methods can be leveraged to
discover relationships in the collected monitoring data and
automatically discover correlations between the observed
properties of the build and the probability of defect formation
[22–24]. For instance, Gobert et al. successfully performed
in situ detection of lack-of-fusion pores by extracting the
geometrical features of identified irregularities in the build
image [25]. These geometrical features were used to iden-
tify areas of the build plate likely to form defects, using an
ensemble of support vector machine models. In cases where
manual feature extraction may not be feasible, deep learn-
ing methods have demonstrated promise in automatically
detecting relevant features directly from image data [18, 20,
26]. One common deep learning model for processing sensor
and image information is the convolutional neural network
(CNN), which automatically extracts spatial structure in the
data based on its relevance to the prediction target. To do so,
a CNN learns the patterns within an image via convolutional
filters and assigns weights depending on their importance
[27]. In [28], Snow et al. (2021) predicted the presence of
defects using data collected from in situ monitoring with
CNNs, demonstrating improved generalization capabilities
when presented with new build configurations not present in
the training set.

With this work, we seek to predict the three-dimensional
structure of the keyhole and melt pool, which have both
been shown to have significant impact towards the mechan-
ical performance of the manufactured component [9]. For
instance, Cunningham et al. (2017) show that the stability
of the keyhole cavity geometry can directly indicate whether
pores will form in the finished part [8]. In related work, Tang
et al. (2017) demonstrated that failures of the melt pool to
overlap in three dimensions can lead to pockets of unmelted
powder that result in porosity [10]. In this work, we predict
the three-dimensional topology of the melt pool and keyhole

cavity to generate a visualization of the current state of the
melt pool. By parameterizing these quantities as 2D contour
maps, we bypass the computational expense of training and
predicting in a three-dimensional context, enabling the user
to estimate the morphology of the melt pool below the sur-
face in an on-going manner with a lightweight 2D model
(Fig. 1). To simulate the obscuring of the camera by vapor
and ejected spatter, the model is jointly trained on corrupted
images via data augmentation techniques to avoid overfit-
ting and improve generalization. Finally, the trained model
is deployed on experimental thermal images to examine its
extensibility to in situ monitoring contexts.

2 Methods

2.1 Simulation details

The simulation data for this work was generated by simu-
lating 46 bare plate, single track simulations of Ti-6Al-4V
at varying laser scan speed and power settings. The sim-
ulation duration is 500μs, and snapshots of the melt pool
are recorded at 5 μs intervals for training the model. The
FLOW-3D v11.2 CFD package is used to solve the govern-
ing equations describing the mass, momentum, and energy
transfer present with a volume of fluid (VOF) model [29].
These equations are reproduced below:

∇ · (ρ�v) = 0 (1)

∂ �v
∂t

+ (�v · ∇)�v = − 1

ρ
∇ �P + μ∇2�v + �g(1− α(T − Tm)) (2)

∂h

∂t
+ (�v · ∇) h = 1

ρ
(∇ · k∇T ) (3)

where �g is gravity, α is the coefficient of thermal expansion,
�P is pressure, ρ is the density, �v is velocity, h is the specific
enthalpy, and k represents heat conductivity. The intrinsic
thermal parameters, k,ρ, andCp, are temperature-dependent,
with their behavior referenced from [30] for Ti-6Al-4V. The
variation of density with temperature is modeled with the
Boussinesq approximation [31].

The VOF method is used to define the fluid configura-
tion [32] and simulate the free surface of the material. The
conservation equation for the fluid volume fraction is ref-
erenced in Eq.4. F represents the fraction of the mesh cell
volume occupied by fluid. When F = 0, the cell is consid-
ered a void region, representing the gas phase. To reduce the
computational complexity of the model, the gas dynamics in

123



The International Journal of Advanced Manufacturing Technology (2023) 129:3047–3062 3049

Fig. 1 a In this model, a convolutional neural network (CNN) is used
to map the local surface temperature created to the 3D projection of
the resulting melt pool. The processing conditions (power, velocity) are
combined with the surface temperature (time) and subsequently used
to predict the melt pool depth, D(x, y), at each point on the surface.

