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Abstract
This study proposed a new method for predicting tool wear curve over machining time through abscissa stretching or 
compressing based on wear influence factor, which is a tool wear prediction method with universal potential and relatively 
simple modeling and use. In this method, firstly, the relationship model between the tool wear rate and the cutting param-
eters needs to be built, and the wear influence factor can be derived from this relationship model. Then, it needs to record 
the curve of the tool wear value over machining time under a certain cutting parameters through experiments. This curve is 
called the benchmark tool wear curve, and the wear influence factor under these cutting parameters is called the benchmark 
wear influence factor. When the cutting parameters change, it is only required to solve the ratio between the wear influence 
factor under current cutting parameters and the benchmark wear influence factor, then use the ratio to stretch or compress 
the benchmark tool wear curve in the direction of the abscissa, that is the tool wear prediction curve under current cutting 
parameters. In this study, the tool wear curve under cutting parameter V=55m/min,ap=0.08mm/tooth is selected as the 
benchmark tool wear curve, and tool wear curves under cutting parameter V=80m/min, ap=0.12mm/tooth, and V=40m/
min,ap=0.06mm/tooth are accurately predicted. In the cross validation after the replacement of the benchmark tool wear 
curve, the prediction model also shows good prediction accuracy. The comprehensive optimization model of disc milling 
based on the wear influence factor shows that increasing the cutting line speed and reducing the feed per tooth can improve 
the cutting efficiency and reduce tool wear.

Keywords  Tool wear · Model prediction · Influence factor · Scaling ratio

1  Introduction

During machining, it is necessary to maintain the sharpness 
of the cutting edge at all times, but in the actual cutting 
process, due to the coupling effect of cutting force, cutting 
temperature, cutting impact, cutting vibration and cutting 
friction, tool wear is unavoidable. Tool wear will greatly 
affect the cutting efficiency and the surface quality of parts. 
And if tool wears too fast, the blade needs to be replaced 
frequently, which not only prolongs the manufacturing cycle, 
but also increases the manufacturing cost. In addition, when 

the machining accuracy requirements or machining types are 
different, the standard of tool bluntness will also change, so 
it is necessary to know when the tool wear value reaches the 
critical standard for tool change, which requires the ability 
to predict the tool wear. For these reasons, researching the 
mechanism of tool wear and predicting the process of tool 
wear has always been a hot research topic, which is also 
of great significance for optimizing cutting parameters and 
guiding the actual production. Many scholars have studied 
the mechanism and prediction of tool wear and accumulated 
a lot of related achievements.

There are many classic and famous achievements in the 
field of tool wear prediction models. Taylor [1] studied the 
relationship between cutting speed and tool durability in 
1907 and proposed the famous tool durability formula. In 
Taylor’s tool life formula, the exponential power of tool life 
multiplied by the cutting line speed is a constant. Archard 
[2] studied wear behavior based on contact friction theory 
and believed that increasing friction and load would exac-
erbate wear. Colding [3] proposed a tool life model with 
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more parameters, which establishes the relationship between 
tool life, cutting speed, and equivalent chip thickness, tak-
ing into account other factors in the cutting process. These 
factors include tool material, tool shape, temperature, and 
workpiece processing performance. Using this model and its 
complex equations, the consequences of tool wear caused by 
simultaneous changes of multiple cutting conditions can be 
accurately calculated. Usui [4] proposed a tool wear predic-
tion analysis method, which theoretically derived the tool 
wear characteristic equation. Only based on orthogonal cut-
ting data and two wear characteristic parameters, it can real-
ize the prediction of tool wear under various tool shapes and 
cutting conditions in turning. The predicted wear process 
and tool life are in good agreement with the experimental 
results.

Chetan [5] studied the wear mechanism of coated car-
bide tools when machining Ti6Al4V. The results showed 
that adhesive and diffusion wear are the dominating wear, 
and a tool wear model with cutting parameters as variables 
was formulated. In this model, the tool wear is positively 
correlated with cutting parameters which include cutting 
speed, feed rate and depth of cut. The experimental results 
show that the wear model can predict the flank wear under 
gentle cutting conditions. He [6] used 3D force analyzer 
and thermal imager to monitor the mechanical and thermal 
shock loads during machining, and studied the wear evo-
lution process and wear mechanism of cemented carbide 
tools under thermal-mechanical coupling. Through statisti-
cal analysis, the cutting parameters corresponding to differ-
ent wear modes are divided into regions, and the parameter 
region of safe cutting is obtained, which provides a method 
and theoretical reference for the selection of cutting param-
eters. Mao [7] believed that any point of wear on the cutting 
edge will degrade the overall cutting performance of the tool 
and reduce the surface integrity. On this basis, a tool wear 
prediction method considering local wear behavior was pro-
posed. In this method, the wear rate of the cutting edge, the 
wear position, and the change in cutting length are consid-
ered, and the wear of cutting edge at each height is able to be 
predicted by the corresponding wear rate and cutting length. 
This method can be used to predict the value and position 
of the maximum wear on the tool flank. Aline [8] studied 
the tool wear behavior and mechanism in the micromachin-
ing, and believed that compared with the cutting process at 
the macro scale, the bluntness standard of cutting tools at 
the micro scale is different. With micro-tools, even a small 
wear zone can have a dramatic effect on the shear force at 
the entire cutting edge. On this basis, the experimental study 
of micromachining tool wear is carried out, and the Taylor’s 
tool life equation for micromachining is obtained.

