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Abstract
In order to obtain miniaturised products, additive manufacturing (AM) combined with micromachining presents a great
potential on reducing manufacturing costs and material waste. The machinability of metals in general is well known for
conventional machining processes. However, for micromachining processes, there are still gaps regarding the material’s
behaviour. Likewise, the machinability of materials obtained by additive manufacturing still needs to be investigated. In this
context, the present work aims to compare the micromilling process of an additive manufactured Ti6Al4V alloy produced by
laser powder bed fusion (LPBF) and a commercial wrought Ti6Al4V alloy. The samples were examined through scanning
electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and Vickers hardness measurements. No statistical
differences were obtained when comparing the machining forces, burr formation, and surface roughness when micromilling
the AM and wrought alloys. It was observed that the minimum chip thickness was not achieved in the experiments with
higher tool diameter and lower feed per tooth, which led to a different workload on each edge of the tool. Better surface
roughness was obtained in the combination of higher cutting speed and lower tool diameter. The experiments with lower
material removal rate led to higher burr formation. From these analyses, it is possible to better understand the machinability
of the Ti6Al4V alloy produced by AM.
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1 Introduction

Micromilling is an important machining process that pro-
duces components with high dimensional and geometrical
accuracy and good surface finishing for distinct applications.
This process is applied across the aerospace, biomedical,
electronics, and automotive industries, enabling the man-
ufacturing of small and complex geometries using various
materials [1, 2]. Therefore, these industries directly benefit
from thedevelopment of thismanufacturingprocesses,which
continually establishes new and innovative applications over
the years [3, 4].

In general, micromilling differs from the conventional
milling process by the dimensions of the cutting tools used,
as defined by Aramcharoen et al. [5] and Câmara et al. [6],
who determine the diameter of microtools ranging from 1 to
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1000 μm. For Masuzawa [7], the term “micro” is related to
quantities that vary from 1 to 999μm. Other researchers also
define this process based on the values of the chip thickness
used, Ng et al. [8] defined that the chip thickness varies from
10 nm to 2 μm. Thus, it can be seen that there is no con-
sensus regarding the definition of micromilling. This is due
to the considerable scale reductions present in micromachin-
ing processes, which cause specific phenomena, explained
by the size effect [9].The size effect occurs when the section
thickness becomes comparable to the radius of the cutting
edge and the grains of the machined surface. Thus, the cut-
ting thickness, the cutting edge radius and the grain size of
the machined material have great influences on the cutting
process [4].

Therefore, due to the scale effect, in micromachining the
cutting edge radius cannot be neglected as in macroma-
chining, since it can be comparable to the grain size of the
machined material [10]. In this condition, the edge cutting
round of the microtool will be able to remove material in just
one grain. The cutting thickness is also comparable to the
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tool’s cutting edge radius [6]. For chip formation to occur
in micromachining, it is necessary that the thickness of cut
has a minimum value. If the thickness is less than the min-
imum, friction and ploughing phenomena may occur until
the cutting thickness reaches the minimum value for chip
formation [4].

Another commonmanufacturing process applied in indus-
try is powder bed fusion (PBF) [11]. PBF is an additive
manufacturing (AM) technique used to produce 3D parts
with optimised topology using thermal energy provided by
electron or laser beams that selectively melt and fuse the
material in a powder bed [12]. Among the advantages of
this process, its better use of raw material, waste reduction,
and near net shape production of components can be high-
lighted [13, 14]. However, parts additively manufactured by
PBF present high surface roughness, low dimensional and
geometric accuracy, and high residual stresses [11]. For these
reasons, post-processing techniques are required to achieve
the dimensional and geometrical tolerances, surface quality
and the desired mechanical properties of a part.

Currently, micromachining processes are being used as
post-processing techniques for partsmanufactured byAM. In
this way, one part can be designed in its near net shape form,
then machined to achieve its established surface roughness
anddimensional tolerances [15]. In addition, the combination
of micromachining processes with AM is cost-effective [16,
17] as it reduces the amount chips generated and min-
imises the use of cutting fluid, and therefore, contributes to a
lower environmental impact than if compared to machining
itself [1, 16, 17].