This topology map can then be used to reconstruct a realization of the
produced melt pool. b Random transformations are applied to increase
the dataset size, including rotation and noise addition. The amount of
noise added is parameterized by the constant α

this region are not explicitly simulated. Instead, the pressure
that the gas exerts on the free surface is approximated as a
replacement of the gas dynamics.

∂F

∂t
+ (∇F · v) = 0 (4)

The laser beam is defined by a Gaussian distribution,
parameterized by the laser power, P , and the laser beam
radius, r0.

q = P
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The top layer of surface cells is irradiated during simula-
tion, and the corresponding heat flux propagates through the
domain through conduction and convection mechanisms.

During themelting process, the evaporation ofmetal vapor
can cause a keyhole-shaped vapor cavity to form in the melt
pool. This cavity increases the effective absorptivity of the
laser interaction with the melt pool due to reflection effects
inside the cavity [33]. Tomodel this behavior, the dependence
of the absorptivity on the processing conditions is determined
based on a scaling relationship introduced in [34].

This scaling relationship (Eq.6) determines the absorp-
tivity, A as a function of the thermal diffusivity, D, beam
radius, r0, melting enthalpy Hm , and the processing param-
eters. As the heat input of the laser increases, the effects of
multiple reflection due to the keyhole are intensified, and the
absorptivity increases.

A =
(
0.70(1 − e−0.66y)

)
(6)

y =
⎛

⎝
Am PD

πvHmr20

√

Dr20/v

(r0
√
Dr0/v)

⎞

⎠ (7)

The evaporation mechanisms are simulated to model the
influence of the vapor recoil pressure during the melting pro-
cess. The recoil pressure is given by

Ps = aPV exp

{
�Hv

(γ − 1)cvTv

(

1 − Tv

T

)}

(8)

In the above equation, �Hv represents the heat of vapor-
ization, and a represents the ratio of energy exchange
between phases as a fraction of the maximum energy
exchange possible. Additionally, γ represents the ratio of the
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constant pressure and constant temperature specific heats,
Cvap

v is the constant volume heat capacity of the vapor,
and PV and TV are the saturation temperature and pressure,
respectively. The mass loss, Ṁ , due to this evaporation pro-
cess is modeled by the equation below.

Ṁ = a

√
1

2πRT̄
(Psat

l − Pp) (9)

Here, T̄ is the average temperature of the liquid along
the free surface, R is the gas constant, and Pp is the partial
pressure of the metal vapor.

This simulation is solved on a structured Cartesian mesh,
with mesh elements of size 5 μm. A complete list of the
values for material parameters used to simulate the melt pool
behavior can be found in the Appendix, in Table 2.

To generate the surface temperature for a given time-
step of the simulation, the 3D morphology of the surface is
projected to a 2D image.A sample snapshot of the 3D simula-
tion domain is shown in Fig. 2. First, disconnected particles
ejected from the melt pool are removed from the domain.
Then, the temperature of the point closest to the top surface
for each vector, T (xi , y j , z), is selected to be the correspond-
ing point in the surface temperature image, Tsur f (xi , y j ). The
melt depth contour d is generated in a similar manner, storing
for each point, d(xi , y j ), the corresponding depth of the melt
pool. These surface temperatures and depth contours were
defined in a 64 × 64 pixel image, cropped, and centered on
the location of the center of the laser at time t . Each image
contains information for a 320μm by 320μm area around the
center of the laser beam.

2.2 Data augmentation

Due to the computational expense of simulating powder bed
fusion, data augmentation techniques were used to increase
the size of the dataset. Two types of image augmentation are
used to expand the dataset: arbitrary rotations of the surface
temperature map and the addition of a scaled random noise
image to the surface temperature. These rotation transforma-

tions are applied to allow the network to capture the melt
pool depth as the laser travels in different directions. Noise
additions to the input simulate measurement difficulties due
to a physical camera. For the rotation augmentation, the orig-
inal temperature map and the depth field are both rotated in
90 degree increments, such that the dataset consists of 0, 90,
180, and 270 degree rotations from the original image. The
noise augmentation is performed by adding speckled Gaus-
sian noise to the temperature field. This process is described
in Eq.10, where α refers to the strength of the noise relative
to the signal and θ ∼ N (0, 1) is a noise image sampled from
the standard normal distribution. Examples of these augmen-
tations can be seen in Fig. 1b.