Luo [9] studied the relationship between tool flank wear 
and operating conditions during cutting with carbide inserts, 
and combined cutting mechanics simulation results with 

empirical models to establish a tool flank wear rate model 
that can be used to predict the width of the tool flank wear. 
Experimental verification found that cutting speed has a 
greater impact on tool life than feed speed, and the predicted 
results are in good agreement with the measured results. 
Zhang [10] proposed a generalized wear model with adjust-
able coefficients, which considered the mechanism of the 
tool in different wear stages, and divided the entire tool life 
into three main wear areas according to the critical time, cor-
responding to the three main wear types: running-in wear, 
adhesive wear and three-body abrasive wear. The model is 
based on experimental data and refers to other well-known 
wear models to enhance adaptability and generalization. 
Based on this model, a method for predicting tool life was 
proposed and verified. Abhishek [11] developed a pseudo-
analytic model of tool wear to predict wear behavior. The 
model comprehensively considered the hardness of the tool 
coating, workflow stress and the force acting on the tool, 
and realized the estimation of the tool wear value. The pre-
diction model was verified by experiments, and the results 
demonstrated that the prediction model agrees well with the 
experimental results. Chinchanikar [12] developed a flank 
wear rate model that considered wear, adhesion, and diffu-
sion as the main wear mechanisms. The model only needs to 
determine the cutting conditions, the geometry of the tool, 
and the material parameters of the tool and workpiece, and it 
can predict the change of the flank wear value over machin-
ing time. The experimental results are consistent with the 
predicted data. Halila [13] developed a tool wear prediction 
model that considers contact sliding and sticking properties. 
This model is based on analytical methods, including statis-
tical descriptions of particle distribution. In Halila's model, 
adhesive particles are assumed to be conical and embed-
ded in the contact area. Halila believes that the sliding and 
sticking area at the tool-chip and tool-workpiece interfaces 
depend on the evolution of local stress conditions, sliding 
speed, and friction coefficient, and proposed a new abrasive 
wear model to estimate tool life. Laakso [14] proposed a 
new logit-function based model for wear rate, which can 
predict the tool wear at a given cutting speed, feed and at 
any given time within the tool life range, without selection 
the limiting tool wear. The prediction data are in good agree-
ment with the experimental results. Zhang [15] proposed 
a physical model-based tool wear and damage monitoring 
method. Firstly, a physical model of milling force affected by 
tool runout and tool wear was established. Then, a tool wear 
monitoring method was proposed to extract comprehensive 
features from the seven channel specific cutting force coef-
ficient by measuring milling force, spindle box vibration, 
and driving current. In addition, an effective tool breakage 
monitoring method has been proposed, which combines the 
amplitude ratio of multi-channel data to form indicators to 
determine the occurrence of tool breakage. Kamratowski 
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[16] studied a model of tool wear during gear machining. 
Firstly, the influence of process parameters and tool geom-
etry on tool wear was analyzed using simulation software 
BeverCut, and a tool wear prediction model was established 
based on this. The algorithm of the model can be used to 
calculate the maximum chip thickness and solve it along the 
cutting edge of the blade in time and position. In addition, 
the model can also use the chip characteristics to determine 
the force required for elastic workpiece deformation. When 
establishing the wear prediction model, experimental and 
simulation results were combined to calibrate the model 
coefficients through multivariate regression analysis. Zhang 
[17] studied the tool wear model in milling using machin-
ing simulation methods, which can be used to predict the 
tool wear process during cutting. In this model, a tool wear 
model is established based on empirical tool wear data to 
estimate the tool wear value, based on this, the tool wear 
status is dynamically changing in the simulation software 
and can dynamically update the tool geometry structure. The 
experimental results verified the correctness of the tool wear 
simulation process based on the tool wear model.

There are also many scholars who have proposed pre-
diction models of tool wear on the basis of various math-
ematical algorithms and optimization algorithms. LI [18] 
proposed a method for predicting the remaining tool life, 
which based on the tool wear mechanism and the Gauss-
ian process regression model. In this model, based on the 
assumption of progressive tool wear process, the covariance 
matrix of the Gaussian model constrains the predicted value 
at adjacent moments to a linear relationship. In addition, 
in order to enhance the input feature space and output of 
the model, the tool wear mechanism is also considered to 
improve the prediction accuracy. Experimental results show 
that the proposed method can significantly improve the pre-
diction of tool remaining service life. Wang [19] believed 
that the tool wear process and the milling process are very 
complex, and unpredictable disturbances made it difficult to 
accurately predict the tool wear value. Therefore, a Gaussian 
mixture regression model based on cutting force signal is 
proposed to realize the prediction of continuous tool wear. 
This model can improve the filtering effect on interference 
signals. Palanisamy [20] conducted cutting experiments with 
three factors and five levels. The experimental data were 
used to carry out tool wear prediction modeling through two 
methods. The first was to directly perform regression analy-
sis modeling through experimental data. Another was to use 
experimental data to train a feed-forward back-propagation 
artificial neural network model. By comparing the errors 
between the two prediction models and the measured data, 
it was found that the prediction of the neural network model 
is more accurate. Mandal [21] selected machining condi-
tions such as cutting speed, feed rate, and depth of cut as 
input, and modeled the flank wear in the cutting process 

through the back-propagation neural network method. The 
result shows that the convergence of mean square error 
both in training and testing are excellent, and the accuracy 
of the prediction model was verified by experiments. Rao 
[22] proposed a method to estimate tool wear and rough-
ness based on tool vibration when milling Ti-6Al-4V with 
carbide milling cutter. The grey prediction GM (1, N) sys-
tem and support vector machine (SVM) were used respec-
tively. The accuracy of the prediction model was verified 
through experiments. The result shows that the GM (1, N) 
optimization model had higher prediction accuracy. Zhang 
[23] established a tool wear prediction model based on the 
least squares support vector machine (LS-SVM) technol-
ogy. In order to improve the accuracy of the model, the tool 
wear estimation results based on the LS-SVM model were 
updated by using the Kalman filter technique according to 
the measured tool wear values. The resulting model is called 
the LS-KF model and has higher accuracy. An [24] proposed 
a tool wear prediction model combining a convolutional 
neural network (CNN) with a stacked bi-directional and 
uni-directional LSTM (SBULSTM) network, called CNN-
SBULSTM. In addition, a cyber-physical system (CPS) is 
also used in the model, which is used to collect internal 
controller signals and external sensor signals during mill-
ing. Li [25] proposed an integrated deep learning model 
for monitoring tool wear using audio sensors. Using audio 
denoising technology, combined with Fast Fourier Trans-
form (FFT), bandpass filters, and Dependent Component 
Analysis (DCA), tool wear data during the cutting process 
was extracted. Then, train the integrated Convolutional 
Neural Network (CNN) detection model and use different 
algorithms to convert audio signals into audio images. The 
experimental results indicate that this method is very accu-
rate in predicting tool wear values under different cutting 
conditions.