In the area of micromilling titanium alloys, Carou et
al. [18] made a review classifying works regarding surface
quality, cutting tools, lubrication systems, simulation and
process monitoring and optimization. Biermann et al. [19]
addressed the micromilling of complex shapes and its impor-
tance for medical applications. Willert et al. [20] stated that
the hardness of titanium alloys is an important parameter that
affects cutting force and surface finishing in micromachin-
ing. Lv et al. [21] concluded that the main wear mechanisms
during micromilling titanium alloys are adhesion and abra-
sion, due to this material hardness, low thermal conductivity
and reduced resistance in higher temperatures. In addition,
Pratap et al. [22] stated that the interaction between tool and
workpiece requires new studies due to the miniaturization of
both parts.

Later, Balázs et al. [23] published an extensive review
on the recent advances and future trends on micromilling.
The authors concluded that the application of micromilling
for producing 3D parts faces many challenges, such as: tool
wear, that leads to inappropriate machined surfaces and tool
breakage; burr formation, which is difficult to remove; unex-

pected vibration modes, that often leads to tool breakage. In
addition they mentioned that this process is difficult to pre-
dict due to the size effect and difficulty to monitoring due to
the relatively small forces and measures.

Even though many research ([18–22]) are found in the
micromilling area, and the majority of them focus on
micromilling titanium alloys (18.5% of the papers accord-
ing to Balázs et al. [23]), only few research was found in
micromilling additive manufacturing Ti6Al4V alloy grade
23 produced by PBF. In this area, Campos et al. [15] made
a comparison on the machinability of commercial and AM
workpieces, for this purpose, the cutting forces, surface
roughness, burr formation analysis and microchips morphol-
ogy were analysed. However, the variation of cutting speed
was not analysed in their work, which has a major influence
on the processmechanics, as a smaller cutting speedmay lead
to higher burr formation, which is undesirable in machining
processes [24, 25]. In their work, the authors found that the
cutting forces were lower for the AM sample and surface
roughness behaviour was similar for theAMand commercial
workpieces. Abeni et al. [26] also made a research compar-
ing the micromachining of conventional and PBF samples
by measuring the surface roughness and cutting force out-
comes. The authors adopted cutting speed values from 30
to 50m/min; however, the printing strategies adopted by the
authors for the PBF process significantly differ from what
was used in the present work. This can significantly change
the micromilling results, as the consolidation process of the
melted material changes. In their results, the authors found
that the surface roughness of the samples was dependent on
the sample fabrication technique, where samples manufac-
tured through PBF presented better surface roughness [26].
As it canbenoticed, the results vary fromonework to another,
which implies that more studies should be carried out in
order to better understand the mechanics of cutting of the
micromilling process.

In this perspective, this work aims to contribute to the
investigation of the micromilling process outcomes for the
Ti6Al4V alloy produced by LPBF. In that regard, the main
objective of this work was to compare the forces, surface fin-
ishing and burr formation when micromilling a commercial
wrought sample and an additive manufactured sample. Both
samples were made of Ti6Al4V alloy grade 23, which is a
material with lower interstitial elements widely applied in
dentistry and medical industries [27]. In the present work,
the printing strategy adopted an interlayer rotation of 67°
in order to achieve optimum spacing between the angles
during the AM process [28]. Thereby, for the set of param-
eters applied, the main differences on the micromilling
process results for the AM and commercial alloy are
described.
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2 Materials andmethods

2.1 Samples manufacturing and characterisation

Two different types of samples were used for the exper-
iments: commercial and additive manufactured ones. The
commercial sample was a wrought Ti6Al4V alloy, and the
AM samples were made from Ti6Al4V powder with an aver-
age particle size of 43.5 μm through the Laser Powder Bed
Fusion (LPBF) process. TheAMsamplesweremanufactured
in a 3D-printer OMNISINT-160 (Fig. 1a), using a Ytterbium
fibre laser in an Argon atmosphere. The AM strategy applied
was of a sequential sweeping band of 5mm and an interlayer
rotation of 67◦ (Fig. 1b). No heat treatment was performed
in the AM sample before the micromilling experiments.

The samples microstructures were analysed with a scan-
ning electron microscope (SEM) after a Keller’s reagent
etching, and anEDSanalysiswas performed in order to check
their chemical composition [29]. Figure2a and c show the
samples backscattered electron’s image (×2000 augmenta-
tion) and its EDS analyses for the commercial sample, and
Fig. 2b and d show the same analyses for the AM sam-
ples. The samples characteristics (hardness, dimensions and
microstructure) are summarised in Table 1.