Taug = T + αθT (10)

After implementing these augmentations, the size of the
training set was increased by a factor of five. This process
reduces overfitting by increasing the amount of data avail-
able to the model and allowing the model to be generalizable
in cases where experimental measurement difficulties can
obscure the temperature data.

2.3 Model architecture

The CNN model used for this work was created using the
PyTorch auto-differentiation library [35]. A CNN is a type
of neural network that is most commonly used for image
processing and can generally be applied in cases where input
data is defined on a regularly spaced Cartesian grid [27]. The
CNN model applies iterative convolution operations on the
image in order to extract the features of the image most rele-
vant to the prediction target. In this case, once those features
are learned, these are fed into a dense neural network which
predicts the flattened image for the depth of the melt pool.
The pipeline of the model to predict the melt pool can be
seen in Fig. 1a. An important feature of CNN models is that
they are translation invariant, allowing the model to make
accurate predictions even when the subject of the image is
displaced relative to its original position.

Fig. 2 The temperature field
during the laser powder bed
fusion process, as simulated by
FLOW-3D. In this instance, the
laser power is 220 W, the laser
scan speed is 1100mm/s, and
the substrate is Ti-6Al-4V. This
simulation is performed with a
constant mesh element size of
5μm
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The hyperparameters defining the architecture of the
model dictate the performance and convergence properties
of the training process. Therefore, a Bayesian optimization-
based process was used to automatically find the optimal
configuration for the CNN model. During the hyperparame-
ter optimization process, the kernel size and the channel size
of each layer of the model were tuned in order to find the
model with the lowest error on the validation dataset, using
the Python package HyperOpt [36].

In order to increase the ability of the model to correctly
predict the edges of the melt pool, a loss function based
on a binary, thresholded image of the melt pool was imple-
mented during training. This loss function modification was
implemented to apply penalization to cases where melting
was predicted in a zone that was not melted in the ground
truth sample. Implementing this additional term to the loss
function improves the model’s ability to correctly predict the
boundary contour of the melt pool and minimize noise. The
following custom loss function was introduced to improve
the prediction of the melt depth.

L(ytrue, ypred) =
{

(ypred − ytrue)2, ytrue �= 0

C ∗ (ypred − ytrue)2, ytrue = 0.
(11)

3 Results and discussion

3.1 Model configuration

The CNN architecture consists of two blocks of convolution
operations, followed by two fully connected dense layers.
The two convolutional blocks are configured as a convolu-
tional layer followed by a max pooling layer and a dropout
step to reduce overfitting. Both convolutional blocks create
a feature map of 128 channels, with a learned filter of size
5×5. Following the two convolutional layers, the final output
is flattened and fed through two dense layers, with size 4608
and 2048, respectively, to produce themelt pool depth image.
For each layer, the ReLU activation function was used. The
value of C , 4.0, was chosen by selecting the value that mini-
mized the difference between the predicted surface area and
the ground truth surface area on the validation dataset. The
ADAM optimizer was used to trained the model for 1000
epochs with a batch size of 70. Additionally, the training
set is augmented to be five times the size of the original
dataset by applying rotations and noise additions, as seen in
Fig. 1b.

Five-fold cross validation was used to evaluate model per-
formance. During this process, the dataset and labels are split
into five folds, where the model is trained on four folds, and
one fold is reserved to be used as a testing set. This process is
repeated five times, such that each fold is used once as a test-

ing set. Through cross validation, the mean absolute error
(MAE) of the melt depth prediction task is 2.390 ± 0.925
μm, while the MAE with a conventional mean squared error
loss function was 2.776 ± 0.756 μm. This demonstrates that
the implemented loss function yields smaller error values by
emphasizing the importance of the correct prediction of the
melt pool boundaries. Similarly, the MAE on the keyhole
depth prediction task was found to be 0.761 ± 0.15 microns
for the validation dataset.