In summary, there have been many excellent researches 
on tool wear prediction, and many useful models have been 
obtained. However, many of them require a large number of 
training samples to improve the accuracy or are only suitable 
for specific machining process. In these models, in order to 
make the prediction results agree well with the experimental 
wear data, the modeling and optimization process are usu-
ally complicated and sensitive to machining conditions. If 
the machining system or conditions changed, some models 
may no longer be applicable. Thus, in order to solve these 
problems, a universal tool wear prediction method needs to 
be built.

The task of this study is to propose a tool wear prediction 
method, which can be used to predict the curve of tool wear 
value over machining time under different cutting param-
eters. The advantage of this tool wear prediction method 
is that it is not limited and constrained by the cutting type, 
cutting process and cutting conditions. As long as the model 
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of tool wear influence factor and the curve of tool wear value 
over machining time under a group of cutting parameters are 
obtained, the tool wear prediction model under any cutting 
parameters can be obtained by stretching or compressing 
the curve along the abscissa direction based on the wear 
influence factor. Therefore, it has the potential for universal 
applicability and is relatively simple to model and use.

2 � Modeling method of tool wear prediction 
model based on wear influence factor

According to the basic tool wear theory [26], the wear pro-
cess can be divided into three stages which include initial 
wear stage, steady wear stage and rapid wear stage, as shown 
in Fig. 1. In the initial wear stage, since the cutting edge is 
new, the tool wear rate is relatively high. After passing the 
initial wear stage, it begins to enter the steady wear stage, 
in which the tool wear rate slows down, the cutting system 

is in a state of equilibrium and stability. When the tool wear 
reaches a certain value, the cutting edge is no longer sharp 
enough, as a consequence, more frictional heat is generated 
at the tool-chip interface,which leads to a dramatic accel-
erationof tool wear. This is the rapid wear stage, the cutting 
edge will become blunt in a short time.

Disc milling is a high-efficiency rough machining method 
for the aero-engine blisk [27] [28]. During the experimental 
research on disc milling tool wear without cooling, the phe-
nomenon can be observed that if the machining equipment, 
cutting tool and workpiece remain unchanged, when differ-
ent cutting parameters are used for machining, the curves of 
tool flank wear value over machining time are very similar 
in shape and trend, as shown in Fig. 2(a). The only obvi-
ous difference is that the wear speed is different. When the 
cutting parameters is V=80m/min, ap=0.06mm/tooth, the 
tool wears quickly, while under cutting parameters V=55m/
min, ap=0.04mm/tooth, the tool wear rate is much slower, as 
shown in the comparison of VB1 and VB2 in Fig. 2(a).

Fig. 1   Three stages of the tool 
wear process
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Fig. 2   Tool wear data of disc milling without cooling. (a) Comparison of VB1 and VB2 (b) comparison between VB2 and VB1 after abscissa com-
pression
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By compressing VB1 along the X-axis, it is found that 
there is a high degree of coincidence with VB2 under a 
suitable compressing ratio, as shown in Fig. 2(b), which 
provides a new possibility for the prediction of tool wear: 
whether as long as recording the tool wear curve under 
a set of cutting parameters, and stretch or compress this 
curve along the X-axis with a specific scaling ratio, so as 
to obtain the tool wear curve under another set of cutting 
parameters. This is the conjecture of tool wear prediction 
model with abscissa stretching or compressing proposed 
in this paper.

One of the most important unknowns in the prediction 
model conjecture is the scaling ratio for stretching or compress-
ing. According to the analysis of the wear curve, the scaling 
ratio is determined by the ratio of the tool wear rate under two 
sets of cutting parameters. Therefore, the key to formulating 
the prediction model is to obtain a model that characterizes 
the relationship between tool wear rate and cutting parameters.

In this paper, a function η(X) is introduced to charac-
terize the relationship between tool wear rate and cutting 
parameters, which is called tool wear influence factor 
function, as shown in Eq. (1).

where X = {x1, x2, ⋯, xn}, which is a set consisting of various 
parameters that affect the tool wear rate during machining, 
each of x1, x2, ⋯, xn represents a different cutting parameter 
variable. When the value of any parameter in X changes, 
η(X) will also change accordingly.

η(X) can be obtained by modeling or regression analysis on 
the basis of tool wear experimental data under different cut-
ting parameters, or obtained by finite element cutting simula-
tion. In addition, an analytical theoretical model of η(X) can 
also be established on the basis of the tool wear mechanism.

A function VB(t) is introduced to represent the curve 
of tool wear value over machining time. According to the 
conjecture proposed in this paper, since η(X) is a factor 
that characterizes the tool wear rate, when the value of 
η(X) changes, the change reflected on the image of VB(t) 
is that the abscissa of the curve will be compressed or 
stretched. The compressing or stretching of the abscissa 
is also equivalent to the shortening or lengthening of tool 
life. When the value of η(X) increases, the abscissa will 
be compressed, otherwise the abscissa will be stretched. 
According to the mathematical properties of function 
abscissa stretching or compressing, the mathematical 
expression of compressing the abscissa by λ times is to 
multiply the independent variable by λ to form a new inde-
pendent variable, as shown in Eq. (2).

(1)�(X) = g
(
x1, x2,⋯ , xn

)

(2)y = f (x)
Compress the abscissa by � times

→ y = f (�x)

When the combination of cutting parameters is Xi, the 
wear influence factor is η(Xi), if the tool wear curve VBi(t) 
under Xi has been obtained through the experimental data, 
when the combination of cutting parameters changes to Xj, 
the wear influence factor is η(Xj), then the tool wear curve 
corresponding to Xj should be compressed by �(Xj)

�(Xi)
 times on 

the basis of VBi(t), that is, replace the independent variable 
t with �(Xj)

�(Xi)
t and substitute it into VBi(t) to obtain the tool 

wear curve VBj(t) under Xj. As shown in Eq. (3).

where Xi is the i-th group of cutting parameters, Xj is the 
j-th group of cutting parameters, λi, j is the scaling ratio for 
stretching or compressing. When λi, j > 1, VBj(t) is obtained 
by compressing the abscissa of VBi(t) by λi, j times, and when 
λi, j < 1, VBj(t) is obtained by stretching the abscissa of VBi(t) 
by 1/λi, j times.