The bimodal microstructure highlighted on the commer-
cial sample presents its equiaxed α-phase in darker grey
and a transformed β-phase in lighter grey (Fig. 2a). This
microstructure results in a sample with good mechanical
strength and good ductility due to the reduction of the lamel-
lar matrix [30]. The α grain sizes are about 15–20μm and its
chemical composition is shown in the EDS analysis (Fig. 2c).
The hardness of the commercial sample, averaged out of 10
measurements, was 332.3 ± 4.54 HV50.

The AM strategies applied for manufacturing the samples
were previously defined in the work of [31] and aimed to
achieve mechanical properties results as close as possible
to the commercial manufactured alloy, as proposed in the
ASTM F3001 standard [32]. The AM parameters used are
shown in Table 2. The powder used for manufacturing the
sample was a Ti6Al4V grade 23 ELI. From Fig.2b it is pos-
sible to observe the formation of α′-martensite in the AM

alloy, which is a result of a difusionless transformation due
to rapid cooling of the LPBF process. These thin martensites
laths with tight spacing between them prevents dislocations
motion, what leads to a material with low ductility and high
strength [33]. The mean porosity of the AM samples was
estimated by SEM images around 0.31 ± 0.06 %. The hard-
ness of the AM samples, averaged out of 10 measurements,
was 369.1 ± 5.36 HV30.

2.2 Micromilling experiments and force
measurements

The micromilling tests were performed using a 3 axis CNC
Mini-mill/GX by Minitech Machinery Corporation, with a
maximum feed rate of 1000mm/min, and maximum spindle
speed of 60,000 rpm (Fig. 3a). The positioning error associ-
ated with the machine is 0.1 μm and it is controlled through
a Mach3Mill CNC software.

The experiments consisted in manufacturing microchan-
nels on both samples, commercial and additive manufac-
tured. The microchannel length was 12 and 20 mm for the
AM and conventional samples, respectively. For each chan-
nel manufactured, the forces in X and Y directions were
acquired. The feed force is in Y direction. For the acquisition
of these forces a Kistler MiniDyn model 9256C2 was used
together with a Kistler conditioner model 5019, an acquisi-
tion board from National Instruments model NI USB-6551
and a computer with the LabView Signal Express software.
An illustration of the force acquisition system is presented in
Fig. 3b. The signals were obtained with an acquisition rate of
100 kHz and a Savitzky-Golay filter with a cubic polynomial
and a window size of 51 points was used for smoothing the
noise on the data. Also, during the experiments, the room
temperature was kept at 20 ºC to avoid linear thermal expan-
sion changes.

Table 3 presents the parameters used for each test. The cut-
ting conditions were defined based on previous experiments
carried out at the LEPU-UFU laboratory and based on pre-
liminary tests carried out at USP-SP. The cutting edge radius
of each microtool was analysed to determine the feed per
tooth to be used, and the goal was to investigate the cut with

Fig. 1 AM printer and strategy
applied
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Fig. 2 SEM analyses for the
commercial and AM samples

Table 1 Samples characteristics Sample Hardness Dimensions Microstructure

Commercial sample 332.3 ± 4.54 HV50 20 mm wide and 60 mm long bimodal

AM samples 369.1 ± 5.36 HV30 12 mm wide and 12 mm long α′-martensite

Table 2 AM process parameters Laser power [W ] Scanning speed [mm/s] Layer thickness [μm] Laser spot diameter [μm]

155 950 30 70

Fig. 3 Experimental setup

Table 3 Micromilling process
parameters

Workpiece Tool diameter [mm] Cutting speed [m/min] Feed [μm/tooth]

AM 0.5 & 0.8 40 & 60 1, 1.5 & 2

Commercial 0.5 & 0.8 40 & 60 1, 1.5 & 2
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Fig. 4 Micromills

the dominant presence of ploughing andwithout its presence.
Therefore, the edge radius was estimated from its measure-
ment on the secondary clearance surface. The value obtained
for the largest microtool diameter was 1.5μm and for the one
with the smallest diameter, 1.3 μm. Therefore, feed values
per tooth of (1–1.5–2.0) μm/tooth were selected. Since 1
μm/tooth is smaller than the edge radius, therefore plough-
ing will be dominant. However, for the highest feed (2.0
μm/tooth) the ploughing effect will not be dominant, and
an intermediate condition was also selected (1.5μm/tooth).
In addition, it was decided to vary the diameter of the micro-
tool to observe its influence on themicromilling process. The
depth of cut was set constant at 25 μm.