In order to assess the prediction performance of themodel,
we compare the predicted melt pool depths to the ground
truth melt pool depths. This comparison is taken at different
power and velocity combinations to examine how perfor-
mance may change for different melt pool morphologies.
Based on the images shown in Fig. 3, which describe the 2D
topology images and the cross-section profile in amoving ref-
erence framecentered on the laser, themodel is able to closely
recreate the topology of the melt pool in the ground truth. In
this figure, the isotherm of the temperature distribution at the
melting temperature is also overlaid in black to allow for an
easier qualitative comparison between the ground truth and
predicted topology. This isotherm line is also used to ensure
that the melt pool boundaries are respected from the original
to the prediction. Here, very little magnitude of melt pool
depth is seen outside of the plotted contour, indicating that
the use of the custom loss function is able to successfully
penalize the presence of melt pool outside for the contour.
The predicted melt pool topology is then down-sampled to
the 5-micron resolution of the simulated ground truth in order
to compare the cross-section profiles. From this comparison,
close agreement is observed between the ground truth and
predicted contours.

Figure4 shows a similar result for the time evolution of
a single melt pool. At t = 0.165 ms, the melt pool is con-
centrated near the beam and has not reached the steady state
behavior, as shown in both simulation and the model predic-
tion.At t = 0.33 ms, themelt pool grows, and this elongation
is observed in both the prediction and ground truth cases,
with close agreement also observed in the cross-section plot.
Finally, near the end of the simulation at t = 0.495 ms, the
prediction reflects that the melt pool is fully developed. By
training on the time-dependent temperature distribution, the
model is able to recreate the transient evolution of the melt
pool.

As the keyhole cavity generated during the L-PBF process
can become a significant contributor towards the formation
of void structures in the finished part, we also investigate
the use of this model to predict the surface morphology of
the keyhole region. Cunningham et al. (2017) assert that key
metrics of the shape of the keyhole, such as the keyhole front
and back wall angles, can directly suggest the formation of a
pore or void space [8]. Therefore, the constructed network is
similarly trained on 64×64 pixel snapshots of the tempera-
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Fig. 3 The model is used to predict the melt depth at varying process
parameter regimes, to analyze performance as the energy density of the
temperature input changes. A comparison of the predicted cross section

is made with the ground truth cross section, with the prediction down-
scaled to the same resolution as the mesh used for the ground truth
simulation
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Fig. 4 The model is used to predict the melt depth at varying timesteps during the melt pool transient evolution. A comparison is made between
the predicted cross section and the ground truth cross section

ture distribution with a new target of the keyhole cavity depth
contour.

The keyhole cavity topologymaps for the ground truth and
predictedmorphologies are displayed in Fig. 5 to evaluate the
accuracy of the model for the keyhole depth prediction task.
To enable a visual comparison between the predicted and
target images, a contour line is drawn at a threshold depth of
30μm in the ground truth vapor depression contour map. The

vapor depression prediction task is more challenging than
the melt depth prediction task, due to the rapidly changing
stochastic nature of the keyhole cavity. However, the average
width and length is recreated accurately by the model after
the training process.

The average error for each combination of laser power and
scanning speed found in thedataset is illustrated inFig. 6a and
b for the melt pool depth and keyhole depth prediction tasks,
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Fig. 5 The model is used to predict the keyhole cavity depth at varying
process parameter regimes, to analyze performance as the energy den-
sity of the temperature input changes. A comparison of the predicted

cross section is also made with the ground truth cross section, with the
prediction downscaled to the same resolution as the mesh used for the
ground truth simulation

respectively. The error is maintained within the range of 0–4
μm for all combinations, but shows a tendency to increase
in high energy density scenarios. This increase in the error
associated with the depth prediction task can be attributed to
the higher instability of the melt pool at large energy den-
sities. In Fig. 6c and d, the melt pool and keyhole lengths,
widths, and depths are extracted and compared to the ground