In the same way, if the tool wear prediction model with 
abscissa stretching or compressing proposed in this paper is 
correct, the tool life under different cutting parameters can 
also be directly calculated by wear influence factor. Assum-
ing that the tool life under Xi is Ti, the tool life Tj under Xj 
can be calculated by Eq. (4).

It can be seen that if the above conjecture is verified, it 
will provide a very practical tool wear prediction method for 
related research and actual cutting production. It can quickly 
predict the tool wear value and tool life under a certain cut-
ting parameter, and is not limited by the machining type, 
machining method, workpiece material and tool type, so it 
has good universality and application value.

3 � Modeling of wear influence factor η(X) 
through experiments

The experimental platform in this paper is the disc mill-
ing grooving machine tool. One of the characteristics of 
disc milling grooving is that its cutting width is equal to 
the thickness of the disc tool [28], so the cutting width is 
constant and will not change during the disc milling pro-
cess. Therefore, there are only two cutting variables for disc 
milling, namely, cutting line speed V and feed per tooth ap. 

(3)

⎧
⎪⎪⎨⎪⎪⎩

�(X) = g
�
x1, x2,⋯ , xn

�

�i,j =
�(Xj)
�(Xi)

VBi(t) = f (t)

VBj(t) = f
�
�i,jt

�

(4)Tj = Ti ×
�
(
Xi

)

�
(
Xj

)
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Because of this, it is simpler to solve the relationship model 
between the tool wear rate and cutting parameters than the 
machining methods with multiple cutting variables. The disc 
cutter and the process of disc milling are shown in Fig. 3.

The diameter of the disc cutter body is 420 mm, and it 
has 39 cutter teeth in all. Every three cutter teeth are in a 
group, which are arranged in order of right, middle and left, 
so there are 13 right teeth, middle teeth and left teeth respec-
tively, as shown in Fig. 3(c) and Fig. 4. Blades are installed 
on the disc cutter in a replaceable way, for each blade, four 
cutting edges are symmetrically designed, and each cutting 
edge has circular arc ovlume crumbs slot. The workpiece 
material is TC17 titanium alloy, and the size of each work-
piece is 270×170×50(mm), as shown in Fig. 4(d). The blade 
material is WC-Co cemented carbide, the size of blade is 
12.7×12.7×6 (mm), the rake angle αr of disc milling is 8°, 
as shown in Fig. 4(c) and Fig. 5.

As an efficient roughing method, disc milling has the 
characteristics of high cutting force and high cutting tem-
perature [28, 29]. Therefore, compared with ordinary mill-
ing, the tool wear rate of disc milling is faster, especially in 
the case of poor cooling. In order to be consistent with the 
disc milling processing conditions in the actual production, 
this experiment uses coolant as the cooling method.

In order to obtain an accurate model, this paper will 
derive η(X) through tool wear cutting experiments. The spe-
cific method is to carry out regression analysis on the basis 
of the tool wear experimental data under different cutting 
parameters to obtain the relationship function between the 
tool wear rate and the cutting parameters, then remove the 
factors irrelevant to cutting parameters in the function, and 
the remaining part is the tool wear influence factor η(X). 
After obtaining η(X), carry out the tool wear life experiment, 
and record the curve of tool wear value over machining time 

Fig. 3   Disc milling process, 
disc cutter, the blade and distri-
bution mode
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Disc cutter
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Workpiece Three teeth alternating

a b c

d

Fig. 4   Disc cutter and work-
piece. (a) The overall picture; 
(b) the enlarged view of three 
teeth alternating; (c) the blade 
size (d) the workpiece size
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under a certain set of cutting parameters, which is called the 
benchmark tool wear curve VBs(t). This set of cutting param-
eters is called the benchmark cutting parameters Xs, and the 
tool wear influence factor under Xs is called the benchmark 
wear influence factor η(Xs). When the cutting parameters 
change, it is only necessary to calculate the tool wear influ-
ence factor η(Xp) under the current cutting parameters Xp, 
then calculate the scaling ratio �s,p =

�(Xp)
�(Xs)

 . The tool wear 
prediction curve VBp(t) under the current cutting parameters 
Xp can be obtained by stretching or compressing VBs(t) in 
the direction of the abscissa according to the value of λs, p.

When solving the relationship model between a single 
target and multiple parameters that change continuously, 
when the relationship between the parameters is relatively 
independent and there is no mutual influence or the degree 
of mutual influence is very weak, the multivariate power 
function regression shown in Eq. (5) has good regression 
effect and accuracy.

where SVB(X) is the tool wear rate function, ω, k, m,…, q are 
the power of each cutting parameter variable.

(5)SVB(X) = 10� × xk
1
× xm

2
×⋯ × xq

n

Since there are only two cutting variables for disc mill-
ing grooving, in this cutting experiment, there are only two 
variable parameters in the set X, where x1 is the cutting line 
speed V, and x2 is the feed per tooth ap, as shown in Fig. 5, 
so the regression analysis of disc milling tool wear can adopt 
the binary power function shown in Eq. (6).

Since the cutting width of the disc milling cutter is com-
posed of three adjacent blades, as shown in Fig. 3(c) and 
Fig. 4, there will be a joint in the cutting width of every two 
adjacent blades, and the cutting edge is prone to damage at 
the position of the joint, which is called micro-broken, as 
shown in Fig. 6. Micro-broken can interfere with the meas-
urement of tool flank wear and can affect the cutting ability 
of the cutting edge, and blades with micro-broken will wear 
out faster. It is found that the occurrence of micro-broken is 
related to the position of the blade installed on the disc cut-
ter. Since the disc cutter has 39 positions for installing the 
blade, we can select the position where the cutting edge is 
not easily damaged as the installation position of the experi-
mental blade.