For the tests, a total of 12 tungsten carbide TiAlN coated
micro-end mills with two cutting edges were used. The tools
present an helix angle of 35◦ and its geometry is illustrated
in Fig. 4a. The two different tool diameters (D) adopted for
the experiments were: 0.5 mm and 0.8 mm. To check the
tool integrity before the experiments, they were observed in
SEM microscope. From SEM images, the tool nose radius
was determined using the ImageJ software. For 0.5mm tools
the nose radius was approximately 1 μm and for 0.8 mm, 5
μm (Fig. 4b, x150 magnification). Furthermore, the integrity
of the tools were periodically monitored in the microscope
during the micromilling experiments to assure that no signif-
icant tool wear or tool damage were affecting the process.

2.3 Additional measurements

The surface roughness and burr formation of themicromilled
channels were also measured. The surface roughness was
evaluated in terms of surface texture field parameters using a
non-contact Taylor Hobson 3D CCI profilometer. The anal-
ysed parameters were the arithmetic mean of the area (Sa)
and the rootmean square height (Sq ). The skewness (Ssk) and
kurtosis (Sku) were also examined to respectively assess the
height distribution on the surface and the peaks and valleys
tip geometry. The surface roughness parameters were mea-
sured three times along each channel (around the beginning,
middle, and end of the channel) and before these measure-
ments, all samples went through ultrasonic cleaning.

For an estimative of top burr formation, SEMimages of the
channels for each condition were evaluated using the image-

processing software ImageJ. The SEM images were acquired
in the middle of the channel as a standard procedure. Aim-
ing to quantify the burr area from these figures, each image
was separately scaled and converted into a binary image for
making its analysis. This way, the burr stood highlighted and
its pixel’s percentage was estimated, allowing a comparison
between the acquired images.

3 Results and discussion

3.1 Machining forces

Regarding the machining forces, both Fx and Fy were mea-
sured and analysed. First, an illustration of the raw data and
how the Savitzky-Golay filter smooths the signal is shown in
Fig. 5. Following the forces analyses procedure, Fig. 6 shows
an example of the entire force signal and how it was zoomed
for further analyses.

From the results, no significant changes between the AM
and commercial alloys were observed, which is different
from what was found by Abeni et al. [26] and Campos
et al. [15] that also carried out a comparison between the
machinability of the Ti6Al4V alloys manufactured conven-
tionally and by additive manufacturing. Figures7 and 8
present the Fx and Fy machining force data, respectively,
zoomed around 5 mm of the channel length. From that, it
can be observed that the results visually present the same
behaviour for the same set of cutting parameters for the
commercial and AM alloys, including its magnitude. For

Fig. 5 Raw and filtered data comparison
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Fig. 6 Forces data zooming

Fig. 7 Fx force results
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Fig. 8 Fy force results

that reason, correlation analyses were made, estimating the
Pearson coefficient, to measure the relationship between the
material and the machining forces results. The Pearson coef-
ficients obtained were 0.063 and 0.018 for Fx and Fy forces,
respectively. Since these coefficients are close to zero, it indi-
cates that there is no statistical relation between the material
being cut and the machining forces results. This is due to
the AM strategy adopted that aimed to produce an alloy with
mechanical properties similar to the commercial alloy, even
though they present different microstructures.

Regarding the force’s magnitude, Fx and Fy are in the
same range (varying up to 2 N). However, the Fx results
seemed more reliable, as the action of each tooth is clearer
in these results. It was also observed that there was a cor-
relation between Fx and cutting speed. In most cases, when
cutting speed increased, forces decreased, as it is usual in
conventional milling process.

In this perspective, when analysing Fig. 7, it is possi-
ble to observe the contribution of each cutting edge of the
tool on the Fx forces. In one rotation of the tool, the cutting
edge comes into contact with the workpiece causing an ini-
tial crushing of the material, and gradually, the uncut chip
thickness increases until reaching its maximum value. After
that, the peak force decays, as uncut chip thickness decreases.
Then, the processes of plastic deformation, elastic recovery,
chip formation and material removal start again on the sec-
ond cutting edge. In this dynamic, as the chip load increases,
the machining forces increases and vice-versa, what leads to
the sinusoidal shape of the force curve.