truth predictions. The depth is extracted by finding the maxi-
mum depth in the bounding box studied, while the width and
length are calculated as themajor andminor axes of an ellipse
fitted with the same normalized second moments as the melt
pool contour [within the bounding box]. The extracted val-
ues lie within a correlation R2 of [0.95, 0.996], a promising
indicator that the model proposed is generalizable across the
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Fig. 6 a The mean absolute error on the vapor cavity prediction task
associated with different processing parameters in the dataset. The error
is highest in the limit of high power (P > 400 W) and low velocity (V
< 800mm/s), due to the increased energy density and thus more unsta-
ble behavior of the melt pool. b The mean absolute error on the depth
prediction task, associated with different processing parameters in the

dataset. The error is highest in the limit of high power (P > 400W) and
low velocity (V < 800mm/s), due to the increased energy density and
thus more unstable behavior of the vapor cavity. c The keyhole cavity
dimensions plotted against the ground truth keyhole cavity dimensions.
d The melt pool dimensions plotted against the ground truth melt pool
dimensions

process regimes studied in this work and does not overfit to
a specific area of the process map. However, larger amounts
of error are seen in the vapor depression predictions at high
energies, which is likely due to the increased instability of
the vapor cavity as the melt pool transitions to an unstable
keyhole regime.

The 3D topology of the melt pool can be extracted using
the predicted melt pool depth and keyhole cavity depth con-
tourmaps. From theCNNmodel, a temperature at the surface
input can be converted to a melt depth and vapor depression
depth. Following this process, these twocontours canbe com-
bined on a 3D plot yielding the overall morphology of the
free surface of the melt pool. The vapor depression assists in
predicting the onset of keyhole behavior, while themelt depth

prediction aids in identifying cases where lack of fusion can
occur. This is especially useful in scenarios where the volu-
metric energy density does not necessarily directly translate
to the onset of lack-of-fusion effects. Figure7a demonstrates
the 3D prediction for different power-velocity combinations
at t = 0.25 ms, while Fig. 7b demonstrates the 3D predic-
tion for the same melt pool at different snapshots in time.
The size, shape, and orientation of the melt pool are sim-
ilar across the ground truth and predicted cases, with the
variation occurring within the rapidly fluctuating keyhole
boundary.

Though this model is created based on a numerical model
of the melting dynamics, it can be potentially be extended to
experimental scenarios by using temperature data collected
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Fig. 7 3D reconstructions of themelt poolmorphology predicted by the
model, compared to the ground truth melt pool. a The melt pool ground
truth and predictions for different operating conditions at t = 0.25 ms.

b The melt pool ground truth and predictions at different times during
the simulations at P = 209 W, V = 700 mm/s

through thermography [37]. These thermal images can be
rescaled to match the resolution of the input images used
for training and used for inference on a pre-trained model.
The challenges inherent in extending to an experimental con-
text include sources of error in terms of the measurements
and occlusions preventing the entire melt pool from being
imaged. To address these limitations, an ablation study is run
to study the effect of changing the degree of augmentation
to observe how robust the model is to noise injections. Fig-
ure8a describes the model prediction error on the unseen test
dataset as increasing amounts of noise are added to themodel.

The MAE is much lower on the augmented dataset, as the
model is able to produce more generalizable predictions and
avoid overfitting. Additionally, an ablation study is carried
out in Fig. 8b to determine the optimal configuration of the
loss function based on the error on the predicted melt pool
surface area. The surface area is calculated as the size of the
melt pool footprint viewed from a top-down orientation. The
weighting factor, c, determines the tendency for the model to
prioritize optimizing the melt pool boundaries in relation to
the task of optimizing for the correct melt pool temperature
distribution.
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Fig. 8 aThe prediction performance of themodel trained on augmented
data, as the level of noise increases. The prediction error remains con-
stant for increasing amounts of noise added, until very high values of
noise are added to the inputs. b The prediction performance of the

model based on the relative weight, c, of the term that enforces the
correct melt pool boundary shape. The relative MAE is the normalized
error of the predicted melt pool surface area, imaged from a top-down
vertical orientation

Fig. 9 A comparison of the observed surface temperatures for single
bead SS316L extracted via two-color thermal imaging as described
in [38] to the equivalent surface temperatures extracted from 10μm
FLOW-3D simulations. Agreement is observed for large portions of the
melt pool. a FLOW-3D and experimental measurements taken at P =