(6)SVB(X) = 10� × Vk × am
p

Fig. 5   Geometric parameters of 
disc milling

Fig. 6   SEM photos of disc mill-
ing tool wear (b)

(c)

(a)

(d) Micro broken
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The width of the even flank wear is used as the meas-
urement value of tool wear in the experiment, and the 
measurement equipment is MIRA3 XMU scanning elec-
tron microscope (SEM), as shown in Figs. 6 and 7. The 
measurement of the flank wear value was carried out by 
taking the average of three measurements.

In the case of only two cutting variables, in order to perform 
power function regression analysis as accurately and compre-
hensively as possible, a two-factor four-level full combination 
cutting test was implemented. According to the milling experi-
ence of titanium alloy TC17 disc milling, the commonly used 
range of cutting linear speed V is 30-90m/min, and the com-
monly used range of feed per tooth ap is 0.06-0.18mm/tooth. 
There are 16 experimental groups in total, and the tool wear 
value VB is measured after cutting for 10 min in each test.

The test groups and tool wear results of Experiment 1 
are shown in Table 1.

Based on Eq. (6), the binary power function regression 
is performed on the experimental data in Table 1, and the 
regression result is ω = 2.4264, k = 0.2972, m = 1.4806, as 
shown in Eq. (7).

Since the machining time of each group in Table 1 is 
the same, the amount of tool wear under a certain group 
of cutting parameters actually represents the tool wear rate 
under this group of cutting parameters. After removing the 
constant factor in Eq. (7), the remaining factor that only 
includes cutting parameters is the wear influence factor 
η(X), as shown in Eq. (8).

(7)SVB(X) = 102.4264 × V0.2972 × a1.4806
p

(8)�(X) = V0.2972a1.4806
p

The image of η(X) can be drawn with Matlab, as shown 
in Fig. 8.

η(X) is positively correlated with the cutting linear speed 
V and the feed per tooth ap, but obviously, the influence of 
the feed per tooth ap is much greater than the cutting linear 
speed V. This result is easier to understand in disc milling 
for the following reasons:

According to the cutting and wear mechanism [29] [30], 
tool wear is positively correlated with cutting temperature 
and cutting force. If the feed per tooth ap is increased while 
the cutting line speed V remains constant, both the cutting 
force and the cutting temperature will increase. If the feed 
per tooth ap is unchanged, only the cutting linear speed V is 

VB

Fig. 7   Measurement of disc milling tool wear

Table 1   Experiment on relationship between tool wear and cutting 
parameters (Experiment 1)

Number of 
test

Cutting linear speed 
V(m/min)

Feed per tooth 
af(mm/tooth)

Tool wear 
value 
VB(μm)

1 30 0.06 11.39
2 30 0.10 24.23
3 30 0.14 39.92
4 30 0.18 57.88
5 50 0.06 13.28
6 50 0.10 28.20
7 50 0.14 46.47
8 50 0.18 67.38
9 70 0.06 14.66
10 70 0.10 31.19
11 70 0.14 51.33
12 70 0.18 74.48
13 90 0.06 15.79
14 90 0.10 33.60
15 90 0.14 55.34
16 90 0.18 80.25

Fig. 8   The image of η(X) 
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increased, and the cutting force will not be affected much. 
As for the cutting temperature, since the disc cutter has 39 
teeth, each tooth only participates in short-term intermittent 
cutting. Although the increase of the cutting linear speed 
will speed up the cutting heat generation, it also shortens 
the time for each tooth to participate in a single cutting, so 
that the cutting edge can quickly pass through the cutting 
area. This reduces the time for cutting heat generation, so 
the increase in cutting temperature of each tooth is limited.

In addition, as shown in Fig. 9, according to the geometric 
characteristics of disc milling, the ratio of the cutting time 
tM of each tooth to the cooling time tC can be calculated by 
Eq. (9).

where H=50mm，R=210mm，so tM
tC

≈
1

25
 . Therefore, even 

with an increased cutting line speed, each tooth has sufficient 
cooling time. Combining the above reasons, it explains why 
the feed per tooth ap has a much greater influence on tool 
wear than the cutting line speed V.

It should be noted that when modeling η(X) in this paper, 
the range of cutting linear speed V is 30-90m/min, and the 
range of feed per tooth ap is 0.06-0.18mm/z. Therefore, when 
using η(X) to predict the tool wear rate under different cut-
ting parameters, the cutting parameters should also be within 
the above range, which is called the effective parameter 
interval XEPI, as shown in Eq. (10).

(9)

{
tM

tC
=

2�w

2�−2�w

�w = arcsin
H

2R

(10)XEPI =
{(

V , ap
)|30 ≤ V ≤ 90(m∕min), 0.06 ≤ ap ≤ 0.18(mm∕tooth)

}

4 � Disc milling tool wear curve prediction 
model and its experimental verification

4.1 � Disc milling tool wear curve prediction model

In order to obtain the benchmark tool wear curve VBs(t) of 
disc milling, it is necessary to select a set of parameters 
as the benchmark cutting parameters Xs, and then conduct 
tool wear experiments under Xs. During the experiment, the 
flank wear value needs to be recorded at intervals, and the 
recorded wear data can be used to draw the tool wear curve, 
which is the benchmark tool wear curve VBs(t).

In this experiment, the cutting tools, workpieces, and 
cooling conditions are all consistent with Experiment 1, and 
the selected Xs is: V=55m/min, ap=0.08mm/tooth. The tool 
flank wear is measured every 20 minutes during machining 
until the wear value exceeds the blunt standard, that is, the 
flank wear reaches 0.3mm [14] [29]. The tool wear measure-
ment data corresponding to Xs is referred to as VBs(M), and 
the experimental results are shown in the Table 2.

Take the machining time t as the abscissa and the tool 
flank wear VB as the ordinate, draw the data of VBs(M) in 
Table 2 into a scattered line chart, as shown in Fig. 10(a).