It is possible to observe from Fig. 7 that asymmetric cut
was occurring for some of the experiments. According to
Picard et al. (2022) this is due to tool run-out [34] and it
leads to one edge of the tool not effectively cutting the mate-
rial. In this case, one tooth of the tool is crushing the material
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Fig. 9 Forces results for lower feed rate and higher tool diameter with
emphasis on one edge of the tool not effectively cutting the material

and elastically deforming it, leading to smaller machining
forces results. Then, themost heavily loaded toothwill cut the
amount of material it should originally cut plus the amount
of material left by the other cutting edge, leading to themaxi-
mum uncut chip thickness twice the feed per tooth [34]. This
behaviour (highlighted in Fig. 9) is also observed on nor-
mal scale process when the radial cutting depth is small on
free cutting, when the axial cutting depth is smaller than the
radius nose, or when the feed rate is too small on grooving
milling.

In order to estimate tool run-out, the channel width was
measured and compared to the measured tool diameter
(Fig. 10). From this analysis, it can be observed that tool

run-out was in the range found in literature [30, 35, 36], with
a difference of less than 2% from the tool diameter and the
effective channel width. This means that the precision of our
channels is ±16 μm in the worst case and the chip thickness
due to run-out is altered.

3.2 Surface roughness

From the surface roughness results, it could be observed that
there is a statistical correlation between the cutting speed
and the arithmetic mean of the area (Sa) and the root mean
square height (Sq ). The Sa results are graphically represented
in Fig. 11 together with the 3D topographical representa-
tion of the highlighted points (lower feed per tooth). As can
be seen, the surface roughness increases with lower speed,
and the best surface roughness results were achieved with
lower diameter tools. However, no correlation can be settled
between feed per tooth and surface roughness values.

Indeed, the cutting speed affects the surface roughness
because the material removal rate increases with the increase
of cutting speed [37], what makes the surface smoother.
Although, the relationship between the surface roughness
and cutting speed is not analytical [38]. Wang et al. [39],
for example, obtained higher surface roughness for higher
speeds, asmentionedby the authors, this intriguingbehaviour
in their work was attributed to the occurrence of high-
frequency vibrations of the system at higher speeds.

Fig. 10 Tool run-out measurement for both tools
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Fig. 11 Surface roughness results

Other contributing factor to the final surface roughness
is the tool diameter, as showed in literature [39, 40]. It was
previously reported that the surface roughness increases with
tool diameter due to the tool deformation that became bigger
for smaller tool diameters [39]. Nevertheless, no clear rela-
tionship between tool diameter and surface roughness could
be observed in the tests from the present work. However, bet-
ter surface finishing was achieved for the lower tool diameter
combined with higher cutting speed.

To check if these influences were statistically significant
an analysis of variance with 5% significance level was made.

The results for the interaction between the independent vari-
ables and the Sa results are shown in Table 4. The performed
ANOVAunderlines that surface roughness is mainly affected
by the cutting speed and the by the sample (commercial vs.
AM). Also, the interactions of the sample with Vc, diameter
with fz , and Vc, the sample with diameter with fz and Vc, fz
with Vc with diameter and sample were statistically signifi-
cant changing the Sa mean. For this reason, the main effect
plot was made for the Sample and Vc parameters (Fig. 12),
in which Vc was the most significant one. As it can be seen in
Fig. 12, the Sa mean increased in the commercial sample, and