150 W, V = 1000mm/s, b FLOW-3D and experimental measurements
taken at P = 300 W, V = 1000mm/s, c FLOW-3D and experimental
measurements taken at P = 450 W, V = 1000mm/s. The error bars on
the experimental data combine the uncertainty in emissivity and signal,
as described in [38]

Fig. 10 The predicted melt pool dimensions within the bounding box compared to the ground truth melt pool dimensions for cases in the SS316L
validation set. The ground truth melt pool dimensions are extracted from FLOW-3D simulations at a mesh element resolution of 10μm
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Table 1 The predicted and
observed melt pool dimensions
at a scan speed of 1m/s, where
experimental thermal images are
used as input to the CNN model

Power (W) 150 300 450

Experimental width (μm) 105 ± 7.98 161 ± 9.00 181 ± 4.62

Predicted width (μm) 110 150 170

Experimental depth (μm) 31.0 ± 3.32 78.9 ± 4.86 155 ± 8.58

Predicted depth (μm) 25 100 134

The experimental widths and depths listed are taken from cross-sections of the solidified melt track, and the
reported error is two standard deviations [38]

To directly evaluate the generalization capability of the
trained model from simulation data to experimental data, we
create a dataset of 340 SS316L simulations, using the pro-
cessing parameters described in the Appendix (Fig. 12). The
parameters and implemented physics used in this FLOW-
3D simulation are optimized to match experimental thermal
measurements, following the process described inMyers and
Quirarte et al. [38]. Notably, the empirical absorptivitymodel
described in Sect. 2.1 is replaced with an angle-dependent
absorptivity estimate based on Fresnel reflection. There-
fore, two parameters are used in this optimization process:
the accommodation coefficient and the Fresnel coefficient.
The Fresnel coefficient parameterizes the amount of energy
absorbed by the melt pool based on the laser angle of inci-
dence, while the accommodation coefficient describes the
rate of heat exchange between phases. The accommodation
coefficient and the Fresnel coefficient can both significantly
alter the relationship between the temperature distribution
of the simulations and the dimensions of the melt pool. For
instance, both parameters influence the vaporization effects
that lead to keyhole formation and convective flows.

The experimental SS316L data used for this comparison
is generated by printing no-powder single-bead tracks on a

TRUMPF TruPrint 3000 L-PBF machine [38]. A Photron
FASTCAM mini-AX200 color camera is used to capture
images of the surface of the melt pool at a frame rate of
22,500 frames per second with a pixel size of 5.6 μm. These
images are converted to temperature measurements at each
pixel through the two-color method, which reduces the mea-
surement’s sensitivity to temperature-dependent emissivity.
Specifically, this technique uses the ratio of the red and green
channel intensities from the color camera. For a detailed
explanation of the experimental methodology, the reader is
referred to [38]. The melt pool dimensions are extracted by
cross-sectioning, etching, and measuring these single-bead
tracks. A comparison between the FLOW-3D data and exper-
imental thermal profiles is reproduced in Fig. 9 for three
sets of processing parameters, where the experimental mea-
surements combine images taken at four different camera
exposure times (1.05 μs, 1.99 μs, 6.67 μs, and 20 μs).

We retrain themodelwith this dataset, decreasing thenum-
ber of channels at each layer by a factor of four to account
for the modified image size. The error metrics following this
model training process are shown in Fig. 10.

Finally, we evaluate the generalization capability of this
trained model to experimental data. To do so, we provide

Fig. 11 a A sample experimental two-color thermal image from a sin-
gle bead SS316L track run at P = 450 W, V = 1000mm/s [38]. b The
predicted melt pool depth contour based on the input thermal image. c

The melt pool depth contour observed in simulation at P = 450 W, V =
1000mm/s, at a mesh element resolution of 10 μm

123



The International Journal of Advanced Manufacturing Technology (2023) 129:3047–3062 3059

the model with experimentally observed two-color thermal
images at processing parameters not encountered in the train-
ing set [38] and compare the predicted melt pool dimensions
to experimental ex-situ measurements of the solidified melt
track (Table 1). This is carried out at laser powers 150 W,
300 W, and 450 W, with the scanning speed held constant at
1m/s. A sample experimental thermal input image is shown
alongside the model prediction and corresponding FLOW-
3D depth contour map in Fig. 11.