The polynomial function is used to fit the VBs(M), and it 
is found that the curve obtained by the quartic polynomial 
fitting is relatively consistent with VBs(M), , as shown in 
Fig. 10(b), and the fitting function is exactly the VBs(t), pro-
posed above, as shown in Eq. (11).

(11)
VBs(t) = −40.5845 + 4.7527t − 0.0556t2

+2.8949 × 10
−4 × t3 − 4.8560 × 10

−7 × t4

Fig. 9   Disc milling geometry

Table 2   Tool wear 
measurement data under Xs 
(Experiment 2)

Machining time (min) 20 40 60 80 100 120 140

Flank wear value (μm) 36.23 73.18 103.26 111.05 121.47 129.34 140.29
Machining time (min) 160 180 200 220 240 260
Flank wear value (μm) 158.06 192.31 226.56 257.35 282.72 303.61
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η(Xs) corresponding to VBs(t) is given as:

Choosing a set of parameters as the current cutting 
parameter Xp within the effective parameter interval XEPI, 
and its corresponding wear influence factor is η(Xp), then 
the scaling ratio λs, p can be given as:

After the expression of λs, p is obtained, the tool wear 
curve VBp(t) under Xp can be predicted by the tool wear 
prediction model proposed in this paper, as shown in Eq. 
(14), which is the final form of the TC17 titanium alloy 
disc milling tool wear curve prediction model.

4.2 � Experimental verification of disc milling tool 
wear curve prediction model

Two sets of cutting parameters Xp1 and Xp2 are selected 
for the verification experiment, where Xp1 is V=80m/
min,ap=0.12mm / tooth,  and Xp2 is  V=40m /min, 
ap=0.06mm/tooth. η(Xp1) and η(Xp2) are given as:

(12)�
(
Xs

)
= 550.2972 × 0.081.4806 = 0.0782

(13)�s,p =
�
(
Xp

)

�
(
Xs

) =
�
(
Xp

)
0.0782

(14)

VBp(t) = −40.5845 + 4.7527

(
�
(
Xp

)
0.0782

t

)

−0.0556

(
�
(
Xp

)
0.0782

t

)2

+ 2.8949 × 10
−4

×

(
�
(
Xp

)
0.0782

t

)3

− 4.8560 × 10
−7 ×

(
�
(
Xp

)
0.0782

t

)4

(15)�
(
Xp1

)
= 800.2972 × 0.121.4806 = 0.1593

λs, p1 and λs, p2 are given as:

According to Eq. (14), the function expressions of 
the tool wear prediction curve under Xp1 and Xp2 can be 
obtained, as shown in Eq. (19) and Eq. (20).

Except for the different cutting parameters, the experi-
mental conditions of the verification experiments under 
Xp1 and Xp2 are exactly the same as those of Experiment 
2. Since the value of η(Xp1) is about twice that of η(Xs), it 
is guessed that the tool wear rate under Xp1 will be much 
faster than that under Xs, so the measurement interval of 
the flank wear value of Xp1 is changed to every 10 min-
utes. Similarly, the value of η(Xp2) is much smaller than 
that of η(Xs), , it is guessed that the tool wear rate under 
Xp2 will be slower than that under Xs, so the measure-
ment interval of the flank wear value of Xp2 is changed 
to every 30 minutes.

(16)�
(
Xp2

)
= 400.2972 × 0.061.4806 = 0.04646

(17)�s,p1 =
�
(
Xp1

)

�
(
Xs

) =
0.1593

0.0782
= 2.0371

(18)�s,p2 =
�
(
Xp2

)

�
(
Xs

) =
0.04646

0.0782
= 0.5941

(19)

VBp1(t) = −40.5845 + 4.7527

×(2.0371t) − 0.0556 × (2.0371t)2 + 2.8949

×10−4 × (2.0371t)3 − 4.8560 × 10
−7 × (2.0371t)4

(20)

VBp2(t) = −40.5845 + 4.7527 × (0.5941t)

−0.0556 × ×(0.5941t)2 + 2.8949

×10−4 × (0.5941t)3 − 4.8560 × 10
−7 × (0.5941t)4

Fig. 10   Data line chart of 
VBs(M). (a) Line chart; (b) line 
chart and its fitting curve

1838 The International Journal of Advanced Manufacturing Technology (2023) 129:1829–1844



1 3

The tool wear measurement data corresponding to Xp1 is 
referred to as VBp1(M), and the experimental results under 
Xp1 are shown in Table 3.

The tool wear measurement data corresponding to Xp2 is 
referred to as VBp2(M), and the experimental results under 
Xp2 are shown in Table 4.

The benchmark tool wear curve VBs(t), the tool wear 
prediction curve VBp1(t) under Xp1, and VBp2(t) under Xp2 
are all drawn in Fig. 11(a). In this figure, the relationship 
between VBs(t), VBp1(t) and VBp2(t) can be observed intui-
tively. According to the principle of function stretching 
and compressing, since λs, p1>1, VBp1(t) is the result of 

Table 3   Tool wear 
measurement data under Xp1 
(Experiment 3)

Machining time (min) 10 20 30 40 50 60 70

Flank wear value (μm) 38.54 72.69 108.27 119.14 127.52 137.88 150.36
Machining time (min) 80 90 100 110 120 130
Flank wear value (μm) 173.73 193.58 239.81 261.17 290.79 315.58

Table 4   Tool wear 
measurement data under Xp2 
(Experiment 4)

Machining time (min) 30 60 90 120 150 180 210

Flank wear value (μm) 34.35 80.91 99.76 106.30 111.24 119.55 134.72
Machining time (min) 240 270 300 330 360 390 420
Flank wear value (μm) 152.59 173.46 185.28 226.55 254.29 288.33 309.86

Fig. 11   Comparison of tool wear prediction curves with experimental measurement data
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compressing the abscissa by λs, p1 times on the basis of 
VBs(t). And λs, p2<1, so VBp2(t) is the result of stretching 
the abscissa by 1/λs, p2 times based on VBs(t).