Table 4 ANOVA results Source DoF Adj SS Adj MS F P

Sample 1 0.004387 0.004387 9.14 0.006

Diameter 1 0.000441 0.000441 0.92 0.347

fz 2 0.000262 0.000131 0.27 0.764

Vc 1 0.067058 0.067058 139.71 0.000

Sample*Diameter 1 0.000530 0.000530 1.10 0.304

Sample* fz 2 0.000237 0.000118 0.25 0.783

Sample*Vc 1 0.002826 0.002826 5.89 0.023

Diameter* fz 2 0.017680 0.008840 18.42 0.000

Diameter*Vc 1 0.017645 0.017645 36.76 0.000

fz*Vc 2 0.000120 0.000060 0.13 0.883

Sample*Diameter* fz 2 0.005621 0.002810 5.86 0.008

Sample*Diameter*Vc 1 0.005558 0.005558 11.58 0.002

Sample* fz*Vc 2 0.003537 0.001768 3.68 0.040

Diameter* fz*Vc 2 0.005583 0.002792 5.82 0.009

Sample*Diameter* fz*Vc 2 0.000018 0.000009 0.02 0.982

Error 24 0.011519 0.000480

Total 47 0.143021
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Fig. 12 Main effect plot for Sa

the better surface roughness was achieved in higher speeds,
due to the higher material removal rate.

Other observations about the surface could be made
regarding its height distributions (Ssk parameter) and its
peaks and valleys geometries (Sku parameter). The results
of Ssk were, for all experiments, greater than zero and the
Sku results, greater than three. From that, it can be concluded
that for all experiments therewas a peak predominance on the
surface, since Ssk values were greater than zero. In addition,
the Sku results greater than three represents a large amplitude
variation of the peaks and valleys. In other words, the surface
presented extreme peaks and valleys results. Although, these
results may have an influence of the chips left on the surface
that were not removed with the ultrasonic cleaning.

3.3 Burr formation

Considering the top burr area results, Fig. 13 presents a com-
parison between the best and the worst cases achieved for
AM and commercial alloys for both tool diameters. Higher

burr formation was observed for the smaller cutting speed, as
the material removal rate is lower. Although, for the smaller
tool diameter, the feed of 1.5 μm/tooth lead to greater burr
formation and worst surface roughness. For the greater tool
diameter, higher burr formation was achieved when using
feed of 1 μm/tooth and lower speed.

In addition, there was a correlation between feed force
(Fy) and burr formation, which was more expressive for
the smaller tool diameter. In this case, burr formation was
higher for the experiments with higher Fy forces and the
Pearson coefficient obtained for the correlation analysis of
data was 0.6. This happens because for greater feed force
(Fy), higher stresses are being generated in the feed direction,
what increases compression and causes the lateral deforma-
tion ofmaterial. Indeed, top burrs are Poisson-type burrs, that
happens as a result of lateral deformation of material [41].
However, no clear relation between burr area and feed force
could be established for the 0.8 mm tool diameter, since the
correlationwasweak. This behaviour should be related to the
variation of tool cutting edge radius for different tool sizes.
diameters.

Fig. 13 Burr formation results
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4 Conclusions

In this work, microchannels were fabricated in samples of
titanium alloy Ti6Al4V wrought and manufactured by laser
powder bed fusion, using the micromilling process. When
analysing the machining forces, the surface roughness, and
the burr formation, it was possible to conclude that:

• No statistically significant difference in the machinabil-
ity of the commercial and the AM Ti6Al4V sample was
observed during micromilling, for the set of parameters
used. This is due to the AM strategy adopted that leads to
similar mechanical strength of the AM and commercial
samples;

• The forces magnitude during the micromilling process
varied up to 2 N, for the adopted conditions;

• The analysis of the Fx force data revealed an asymmet-
ric cutting phenomenon caused by tool run-out, which
resulted in uneven chip load distribution across the tool
edges;

• Regarding the surface roughness results, higher cutting
speed led to better surface quality;

• The best surface roughness result was achieved with
lower diameter tool and higher cutting speed, though,
no relation could be settled between surface roughness
and feed per tooth;

• For all experiments made, there was a predominance of
extreme peaks on the surface, what is influenced by the
chips left on the surface that were not removed by ultra-
sonic cleaning;

• Higher burr formation was observed on the small diam-
eter tool experiments where higher Fy forces were
measured. Consequently, surface quality on these exper-
iments was harmed;

• For both tool diameters, the worst burr formation results
were observed for the smaller cutting speed, as the mate-
rial removal rate is lower in these cases.

Finally, from the analyses carried out, it was possible to
observe that the results of machining force, surface rough-
ness, and burr formation were similar for the wrought sample
and the one manufactured by AM. In addition, for the set
of parameters applied in this work, the microchannels with
higher surface quality and less burr formation were achieved
with the condition of a smaller tool diameter and higher cut-
ting speed (60m/min).
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