There are several differences between the experimental
and simulated data as a direct result of the assumptions of
the simulation and the inherent difficulties in experimentally
observing the small-scale, high-temperaturemelt pool behav-
ior. For instance, the vaporized gas can obstruct areas of the
observed thermal image, and the assumption of the single-
phase interaction between the vapor plume and the melt pool
may not fully capture the variability in the possible ther-
mal signatures [38, 39]. Finally, the laser in the experiment
impacts the build plate at an angle of approximately 20 degree
to accommodate the imaging apparatus [38], which may also
influence the agreement between the simulation and experi-
ment.

4 Conclusion

In this work, we introduce a convolutional neural network
architecture for predicting the 3D structure of the melt pool.
Specifically, we decompose this three-dimensional problem
into a series of 2D models, one trained to predict the vapor
cavity structure beneath the surface and another trained to
predict the melt pool depth beneath the surface. After ana-
lyzing the performance of themodel, the convolutional neural
network can successfully predict the melt depth of the laser
powder bed. Finally, we demonstrate preliminary generaliza-
tion to experimental data, where themodel is able to generate
feasible estimates of the melt pool dimensions based on the
thermal images and processing parameters. With these pre-
dictions and the ability to have a visualization of the melt
pool with just the temperature map and the material proper-
ties, defects that occur due to the structure of the melt pool
can be caught early to reduce the expenses associated with
post-processing or discarding a defective part. However, this
work deals only with the instantaneous prediction of the melt
pool dynamics, without considering the previous history of
the melt pool behavior. Therefore, future work may include
extending thismodel to generalize to cases where the thermal
history of the melt pool affects the geometry of the melt pool,
including layer remelting and geometrical overhangs. Addi-
tionally, this model may also be extended to predict melt

pools in an online manner for monitoring in experimental
contexts, based on in situ two-color thermal images of the
melt pool.

Appendix. Material and processing parame-
ters

Table 2 Material parameters used to simulate the Ti-6Al-4V melting
process

Parameter Value Units

Density, ρ, 298 K 4420 kg/m3

Density, ρ, 1923 K 3920 kg/m3

Specific heat, Cv , 298 K 546 J/kg/K

Specific heat, Cv , 1923 K 831 J/kg/K

Vapor specific heat, Cv,vapor 600 J/kg/K

Thermal conductivity, k, 298 K 7 W/m/K

Thermal conductivity, k, 1923 K 33.4 W/m/K

Viscosity, η 0.00325 kg/m/s

Surface tension, σ 1.882 kg/s2

Liquidus temperature, TL 1923 K

Solidus temperature, TS 1873 K

Fresnel coefficient ε 0.2 -

Accommodation coefficient, a 0.15 -

Latent heat of fusion, �H f 2.86 ×105 J/kg

Latent heat of vaporization, �Hv 6.00 ×104 J/kg

Table 3 Material parameters used to simulate the SS316L melting pro-
cess

Parameter Value Units

Density, ρ, 298 K 7950 kg/m3

Density, ρ, 1923 K 6765 kg/m3

Specific heat, Cv , 298 K 470 J/kg/K

Specific heat, Cv , 1923 K 1873 J/kg/K

Vapor specific heat, Cv,vapor 449 J/kg/K

Thermal conductivity, k, 298 K 13.4 W/m/K

Thermal conductivity, k, 1923 K 30.5 W/m/K

Viscosity, η 0.008 kg/m/s

Surface tension, σ 1.882 kg/s2

Liquidus temperature, TL 1723 K

Solidus temperature, TS 1658 K

Fresnel coefficient, ε 0.15 -

Accommodation coefficient, a 0.25 -

Latent heat of fusion, �H f 2.6 ×105 J/kg

Latent heat of vaporization, �Hv 7.45 ×106 J/kg
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Fig. 12 The processing parameters generated for the SS316L dataset
at a 10 μm mesh resolution, colored by the mean absolute error on the
melt pool depth prediction task
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