VBs(M), VBp1(M), and VBp2(M) are actual measure-
ment data of tool wear over time, corresponding to cut-
ting parameters Xs, Xp1, and Xp2 respectively. Draw the 
line graphs of the three in Fig. 11(b), it can be seen that 
the positions, shapes, and trends of the three are almost 
consistent with the three curves in Fig. 11(a).

Figure 11(c) and (d) compared the tool wear prediction 
curve with the actual measurement data more intuitively, 
and found that both VBp1(t) and VBp2(t) have a very high 
consistency with the actual tool wear measurement data, 
which shows that the prediction results are accurate and 
reliable. Therefore, the abscissa stretching and compress-
ing tool wear prediction model based on tool wear influ-
encing factors proposed in this paper is effective.

In addition, the tool life prediction model proposed in 
this paper is directly derived on the basis of the tool wear 
influence factor and the tool wear prediction curve model. 
Therefore, when the latter two are verified by experiments, 
the tool life prediction model is naturally verified.

4.3 � Method flowchart of establishing the tool wear 
prediction model

In order to more clearly describe the modeling process and 
method, Fig. 12 shows the modeling steps of the tool wear 
prediction model with abscissa scaling based on wear influ-
ence factor through flowchart.

4.4 � Cross‑validation of the prediction model

When establishing the tool wear prediction model in this paper, 
the selection of the benchmark tool wear curve is arbitrary. 
Therefore, in order to verify the effectiveness of the prediction 
model, the selection of the benchmark tool wear curve needs to 
be replaced for cross validation, so as to prove that the arbitrary 
selection of the benchmark tool wear curve will not affect the 
effectiveness of the tool wear prediction model.

In this cross-validation, the tool wear curve under cutting 
parameter Xp2 (V=40m/min, ap=0.06mm/tooth) is selected as 
the second benchmark tool wear curve, and the polynomial 
function is also used to fit it, then the expression of the second 
benchmark tool wear curve VBp2, s(t) can be obtained as follows:

Fig. 12   Method flowchart of 
establishing the tool wear pre-
diction model
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VBp2, s(t) and the corresponding tool wear measurement 
data VBp2, s(M) are shown in Fig. 13(a).

According to the prediction model proposed in this paper, 
when the cutting parameter is Xs(V=55m/min, ap=0.08mm/
tooth), the corresponding scaling ratio �p2,s = �(Xs)

�(Xp2)
= 1.6832

，then 

the tool wear prediction curve VBs, p2(t) can be obtained by com-
pressing VBp2, s(t) λp2, s times in the abscissa direction, as shown 
in Eq. (22).

And when the cutting parameter is Xp1(V=80m/
min,ap=0.12mm/tooth), the corresponding scaling ratio 
�p2,p1 =

�(Xp1)
�(Xp2)

= 3.4288
，then the tool wear prediction curve 

VBp1, p2(t) can be obtained by compressing VBp2, s(t) λp2, p1 
times in the abscissa direction, as shown in Eq. (23).

VBp2, s(t), VBp1, p2(t) and the corresponding tool wear 
measurement data VBp2, s(M), VBp1, p2(M) are shown in 
Fig. 13(b).

It can be found that in the cross-validation after the replace-
ment of the benchmark tool wear curve, the predicted tool wear 
results still match the actual tool wear measurement data very 

(21)

VBp2,s(t) = − 24.2614 + 2.5584

t − 0.0182t2

+ 5.7520 × 10
−5 × t3

− 5.7830 × 10
−8 × t4

(22)
VBs,p2(t) = −24.2614 + 2.5584 × (1.6832t) − 0.0182 × (1.6832t)2+

5.7520 × 10
−5 × (1.6832t)3 − 5.7830 × 10

−8 × (1.6832t)4

(23)

VBp1,p2(t) = −24.2614

+2.5584 × (3.4288t) − 0.0182 × (3.4288t)2

+5.7520 × 10
−5 × (3.4288t)3 − 5.7830

×10−8 × (3.4288t)4

well, which proves that the arbitrary selection of the benchmark 
tool wear curve will not affect the effectiveness of the tool wear 
prediction model proposed in this paper.

4.5 � Optimization of cutting parameters based 
on prediction model

According to actual production needs, the optimization goal of 
disc milling is not only to reduce tool wear, but also to improve 
cutting efficiency. Cutting efficiency is generally character-
ized by material removal rate, and the expression for material 
removal rate Q during disc milling can be given as:

where Vf is the feed speed, H is the thickness of the work-
piece, and ae is the thickness of the disc cutter. According to 
the cutting characteristics of disc milling, there is a relation-
ship between feed speed Vf, feed per tooth ap, and cutting 
line speed V as shown in Eq. (25):

So the expression for material removal rate Q can be 
given as:

where the left part 13×H×ae

1000×2�R
 is a constant.

A function ηop(X) is introduced to characterize the 
comprehensive optimization of disc milling cutting, as 
shown in Eq. (27).

(24)Q =
Vf × H × ae

1000

(25)Vf = 13 ×
V × ap

2�R

(26)Q =
13 × H × ae

1000 × 2�R
× V × ap

Fig. 13   Comparison of tool wear prediction curves with experimental measurement data in cross-validation
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According to Eq. (26), the numerator V × ap of Eq. (27) rep-
resents the material removal rate, that is, the cutting efficiency, 
and the denominator η(X) is the characterization factor of tool 
wear rate. Obviously, when ηop(X) takes the maximum value, the 
comprehensive cutting effect is optimal, because in this case, the 
cutting efficiency is high and the tool wear speed is slow.

ηop(X) can be given as:

The image of ηop(X) is shown in Fig. 14.
In this paper, the tool wear prediction model of disc mill-

ing is established based on the tool wear influence factor η(X). 
Therefore, when the tool wear prediction model is verified, it is 
equivalent to the tool wear influence factor η(X) being verified. 
The comprehensive optimization function ηop(X) of disc milling 
is directly derived from η(X), so it is also verified.

According to Eq. (28) and Fig. 14, it is obvious that the 
cutting line speed V is positively correlated with ηop(X), 
while feed per tooth ap is negatively correlated with ηop(X). 
Therefore, when comprehensively optimizing the cutting 
efficiency and tool wear of disc milling, the cutting line 
speed should be increased and the feed per tooth should be 
appropriately reduced.

5 � Discussion

5.1 � Effective interval of independent variable 
of the prediction model

It should be noted that since VBs(t) is obtained by polyno-
mial fitting, one of the characteristics of polynomial fitting is 

(27)�op(X) =
V × ap

�(X)

(28)�op(X) =
V × ap

V0.2972a1.4806
p

= V0.7028a−0.4806
p

that within the sample interval of the independent variable, 
the fitting value and the actual value are very consistent. 
However, outside the sample interval of the independent 
variable, there may be a very large deviation between the 
fitting value and the actual value. Since VBp1(t) and VBp2(t) 
are obtained by compressing or stretching VBs(t) in the 
direction of the abscissa, when using VBp1(t)or VBp2(t) to 
predict the tool wear curve, the valid interval of the cor-
responding independent variable will also be limited by the 
sample interval of the independent variable of VBs(t). Define 
the sample interval of VBs(t) as ts, the effective interval of 
the independent variable of VBp1(t) as tp1, and the effec-
tive interval of the independent variable of VBp2(t) as tp2. 
From the data sample of Experiment 1, it can be seen that 
ts = {t| 20 ≤ t ≤ 260(min)}. Then according to the character-
istics of the function compressing or stretching, tp1 and tp2 
can be given by:

5.2 � Error analysis of the prediction model

When the tool wear curve under cutting parameter 
Xs(V=55m/min, ap=0.08mm/tooth) is selected as the bench-
mark wear curve, by comparing the actual tool wear meas-
urement data with the prediction results and calculating the 
relative error, it is found that when the cutting parameter is 
Xp1(V=80m/min,ap=0.12mm/tooth), the prediction relative 

(29)

tp1 =

{
t| 20

�s,p1
≤ t ≤

260

�s,p1
(min)

}
= {t|9.82 ≤ t ≤ 127.63(min)}

(30)

tp2 =

{
t| 20

�s,p2
≤ t ≤

260

�s,p2
(min)

}
= {t|33.66 ≤ t ≤ 437.64(min)}

Fig. 14   The image of ηop(X) 

Table 5   Repetitive error experiments

Machining time 
(min)

Flank wear value (μm)

Repeat test 1 Repeat test 2 Repeat test 3

20 36.23 35.47 36.31
40 73.18 71.74 73.66
60 103.26 101.45 102.80
80 111.05 110.82 112.97
100 121.47 119.59 123.06
120 129.34 127.90 131.23
140 140.29 138.67 141.45
160 158.06 155.95 157.30
180 192.31 188.24 190.28
200 226.56 221.70 224.12
220 257.35 253.41 260.63
240 282.72 277.38 285.10
260 303.61 299.56 306.72
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error is between 0.93% and 8.63%. When the cutting param-
eter is Xp2 (V=40m/min, ap=0.06mm/tooth), the prediction 
relative error of the first two data in the initial wear stage 
is slightly larger, which may be caused by the instability of 
tool wear in the initial wear stage, but from the third data, 
the prediction relative error is all within 5%.

In the cross validation of the prediction model, the 
prediction results are also accurate. When predicting the 
tool wear curve under cutting parameters Xs and Xp1, only 
the first two data in the initial wear stage have a slightly 
larger prediction relative error. From the third data, the 
relative error is all within 5%. Therefore, the selection of 
the benchmark tool wear curve will not affect the accuracy 
and effectiveness of the tool wear prediction model pro-
posed in this paper.

In addition, in order to verify the repetitive error of tool 
wear in disc milling, repeated cutting experiments were car-
ried out when the cutting parameter was Xs. The experimen-
tal result shows that when the cutting conditions, cutting 
parameters, and the installation position of the blade are all 
the same, there is a high degree of consistency between tool 
wear curves in the repeated cutting experiments, and the 
repeated error is within 3%, as shown in Table 5. Therefore, 
it can be believed that the impact of repeated error on the 
accuracy of the prediction model proposed in this paper can 
be ignored.

6 � Conclusion

This study proposed a tool wear prediction model with 
abscissa stretching or compressing based on wear influence 
factor. In this model, the tool wear prediction curve under 
current cutting parameters can be obtained by stretching or 
compressing the benchmark tool wear curve in the direc-
tion of the abscissa according to the scaling ratio, which 
is the ratio between the wear influence factor under cur-
rent cutting parameters and the benchmark wear influence 
factor. The tool wear curve prediction method proposed in 
this paper does not depend on a specific cutting equipment 
and specific cutting condition, it is a prediction method 
with universally applicable potential, which can be applied 
to various cutting scene: different machine tools, different 
tools, different workpieces, and different cutting condi-
tions can all use the method proposed in this paper to pre-
dict the tool wear curve.

In the experimental verification of the prediction model, 
the accuracy and reliability of the tool wear prediction 
model proposed in this paper are verified. Except for a 
small number of prediction results that have certain devia-
tion from the experimental data in the initial wear stage, in 
other wear stages, the relative error between the prediction 
results and the actual tool wear measurement data is within 

5%. In addition, in the cross-validation after the replace-
ment of the benchmark tool wear curve, the prediction 
model still showed good prediction accuracy and effective-
ness, which indicates that the selection of the benchmark 
tool wear curve can be arbitrary and will not affect the 
effectiveness of the tool wear prediction model proposed 
in this paper.

According to the disc milling comprehensive optimiza-
tion function derived from the prediction model, when com-
prehensively optimizing the cutting efficiency and tool wear 
of disc milling, the cutting line speed should be increased 
and the feed per tooth should be appropriately reduced.

The benchmark tool wear curve in this study was fitted 
using a polynomial function, so it is necessary to pay atten-
tion to the effective interval of the independent variable 
when using this prediction model. Due to the characteristics 
of polynomial function fitting, outside the effective interval 
of the independent variable, the predicted data of the model 
will quickly deviate from the actual results. Therefore, before 
using this prediction model, it is necessary to determine the 
effective independent variable interval of the prediction 
model according to the method provided in this paper.
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